Paper The following article is Open access

Results of the measurement of SOFC fuel cell stacks under pressure conditions

, , and

Published under licence by IOP Publishing Ltd
, , Citation H.P. Berg et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1137 012009 DOI 10.1088/1757-899X/1137/1/012009

1757-899X/1137/1/012009

Abstract

Results from the measurement of SOFC fuel cell stacks under pressure conditions are presented. As part of a measurement campaign, the operation of a stack system is investigated, particularly under the operating conditions of a recuperated micro gas turbine. Above all, the performance and effectiveness of selected stack types at various operating pressures and operating temperatures are measured. With the test facility set up for such investigations, cell systems could be examined under atmospheric conditions and with pressures of up to 5 bar.

It is shown that in operating conditions under pressure, the output of the fuel cell systems are improving. From a gauge pressure of 4 bar, the performance curve is flattened and higher pressures only produced a marginal increase in performance. Furthermore, the cells tested at overpressure show a steady-state behavior more quickly under load change requirements than in atmospheric operation. This means that more flexible operating modes with faster response behavior can be realized. By choosing a suitable operating temperature, the efficiency of the system is further increasing. Care was taken to select the operating conditions of the cell systems so that coking can be prevented.

Finally, a statement can be made about the pressure dependence of the fuel conversion rate. Parasitic reactions at the anode can be related to the power output. The tests carried out have shown that the high-temperature fuel cell is a promising service provider of the future. A combination of SOFC high-temperature fuel cells and micro gas turbines in one machine could, in addition to the internal provision of the required pressure, also lead to better dynamics of the entire system and increase the energy yield from the primary energy source.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/1137/1/012009