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Abstract. This research studies the dynamic model and control of multiple effect evaporators 

of tomato solutions by implementing three control strategies: PID, neural model reference, and 

neural model predictive controllers. The evaporator's control is crucial to maintain the product 

specifications at different operation conditions at minimum operating cost. The model 

reference control and model predictive control has been designed and evaluated. The 

simulation results showed that the neural predictive controller is more suitable, has lower 

overshoot, less offset value, and less integral absolute error. 

Keywords. Multiple effect evaporators, Neural reference controller, PID controller, Neural 

predictive controller. 

1. Introduction 

The principle utilized in the evaporator is a high pressure and temperature of steam, which acts as the 

heat supplier that is fed into the evaporator. The heat from the steam will increase the temperature of 

the evaporator, and at a specific high temperature, water in the liquid will start to vaporize, and a more 

concentrated product will be produced from the evaporator. The evaporation process is used in various 

industries, such as pharmaceuticals, food, and beverages, chemicals, and more [1]. The modeling and 

simulation of the integrated operation of the evaporator processes pose a significant challenge for 

every industrial plant. The firm interactions, high nonlinear behavior, extended and extremely time 

delays are the reason for the complexity [2]. The evaporation system's control objectives are 

maintaining the product specifications, operation constraints, and cost considerations. The complexity 

and the large number of interactions make single loop PID control difficult and often suboptimal. The 

conventional control methods are unsatisfactory because feed specifications change suddenly; hence 

the tight control of temperature using conventional methods is not satisfactory. Thus, it requires 

applying advanced control methods [3]. Kam et al. [4] simulated the nonlinear controller of an 

industrial five-effect evaporator of an alumina refinery. The simulation results showed that the 

nonlinear controller provides good performance to the multi-loop PI controllers. Benne et al. [5] 

modeled the multiple effect evaporation of the sugar industry. They developed the model-based 

predictive controller by predictor neural network model of the plant. They illustrated a good 

performance of this new approach. Smith [6] applied the model predictive controller on the multiple-

effect evaporator to solve multiple inputs and multiple output variables. This method is compared with 

the PID controller, and the results show that the performer of the MPC controller is better than the PID 

controller.  Rangaiah et al. [7] applied nonlinear model predictive and PI controllers of an industrial 
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four-stage evaporator. They showed that the nonlinear model predictive controller is better than PI 

controllers. Karimi and Jahanmiri [8] developed an inferential cascade controller of a three-effect 

falling-film evaporator in a milk factory. The results show that the inferential controller achieves 

suitable control action concerning disturbances. Farsi and Jahanmiri [9] proposed and tuned the three 

conventional loops cascade control of evaporator. The results showed that the proposed control 

algorithm could significantly improve regulatory and servo responses. Atuonwu et al. [10] simulated a 

PI controller in parallel with a neural network of an industrial-scale five-stage evaporator. They tested 

this method and compared performance with PI controller with setpoint tracking and disturbance 

rejection problems. Chai et al. [11] applied the optimal control of a practical alumina evaporation 

process, and the results obtained are highly satisfactory. Wang et al. [12] applied an MPC and 

observer to improve disturbance rejection in the multiple-effect falling-film evaporator. The 

simulation results prove that the proposed method gave robust disturbance rejection compared with the 

MPC method. Verma et al. [13] applied the cascade-PID control of the heptode-effect evaporator in 

the paper industry. They improved the dynamic performance of the heat exchanger system versus 

open-loop dynamic response.  Pan and Ning [14] studied the dynamic mathematical model of the 

evaporation system in the sugar mill and established it by mechanism analysis. They applied the PID 

and nonlinear adaptive predictive control algorithm. The error between the model output and the 

actual output is small, which satisfied the control requirements. It shows that the model has a good 

predictive ability. The simulation results showed that the predictive control algorithm has better 

robustness and stability than the PID control algorithm. This study aims to apply the PID, neural 

network model reference, and neural network model predictive controllers of the multiple effect 

evaporators of tomato solutions.  

2. Mathematical modeling of the evaporator 

The evaporator includes mass and heat transfer. The solution was considered as a binary solution of 

water and tomato. The evaporator is modeling based on total mass and component balances together 

with an energy balance. The evaporator is simulated based on the model equations presented below: 

Total mass balance at unsteady state [15]: 

  

  
                   (1) 

Soluble solids mass balance: 
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Equation (2) can be written as : 
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Substituting Equations (1) and (3) in Equation (2) gives: 
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Rearranging Equation (4): 
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Taking the Laplace transform of Equation (6): 

      ( )    ( )         ( )     (7) 
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Total energy balance at the unsteady state  
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Where     
      is the steam-generating in the power plant 

         (         )     (10) 

and the enthalpy of product concentration  

             (11) 
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Substitute Equations (10, 11 and 12) in Equation (9) gives: 
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Taking the Laplace transform of Equation (15): 

 ( )  
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At steady-state of Tin  then Equation (16) became: 

 ( )   
 ( )

   ( )
 

  

     
      (17)     

3. Neural network controller 

The neural networks have been used prosperity in the modeling and control of dynamic systems [16]. 

The first layer has input neurons, which send data via synapses to the second layer of neurons, and 

then via more synapses to the third layer of output neurons, while the others are the hidden layers. A 

multilayer perceptron can learn when presented with input and output pairs [16]. In this study, a 

multilayer feed-forward neural network was applied to the evaporator with four input neurons, nine 
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output neurons from the hidden layer and one output neurons from the output layer and with the (Tan-

Sigmoid transfer function) activation function in hidden output and the (Linear transfer function) 

activation function in network output, as shown in Figure 1. The update weights and biases by using 

backpropagation learning algorithm during training to improve the performance. The general rule used 

to update the weight can be written as: 

       
  

    
       (18) 

The new weight can be updated as follow: 

   ( )     (   )      ( )    (19) 

   ( )     (   )      ( )        (   )  (20) 

The operating parameters for the tomato system are shown in Table 1. The controllers are shown in 

Figures 2 and 3. 
 

 

Figure 1. The neural network structure for the evaporator. 

 

Table 1. Operating parameters for the Tomato system [17]. 

No. Parameter Value 

1 Total no of effects 4 

2 Feed Flow rate, kg/hr 12,000 

3 Tomato Inlet concentration, kgsolid/kgsolution 0.06 

4 Tomato Outlet concentration, kgsolid/kgsolution 0.28 

5 Steam Temperature, ◦C 135 

6 Feed Temperature, ◦C 60 

7 Heat capacity of liquid solutions (                    ) 

 

 

Figure 2. Model reference control system. 
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Figure 3. NN Model predictive control system. 

4. Simulation works 

The process consists of the forward feed four effect evaporator of Tomato juice, as shown in Figure 4.  

The volume of evaporator and flow rate are 795 m
3
 and 437 m

3
/s, respectively. The diameter, length, 

and the number of the heat exchanger tubes are 0.05 m, 6 m, and 107, respectively. The MATLAB / 

Simulink software is used to simulate the evaporator depending on the mathematical model. 

 

 

Figure 4. Multiple effect evaporation equipment [15]. 

5. Result and discussion 

5.1. Dynamics of evaporator 

The dynamic behavior is studied using step changes in steam flow rate, flow rate, and temperature of 

feed and finding the evaporator's transfer function, which was regarded as a first-order system. Table 2 

shows the parameters of this system at different disturbance variables. The third and fourth effect 

evaporator response reaches a new steady-state condition with more time delay than the first and 

second effects evaporator. The time constant decreases with increasing steam flow rate. The time 

constant of the third evaporator is larger than the first and second evaporator.  

 

Table 2. The parameters of the evaporator system. 

Disturbance Variable Evaporator Evaporator Evaporator Evaporator 

No.1 No. 2 No. 3 No. 4 

KP τ (hr.) KP τ (hr.) KP τ (hr.) KP Τ (sec.) 

Steam flow rate 14.41 1.51 14.79 1.96 15.44 2.43 42. 3.57 

Feed flow rate -2.25 1.33 -12.31 1.79 -16 2.35 -8.61 3.01 

Feed Temperature 9.78 1.45 9.11 2.63 4 3.11 7.23 4.88 

5.2. Control of evaporator 

In this section, a discussion of simulation results of the closed-loop is presented. In the present work, 

the object to maintain the controlled variable, the evaporator's outlet temperature at the desired value 

using three control methods: PID feedback and neural network controllers.  The PID and neural 

network controllers are tested using step-change in feed flow rate and temperature using Integral 



INTCSET 2020
IOP Conf. Series: Materials Science and Engineering 1094  (2021) 012004

IOP Publishing
doi:10.1088/1757-899X/1094/1/012004

6

absolute error (IAE) for PID, as shown in Table 3. It can be seen that the IAE value of the PID 

controller needed a long time to reach the steady-state. 

    ∫ | ( )|
 

 
    ∑|              |       (21) 

The PID controller showed a large degraded performance, as displayed in Figures 5 and 6, and it can 

be seen that the temperature has severe non-linear dynamics that depended on evaporation systems. 

The responses of neural controllers are fast, give smoother, smaller IAE error values, and perform 

better than the PID controller when step change is introduced into the systems. The figures clear that 

the neural strategy transported the evaporator temperature to the setpoints by the gradual increase of 

the flow rate, which gives a smooth control response. This indicates that neural controllers give less 

offset and give better control performance. 

        

 

Figure 5. Comparison between PID and neural network (reference and predictive) 

controllers in the first evaporator to a step-change in temperature of feed from 60 – 

70 °C at set point =92°C for tomato system. 

 

 

Figure 6. Comparison between PID, fuzzy logic (seven membership functions), and 

neural network (predictive) controllers in the first evaporator to a step-change in feed 

flow rate from 12000 – 13000 kg/hr at set point =92°C for tomato system. 
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Table 3. The integral absolute error (IAE) for the neural network method. 

Item 

No. 

Variable of the step-

change 

Value of  

step-change 

Evap. No. 
Control Method 

1 2 3 4 

1 Feed flow rate 12000 – 13000 0.4943 2.0411 0.6512 0.6987 
PID 

2 Temp. of feed (C
о
) 60 – 70 1.5523 1.8648 0.6008 0.6374 

3 Feed flow rate (kg/hr) 12000 – 13000 0.1201 1.5989 0.5024 0.4222 Neural Network 

controller Neural 

Network controller 

4 Temp. of feed (C
о
) 60 – 70 1.1061 1.8036 0.4729 0.5761 

5 Feed flow rate (kg/hr) 12000 – 13000 0.0945 1.1331 0.4714 0.1303 Predictive Neural 

Network controller 6 Temp. of feed (C
о
) 60 – 70 0.8345 0.9716 0.4158 0.2072 

6. Conclusion 

The system of the evaporator is considered as a first-order lag. The integral of the absolute value of the 

error is used to test the performance of control methods.  The PID controller is oscillating, needs a 

long time to reach the steady-state, has a higher IAE value, and has a high overshoot and settling time. 

The response of neural predictive controllers gives less error value and reaching the setpoint value in 

less time with lower over-shoot and indicated that neural predictive were more robust and gave better 

performance due to the disturbances. 

 

Nomenclature 

        Inlet concentration of tomato, (kgsolid/kgsolution)   

         Outlet concentration of tomato, (kgsolid/kgsolution)     

H        Product enthalpy, (kJ/kg) 

HC      Condensate enthalpy, (kJ/kg)  

Hin      Feed enthalpy, (kJ/kg)  

Hst      Steam enthalpy of steam, (kJ/kg)  

Hvap    Vapor Enthalpy, (kJ/kg) 

M       Mass holdup, (kg) 

m       Product flow rate, (kg/sec) 

min     Feed flow rate, (kg/sec) 

mst , mc    Steam and condensate flow rate, (kg/sec) 

mvap    Vapor flow rate, (kg/sec) 

Qsteam   Heat of steam,  (kJ/sec) 

T   Temperature of product,  (
o
C) 

Tin   Feed temperature, (
O
C) 

Wij  Connection weight  

Greek letters 

α  Momentum rate 

τ  Time constant, (sec) 

τD  Derivative time constant, (sec) 

τI  Integral time constant, (sec) 

ƞ  Learning rate 

7. References 

[1] McCabe, W L, Smith, J C and Harriott, P 1993 Unit Operations of Chemical Engineering (New 

 York: McGraw-hill) p 154 

[2] Ordouei, M H 2009 Computer Aided Simulation and Process Design of a Hydrogenation Plant 

 Using Aspen HYSYS 2006 (MSc. Thesis, University of Waterloo) pp 1–3 

[3] Seborg, D E, F Edgar, T and Mellichamp, D A 2004 Process Dynamics and Control (John Wily 

 & sons, USA) 

[4] Kam, K M and Tadé, M O 2000 Simulated Nonlinear Control Studies of Five-Effect Evaporator 

 Models (Computers & Chemical Engineering) vol 23 pp 1795–1810 

[5] Benne, M, Grondin-Perez, B, Chabriat, J P and Herve, P 2000 Artificial Neural Networks for 

 Modelling and Predictive Control of an Industrial Evaporation Process (Journal of Food 

 Engineering) vol 46 no 4 pp 227–234 



INTCSET 2020
IOP Conf. Series: Materials Science and Engineering 1094  (2021) 012004

IOP Publishing
doi:10.1088/1757-899X/1094/1/012004

8

[6] Smith, P D 2000 Control and Optimization of A Multiple-Effect Evaporator (Doctoral 

 dissertation, University of Cape Town) 

[7] Rangaiah, G P, Saha, P and Tadé, M O 2002 Nonlinear Model Predictive Control of An 

 Industrial Four-Stage Evaporator System Via Simulation (Chemical Engineering Journal) 

 vol 87 no 3 pp 285–299 

[8] Karimi, M  and Jahanmiri, A 2006 Nonlinear Modeling and Cascade Control Design for Multi 

 Effect Falling Film Evaporator (Iranian Journal of Chemical Engineering) vol 3 no 2 

[9] Farsi, M and  Jahanmiri, A 2009 A New Control Algorithm for Concentration Control in Three 

 Effect Falling Film Evaporators (Iranian Journal of Science & Technology, Transection B, 

 Engineering) vol 33  no B5, pp 387–396 

[10] Atuonwu, J, C, Cao, Y, Rangaiah, G, P and Tade, M, O 2010 Identification and Predictive 

 Control of Multistage Evaporator (Control Engineering Practice) vol 18 pp 1418–1428 

[11] Chai, Q, Q, Yang, C, H, Teo, K, L and Gui, W, H 2012 Optimal Control of an Industrial – 

 Scale Evaporation Process : Sodium Aluminate Solution (Control Engineering Practice) vol 

 20  pp 618–628 

[12] Wang, X, Li, C and Chen, X 2016 Disturbance Rejection Control for Multiple-Effect Falling-

 Film Evaporator Based on Disturbance Observer (Transactions of the Institute of 

 Measurement and Control) vol 38 no 6 pp 773–783 

[13] Verma, O P, Manik, G and Mohammed, T H 2017 Energy Management In Multi Stage 

 Evaporator Through A Steady And Dynamic State Analysis (Korean Journal of Chemical 

 Engineering) vol 34 no 10 pp 2570–2583 

[14] Pan, D and Ning, C 2019 Mechanism Modeling and Nonlinear Model Adaptive-Predictive 

 Control of Multiple Evaporators System in Sugar Mill (International Conference on 

 Intelligent Transportation, IEEE,Big Data & Smart City) pp 528–532 

[15] Zainab A Khalaf 2014 Simulation on Dynamic and Control of Evaporator Using MATLAB (M 

 Sc. Thesis, Tikrit University) pp 23–30  

[16] Ahmed, D F 2014 Artificial Neural Network Control of Chemical Processes (Eng. & Tech.  

 Journal) vol 32 Part A no 1 pp 176–196 

[17] Miranda, V, Simpson, R 2004 Modeling and Simulation of an Industrial Multiple Effect 

 Evaporator : Tomato Concentrate (Journal of food Engineering) vol 66 pp 203–210 

Acknowledgment 
The author wishes to acknowledge and thank Tikrit university for their financial support of this 

research. Thanks are also extended to the staff OF Chemical Engineering Department for providing the 

technical assistance, advice and all needed facilities. 


