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Abstract. The advent of friction stir welding (FSW) in 1991 has been evolutionary in the 

joining of metals and related materials. Friction stir welding has enabled the joining of metals 

that could not be joined by other welding processes. Research has shown that dissimilar 

materials with very different properties, plastics, composites and even wood can be joined by 

FSW. Recent activities in the application of FSW has seen the development of micro friction 

stir welding (μFSW), which is the FSW of very thin sections of thickness 1000 μm (1 mm) or 

less. Micro friction stir welding further extends the applications of FSW to areas such as 

copper electrical contacts, tailor-welded blanks, wood. Though μFSW is relatively new 

development significant work has been done to date with interesting research findings being 

reported. This paper aims to review developments in μFSW to date. The focus of the paper will 

be on problems peculiar to μFSW due to downscaling to the micro scale and other practical 

considerations. 

1. Introduction 

Friction Stir Welding (FSW) is relatively a recent metal joining process in which a hard tool, made of 

a pin protruding out of a shoulder, is rotated at high speed and traversed between the two pieces that 

are to be joined. The frictional heat generated, due to stirring action, between the work pieces and the 

tool shoulder and pin causes the material of the workpieces to soften and plasticize allowing the work 

pieces to get joined without melting of the workpiece material.  

 

The tool, comprising of pin protruding from a shoulder, generates sufficient heat which causes 

softening of material as it moves forward. The displaced material goes round the tool and undergoes a 

constrained extrusion process and gets deposited as a solid phase behind the tool, mainly on retreating 

side (an asymmetrical process). Heat is generated by both the shoulder and the pin mainly though 

friction but at the pin heat is also generated through shear.  

 

Generally most of the researchers reported three zones in the weld region namely the stir or nugget 

zone (SZ / NZ), the thermo-mechanically affected zone (TMAZ) and the heat affected (HAZ). 

                                                           
1*

  To whom any correspondence should be addressed. 

iMEC-APCOMS 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 114 (2016) 012036 doi:10.1088/1757-899X/114/1/012036

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



However, some authors did not put any distinction within the TMAZ and hence cite only two zones 

the TMAZ and the HAZ (Galvão, et al., 2012). 

 

The stir zone is the area directly stirred by the pin. In this region there is enough heat generated to 

cause plastic deformation of the material and recrystallization of the grains resulting in the increase of 

hardness and strength in this area. The TMAZ is the area under the shoulder where the temperature is 

not enough for recrystallization but there is plastic deformation of the grains. In the HAZ, the area 

immediately on the outer side of the TMAZ, the heat is not enough to cause plastic deformation but 

the thermal cycles during the welding process cause some microstructure changes resulting in 

precipitations.  

 

The advent of friction stir welding in 1991at TWI (Teh, et al., n.d.) has been revolutionary in the 

joining of metals and related materials. Friction stir welding has enabled the joining of metals that 

could not be joined by any other welding process. Research has shown that dissimilar materials with 

very different properties, composites and even wood can be joined by FSW. Aluminium and its alloys 

are very difficult to weld because of the high thermal expansion coefficient, high thermal conductivity 

and high electrical conductivity (Sattari, et al., 2012). Initial FSW process was intended for the joining 

of aluminium and its alloys because of the limitations of the traditional welding processes on those 

alloys. The process has since been applied for the joining of other materials including copper, steels, 

and titanium in similar and dissimilar combinations. 

 

Significant advances have been made in FSW with a lot of research outputs to date focusing on, 

among other things materials, tools and process optimisation.  

 

Micro friction stir welding (μFSW) is an extension of FSW for joining of materials of thickness 1000 

μm (1 mm) or less. Issues related to materials, defects, tools and new applications are considered. Butt 

and lap welds have been tried through μFSW, with a focus on butt welds (Ahmed, et al., 2014).  

 

Much of the early work on FSW focused on materials of thickness greater than 1 mm. For this 

thickness of materials a lot of investigations have been conducted and the relevant tools and process 

parameters for different similar and dissimilar materials have been established, to a large extend. 

Recent activities in the application of FSW has seen the development of micro friction stir welding 

(μFSW) at TWI (Tondi, et al., 2007), which is the FSW of very thin sections of thickness 1000 μm (1 

mm) or less. Micro friction stir welding further extends the applications of FSW to areas such as 

copper electrical contacts (Klobčar, et al., n.d.), tailor-welded blanks (Min, et al., 2000) 

(Montazerolghaem, et al., 2014), wood (Tondi, et al., 2007), plastics (Panneerselvam & Lenin, 2014) 

and composites (Ahmadi, et al., 2012), (Prater, 2014). Though μFSW is relatively new development 

significant work has been done to date with interesting research findings being reported. In this paper 

the authors aim to review developments in μFSW to date.  

 

There is evidence that by 2005 friction stir welding of very thin sheets had been performed. Interest in 

FSW of very thin sheets, or micro Friction Stir Welding (μFSW) is reported as early as in 2003. The 

Welding Institute (TWI) laid out a project plan to conduct research into the friction stir welding on 

very thin lap joined aluminium sheets, which at that time had not been systematically explored (TWI, 

2003). In another similar plan in 2005 the company reported accomplishment of the first phase 

comprising of producing lap joints and studying the effect of anodising and conversion coatings on the 

joints whilst starting the second phase (TWI, 2005). Developments at TWI in μFSW have been 

highlighted in a paper that was published on the TWI publications website (Teh, et al., n.d.). The paper 

discusses issues on downscaling challenges, tools and machinery for μFSW, and results of the work 

carried out. 
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In the early stages of the FSW of very thin plates, there was much concern about the feasibility of the 

process with such small thickness of materials. As a result the early studies focused on establishing 

whether it was possible to conduct micro friction stir welding. Nishihara et al conducted some pilot 

studies to investigate the feasibility of μFSW was on AZ31 magnesium alloys (Nishibara & Nagasaka, 

2004). Scialpia et al further investigated the feasibility of micro FSW but focusing on analysis of the 

mechanical properties of μFSW joints of 2024-T3 alloy with 6082-T6 alloy (Scialpi, et al., 2008). The 

alloys were successfully joined with the overall strength of the joint being very close to that of the 

weaker 6082-T6 alloy. The researchers in their discussion mentions eight zones in the microstructure: 

(1) base metal, (2) TAZ, (3) TMAZ and (4) stirred zone for the 2024 alloy and (5) stirred zone, (6) 

TMAZ, (7) TAZ and (8) base metal for the 6082 alloy. In another related research Scialpia et al 

conducted mechanical analysis of ultrathin FSW joined sheets of similar and dissimilar materials 

(Scialpi, et al., 2008). The researchers were able to obtain in their work excellent mechanical and 

fatigue properties with limited microdefects and residual stress.  

 

Even more recently Galvão et al looked at the feasibility of the process, focusing on several metals and 

alloys (Galvão, et al., 2012). The results obtained in the feasibility studies were encouraging, and 

confirmed the findings of the earlier researchers that thin plates can be welded by FSW just as well as 

the normal sized plates. With a careful design of welding parameters properties very close to those of 

the parent materials were obtained and in some cases there are even reports of improved properties.  

 

Although much of the early work in micro friction stir welding focused on butt joints of different 

materials, some significant strides have been made on micro friction stir lap welding. In a feasibility 

study of the lap joining of 2 mm thick AA1100H24 to 1 mm thick copper plates, the plates were 

successfully joined but the joint strength was found to be low (Elrefaey, et al., 2004). It was 

established that the joint strength depended on the pin tip penetration into the copper plates and 

increased with rotational speed.   

 

Other research projects on friction stir lap joining of similar and dissimilar materials has been 

conducted by different researchers (Abdollah-Zadeh, et al., 2008) (Saeid, et al., 2010.) (Xue, et al., 

2011) (Akbari, et al., 2012) (Firouzdor & Kou, 2012) (Bisadi, et al., 2013). Our interest is the friction 

stir lap welding of materials that include very thin sections, which then falls within the scope of this 

present paper. Research has been conducted to investigate the friction stir lap welding of copper DHP 

plates of thickness 1 mm to aluminium alloys AA5083 – H111 and AA6082-T6 of thickness 6 mm 

(Galvão, et al., 2013). Lap joints have been shown to perform better than butt welds in tensile testing 

while having comparable results in hardness test for AA6XXX series aluminium alloys (Ahmed, et al., 

2014).  

 

Research has seen the application of FSW in spot welding, resulting in friction stir sport welding (Yin, 

et al., 2010 June) (Yin, et al., 2010). With further developments this work has been extended to 

friction stir spot micro welding (Wang, et al., 2010).  

 

Montazerolghaem et al present in their research an approach for similar and dissimilar ultrathin tailor 

welded parts manufacturing, which results in very good surface polishing and mechanical properties 

using FSW and rolling. Results were encouraging with continuous and strong joints between the 

welded materials (Montazerolghaem, et al., 2014).  

 

Micro FSW has found further application in joining of wood (Tondi, et al., 2007). A weld joint was 

produced in wood pieces using a cylindrical spindle. Though the joint was found to be weak the 

feasibility was demonstrated for further development. It was established that molten material is 

produced in contact with the rotating tool.  
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Sound welds were obtained in the μFSW of electrical contacts with selected welding parameters and 

tools (Klobčar, et al., n.d.). Surface Oxidation was noted at the oxidation temperatures. Higher 

strength was achieved in the weld compared to the base materials.  

 

The thickness of materials in this range is very small that this possesses some challenges that are not 

experienced in normal FSW. This paper aims to review developments in μFSW to date. Focus will be 

on problems peculiar to μFSW due to downscaling to the micro scale.  

 

Like in FSW, μFSW was initially applied to aluminium and its alloys (TWI, 2003). Applications have 

since been extended to other materials that include copper, brass, steels in similar and dissimilar 

configurations (Teh, et al., n.d.) and other materials that include plastics, composites and even wood. 

The problem of intermetallics that makes dissimilar joints between copper and aluminium using fusion 

welding difficulties can be minimised when using μFSW. This makes μFSW a very attractive process 

in producing aluminium and copper joints for electrical contacts. Similarly, use of μFSW in the joining 

of thermoplastic polymers helps reduce the problem of thermal degradation because of the lower 

welding temperatures.  
 

2. Challenges in μFSW 

Large heat dissipation occurs from the surrounding parent material because of the high surface to 

volume ratio of plastic zone and increases with decreasing zone radius (Teh, et al., n.d.). This can be 

controlled by using an insulating but resilient backing anvil. To avoid over penetration the length of 

Probe should be controlled. At the same time the probe may not have complex geometries and so the 

heat generation from the probe is reduced. This means the shoulder friction must be compensated by 

providing much of the heat required for welding. For better results higher rotational speeds and lower 

traverse speeds may be used, which again compensates for the greater energy losses. The small size of 

workpieces also means greater care is needed to ensure the clamping force does not lead to 

deformation of the welded parts. In the same way testing equipment used should not introduce any 

deformations. Challenges in μFSW include reduction of mechanical resistance because of the 

reduction of the thickness from the tool shoulder action and reduction of joint strength due to 

microdefects in the welds. The occurrence of irregularities in the thickness of the weld materials has 

been cited as cause of failure, which occurs in the welded zone, rather than presence of defects 

(Scialpi, et al., 2008).  
 

3. Tools 

The challenges discussed above means that some of the tools that have been successfully employed for 

the normal FSW may not be suitable for μFSW. Research in tools has seen the design and 

development of tools for μFSW (TWI, 2005) (Teh, et al., n.d.). Small tools with relevant geometries 

have been developed (Galvão, et al., 2013). The use of tools without pins has been under scrutiny by 

some researchers. Tools without pins have been used successfully. Because of the effect of the 

reduction of thickness on very thin section use of the tilt angle has been investigated, and in trying to 

control the reduction of thickness, zero tilt angles have been used.  

 

Design is important for fixtures, in μFSW, that tightly secure workpieces preventing deflection and 

movement during welding for sound welds. Fixtures should prevent high rates of heat conduction from 

the pieces to ensure there is enough heat to soften materials, especially for aluminium (Ahmed, et al., 

2014). 
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3.1. Tool geometry. 

Tool geometry requires consideration in producing good welds in μFSW. Besides the size of the tools, 

the shape and configuration of the tools should be carefully designed. Special profiles of both shoulder 

and the pin have been designed and employed with encouraging results. A number of researchers 

conduct tests using different tool geometries in experiments while keeping everything else constant 

and results show that use of different geometries gives rise to different results for the same materials. 

Important parameters in tool geometry include the shape and diameter of the shoulder; the shape, 

diameter and length of the pin; and the angle of tilt. 

 

Tools and machinery need to be down scaled to suitable levels for μFSW applications (Teh, et al., 

n.d.). Because of the small sizes μFSW requires high precision tools and fixtures (Ahmed, et al., 

2014). The fixtures must firmly hold the sheets together without any deflection on the top surface and 

must not allow the sheets to shift during welding. The fixture must be a poor conductor so that heat 

generated can effectively soften the material without being conducted away too fast. Heat resistant 

Bakelite has been used as backing plate.  

 

Investigations have revealed that tool shoulder has more effect on properties of welds than tool pin 

(Rodrigues, et al., 2009 ). Use of a tool without a pin has been reported for both normal FSW and for 

μFSW. The results from these compares favourably especially for μFSW, where the thickness is small 

and enough heat is generated by use of the shoulder only (Zhang, et al., 2011). 

 

Interest in tool, material and process design for μFSW has demonstrated the large volume of patents 

that have been registered. This shows the enormous quest by researchers and companies to improve 

weld results. Research shows that since the first patent of the FSW process by TWI in 1991, over 800 

patents have been registered related to μFSW and FSW till to date.  

 

Whilst tilt angle helps in holding the weld materials in place during the welding process in FSW of 

plates of normal thickness, the importance of the tilt angle in micro FSW is put in the spotlight. In a 

series of experiments with a tilt angle applied in some and no tilt angle in other experiments, it was 

found that there was significant reduction in the thickness compared to the base materials (Leal, et al., 

2008). This significantly compromises the performance of the joint. The problem can be avoided by 

using tools with different designs of shoulders, like scrolled shoulders. 

4. Welding parameters 

Welding parameters play a very important role in FSW. The main parameters that need special 

consideration include the tool rotational speed and the traverse speed (Ahmed, et al., 2014).  

Welding parameters affect such things as material flow, material mixing in dissimilar μFSW, 

microstructure in the weld area, and mechanical engineering properties including hardness, tensile and 

compressive strength, ductility and brittleness; impact and fatigue strength. The effects of FSW of thin 

sections of different materials on these properties have been investigated by different researchers using 

different analysis tools.  

Different rotational speeds of up to 3000 rpm and traverse speed between 50 to 500 mm/min have 

been applied for different materials in μFSW to obtain sound welds (Teh, et al., n.d.). Rotational speed 

has been cited as the most significant factor for producing sound FS welds (Vijayan, et al., 2010). 
 

5. Microstructural evaluation 

Fine grained microstructure without segregation and coarse grains were obtained in μFSW welds for 

both butt and lap joints just as in the larger scale FSW joints (Teh, et al., n.d.). Researchers have been 
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able to establish that the grain structure in different zones will be different in μFSW, which tallies with 

findings in FSW.  

 

5.1. Grain size 

Grain size affects the mechanical properties such as hardness and strength. Both properties generally 

increase with decrease in size of the grains. Smaller grain size results from use of lower temperatures 

since grain growth is fostered by higher temperatures. As a result soft materials tend to experience an 

improvement in these properties during FSW as a result of lower welding temperatures.  

 

For harder materials higher frictional forces are required before the material can begin to plasticize 

and as a result higher temperatures are required, which means the grain sizes are not as small and 

properties may then not be as much improved compared to the parent materials.  

 

Grain size is not the only factor that affects the hardness of materials. In age-hardened alloys, 

precipitation during formation of the alloy results from the ageing during the solidification process. 

Hardening in these alloys result because precipitates lodge in dislocations and prevents the easy flow 

of the material. In FSW of age-hardened alloys it is important to take note that hardness and strength 

might be reduced in such materials even with small grain structure. This is because of the dissolution 

of precipitates during the FSW process, which is greater than the hardening resulting from the reduced 

grain size. This has been noted and reported in both similar and dissimilar FSW of materials.   

 

5.2. Nugget zone (stirred zone, SZ) 

As indicated before the microstructure in this zone results from recrystallization of plasticized 

material. Because of the welding temperatures that are lower than the melting point, very small grains 

are formed that improves properties of the welds.  

 

Formation of Onion ring structures were reported in some combinations of similar and dissimilar 

materials but are absent in other (Rodrigues, et al., 2009 ), (Leal, et al., 2008).  

 

5.3. Spherical zone 

It has been found that when the tool is withdrawn the material surrounding the hole left by the pin, the 

spherical zone has extremely fine grained microstructure (Leal, et al., 2008). This is a result of the 

interaction of the material and the pin due to the stirring action. This region is undesirable in 

components and this area is either cut off or is designed out during the welding process. However it is 

worth noting that there is such an effect on the material that is immediately around the pin. 

 

5.4. Thermo-Mechanically Affected Zone 

Material in this zone does not recrystallization because the heat in this zone is not high enough. 

However the material experiences plastic deformation due to heat and some microstructure changes 

occur. As a result the properties of the material in this region will be different from the parent 

materials. 

 

An interesting phenomenon was reported in two researches on μFSW of dissimilar materials between 

aluminium and copper alloys. In an investigation on the FSW of aluminium alloys AA6016 –T4 and 

AA 5182-H111 a tongue of material white was found going upwards on the advancing side into the 

AA5182 material (Leal, et al., 2008). A similar tongue was found in the similar μFSW of AA6016 T4 

alloy (Rodrigues, et al., 2009 ) and in the dissimilar FSW of tongue of grey material going upwards 

iMEC-APCOMS 2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 114 (2016) 012036 doi:10.1088/1757-899X/114/1/012036

6



through advancing side of weld was reported for 750 rpm rotational speed and feed rate 160 mm/min 

copper on advancing side (Galvão, et al., 2010). The diagram Fig 1 and Fig 2 below show tongue of 

material.   

 

  
Fig 1: Transverse cross-section of S-750_16_Cu weld (Galvão , Leal , Loureiro , & Rodrigues, 2010) 

 

 
Fig 2: Material tongue (Galvão , Leal , Loureiro , & Rodrigues, 2010) 

 

5.5. Heat-Affected Zone 

In this zone the heat is enough to cause plastic deformation but microstructural changes occur in the 

material. Properties of the material in this zone are closer to the parent materials than the other zones. 
 

6. Properties 

 

6.1. Hardness 

In the study on μFSW of aluminium, copper, brass and zinc alloys (Galvão, et al., 2012), hardness in 

the TMAZ for brass was noted to be higher than in the parent material which the authors attributed to 

the much reduced grain size. In contrast, in the HAZ coarse grain structure was observed resulting 

hardness lower than the base material. For the copper the hardness was found to increase due to grain 

refinement in the TMAZ with a slight softening in the HAZ, which agrees with the findings of other 

researchers (Xie, et al., 2007) in their study on thick plates of copper. The aluminium alloys registered 

no significant changes in the hardness of the welds compared to the parent materials, but the results 

were due to different factors. In the non-heat treatable 5182-H111 this result from the compensating 

annealing effect on the hardening resulting from plastic deformation and this same result was also 

exhibited in the welds on zinc.  

 

For aluminium, tensile strength in lap joints is better than in butt joints. For hardness tests, 

performance of transverse and longitudinal samples was found to be comparable to that of the parent 

materials.  
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6.2. Strength and ductility 

In the analysis of aluminium, copper, brass and zinc alloys (Galvão, et al., 2012) an inferior elongation 

was noted for all the welds. Ductility was found to be good; yield stress was comparable in the welds 

and the parent materials whilst tensile strength was noted as under match for all except zinc welds. 

The anomaly in the zinc was attributed to the kissing bond defect.     

 

Brass was found to fail in the base metal before plastic deformation of the TMAZ whilst 6016-T4 

failed in the welds. The reduction of thickness or kerfs effect of the striations has been identified as the 

reason for location of the fracture.   

 

Tensile strength for Al alloys has been found to be generally lower than in parent material for different 

types of welding tools (Rodrigues, et al., 2009 ) whilst formability has been found to be similar to base 

material. 
 

7. Discussion 

The study by Galvao et al focusing on several metals is important in showing that comparison of 

different metals under similar conditions is not very conclusive (Galvão, et al., 2012). There is need to 

optimise welding parameters for each material. The study showed that the materials have different 

mechanisms influencing grain size formation and resulting hardening or softening. The authors 

highlighted such processes as annealing, precipitate dispersion, coarse hardening occurring in different 

specimen and this means control of properties for different materials depends on control of different 

weld parameters. This highlights the need for more research to characterise and model the different 

materials and combinations of materials, in the case of dissimilar FSW, so as to optimise performance 

characteristics of the welds.  

 

From this stand point it can be concluded that it is important to find the optimum operating conditions 

for each material/tool combination (Lakshminarayanan & Balasubramanian, 2008), (Peel, et al., 2003), 

(Hirata, et al., 2007). 
 

8. Conclusion 

The process of FSW has been shown to be successful in the joining of thin materials. This review has 

looked at the work of different researchers and very positive results have been obtained with different 

similar and dissimilar materials using a wide variety of tools and tool configuration. It should be noted 

that the optimum conditions for different materials and tools vary. Whereas comparisons are made for 

different combinations of materials and conditions, the results may not reveal the full set of possible 

outcomes. If possible the investigation should include the optimum conditions for all the tools under 

consideration. In some cases it may be necessary to include a post-welding treatment to achieve better 

results. 
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