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Abstract. Drought is a dangerous phenomenon that affects the general life of the environment.  
Iraq is one of the countries that is facing drought periodically, especially in the last decades due 
to the great weather changes in the world including global warming, which resulted in less rainfall 
below normal levels. Therefore, it must be thought of drought forecasting because it is an 
important role in the planning and management of the water resources in Iraq. In this Study, 
Recurrent neural networks (RNN) were used as representing of Artificial Neural Networks 
(ANNs), which is a  non-linear kind of ANNs where the output from it will feedback again as 
input for the next step. This type of neural network can simulate weather conditions with high 
precision such as rain, wind, earthquake, drought, and temperature. The model used to forecast 
droughts is the standardized precipitation index (SPI) series as a drought index in Iraq. The two-
time scale which is used in this study, which is SPI 6 which represents short term drought and 
SPI 24 which represent long term drought. RNN was used to make forecasts for the SPI for the 
period 2020-2030. The assessment of the work and efficiency of RNN was regressing by (R), 
mean square error (MSE), and root mean square error (RMSE). Twenty-Four stations were 
selected to represent all study area (Iraq).  Geographic information system (GIS) was used with 
the aid of Inverse distance weighted (IDW) to represent the forecasted drought for April month 
from years (2025 and 2030).  The results showed that the study region (Iraq) suffered from varied 
drought levels in different periods ranging from mild to extreme drought, also the study showed 
improvement by decreasing the drought situation for period 2020-3030, which must be invested 
well. 

 
 

Keywords: ANN, drought, RNN, Standardized precipitation index, SPI. 

 

1. Introduction. 
Drought is a natural phenomenon that occurs when precipitation is significantly lower than normal [1]. 
Drought in particular is one of the biggest threats to human survival, imposing serious adverse impacts 
to social, economic and environmental sustainability [2]. The drought of meteorological maybe follows 
by hydrology drought that will affect flows of river, lakes level, and aquifer storage [3]. 
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The long period of drought cause declined in agricultural production and growth, livestock 
development diminished and desertification of lands, etc. [4]. Drought and its impact appeared to 
increase in many countries of the world due to changes in the atmosphere, including the phenomenon of 
global warming and other problems. The phenomenon of global warming and expansion especially in 
recent decades has affected the climate dramatically, leading to an increase in the risk of drought and 
floods alike. Little predicts of drought characteristics like frequency, termination, and initiation can make 
it both hazard and catastrophic [5].  

Drought can be considered a hazard cause its natural phenomenon it’s occurrence unpredictable, 
but by following it, studying its characteristics and using modern methods, it’s occurrence can be 
predicted. Drought is considered as catastrophic because of the failure in precipitation system, affecting 
the water that supplies all of the natural and agricultural systems as well as effect on the various human 
activities [6]. 

Iraq is one of the countries in Asia, specifically in the Middle East that suffered from the recent 
periodic drought due to the great weather fluctuations [7]. high temperature and lack of rain, which 
negatively affected on the water resources, vegetation in Iraq and expansion of the desert area in the 
whole country, which will cause in the future on lands desertification and migration for people who live 
in areas that exposed to the impact of drought [8]. 

The aims of this study are to make an idea of the drought periods by forecasting the SPI using 
ANN, in order to take the necessary preparation to face it. 
 

2. MATERIALS AND METHODS 

2.1 STUDY AREA 
The study considered the entire area of Iraq within its borders. Iraq lies in a semi-arid region between 
longitudes 38o 45’ and 48o 45’ and latitudes 29o 5’ and 37o 22’ with an area of 437,049 km2 [9]. Iraq 
location map with adjacent countries shown in figure (1). 
 

 
Figure 1. Iraq location map with adjacent countries [9]. 

 

It has different terrain types including mountainous territory in the north and northeast, desert 
territories in the west and south-west, and marshlands in the south, resulting in different climate 
characteristics from a region to another [10]. Iraq can be divided into three main regions:  the north, 
middle, and south. Climate conditions are different with respect to the place. Iraq in terms of weather 
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can be described as hot and dry at summers, and cold wet at winters. Iraq climatic conditions are 
influenced by Mediterranean and low-pressure region that focuses on the Arabian Gulf in the summer. 
The daily temperature records in summer were mostly high; they sometimes exceed 45°C in different 
locations of Iraq, especially in the south region. Seventy percent of precipitation falls from October to 
April, while from June to August it is predominately rainless. Precipitation season also changes from a 
year to another, sometimes rainfall is within the normal limit and does not represent a serious threat, 
whereas in some seasons it’s severe and causes erosion for some soft-land in addition to many damages 
in the social and agricultural reality [11]. 

 

2.2 DATA USED 
Rainfall data were collected from 24 stations during the period 1950-2016 from Iraq metrological 
stations. The rainfall collected data included monthly recordings as well as the annual average rainfall 
for all stations. The locations of the stations (longitude and latitude) are shown in table (1). 
 

Table 1. The locations of the meteorological stations. 

No. Name of Station Longitude Latitude 

1 BAGHDAD 44.24 33.2 
2 NASIRIYA 46.14 31.01 
3 BASRA 47.78 30.5 
4 AL_HAI 46.03 32.1 
5 KIRKUK 44.24 34.28 
6 RUTBA 40.17 33.02 
7 DIWANIYA 44.59 31.59 
8 MOSUL 43.09 36.19 
9 NAJAF 44.32 32.03 
10 NUKHAIB 42.27 32.03 
11 SAMAWA 44.16 31.18 
12 HILLA 44.26 32.29 
13 KUT 45.45 32.3 
14 KERBALA 44.01 32.37 
15 AMARA 47.1 31.51 
16 AL_KHALIS 44.53 33.84 
17 SAMARRA 43.9 34.11 
18 RAMADI 43.2 33.45 
19 HEET 42.83 33.64 
20 ANAH 41.98 34.37 
21 TUZ 44.64 34.89 
22 TIKRIT 43.63 34.65 
23 BAIJI 43.49 34.94 
24 SINJAR 41.87 36.33 

2.3 STANDARDIZED PRECIPITATION INDEX (SPI) 
McKee et al. (1993) developed the Standard Precipitation Index (SPI) for the purpose of defining and 
monitoring [12], using SPI will provide some important advantages for researchers. First, it relies on 
rainfall data as an input to describe drought. Secondly, drought can be described by SPI for different 
time scales. Third, SPI can be used effectively to compare different conditions of drought between 
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regions and different time periods. When extracting SPI values for different time scales, negative values 
indicate dry periods and positive values indicate wet periods [13]. Table (2) shows the classification of 
drought based on the range of SPI values. 

Table 2. Classification of drought based on values of SPI [12]. 

Value of SPI Classification 

≥2 Extremely wet 

1.5 to 1.99 Severely wet 

1 to 1.49 Moderately wet 

0 to 0.99 Mild wet 

−0.99 to 0 Mild drought 

−1.49 to −1 Moderately drought 

−1.99 to −1.5 Severely drought 

−2≥ Extremely drought 

The computation of the SPI requires fitting a probability distribution to aggregated monthly 
precipitation series (3, 6, 12, 24, and 48) months. The probability function density transformed into a 
standardized index, which its values are represented classification for the drought. The SPI computed 
only when there are long and continuous records of data (30 years at least). Gamma distribution is the 
best observational model for precipitation data to represent probability distribution. The equation shown 
below represents the Gamma distribution [14, 15]. 

 

Where; 

α > 0 (parameter of shape), β > 0 (parameter of scale), x > 0 (precipitation amount) and Γ(α)  
is a value that taken by standard function mathematical which known as Gamma function, it 
is described as integral as shown in the equation (2)[14, 15]. 

α-1 e-y dx                                                                                                          ……(2)         

For modeling observed data with density function gamma distributed, it’s important to estimate 
β and α parameters. Different ways to estimation these parameters. The approximation for Thom (1958) 
was used for probability in McKee (1997) [12]. 

 

 

                                                                                                            ….. (3)   

                                                                                                                                      ….. (4)          
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Where for observations n; 

 

i)                    ….. (5) 

After coefficients β and α are estimating, the probability function density g(x) is integrated due 
to x then it can be finding the probability cumulative G(x) that a certain quantity of rain observed for a 
specific month and a specific scale time [14, 15]. 

α-1  dx          ….. (6) 

The function of Gamma, not a definition at x=0 (There is no precipitation), so the probability 
cumulative becomes [14]: 

      ….. (7) 

Where, q meaning no precipitation, H(x) refers to the probability cumulative of observed 
precipitation. The probability cumulative convert into standardized normal distribution (Z) with variance 
unit and null average then get SPI index [14, 15]. 

                                                 … (8) 

                                                 ... (9) 

Where; 

                                                                      ….. (10) 

And, 

                                                                       …. (11) 

Where, 

H(x):  the probability cumulative of observed precipitation. 

x: precipitation. 

c0, d0, c1, d1, c2, d2: constants values, the magnitude of these constants 

c0 =2.515517           c1 =0.802853             c2 =0.010328 

d0 =1.432788           d1 =0.189269              d2 =0.001308 

 

2.4 ARTIFICIAL NEURAL NETWORKS (ANNS) 
Artificial Neural Networks (ANNs) are a type of nonlinear flexible models or frameworks that had the 
ability to discover adaptive patterns from analysis data. From many papers and research, it is shown that 
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the adequate nonlinear number of processing units, ANNs had ability to learn from the experience and 
make estimation for any functional complicated relationship with high level of accuracy [16].  

ANNS consists of neurons or elements arranges in interconnected three layers. The first layer is 
input, second is hidden layer includes one or more layer and third is output layer as shown in Figure (2). 
The input layer consists of neurons transmitted information to second layer (hidden layer) and the last 
information is transformed to output layer [17].  

All neurons have inputs weighted (W) (synapses) which are convertible parameters that 
transform ANNs to a parameterized framework layer as shown in Figure (3). ANNs models have an 
activation function which determines output from a given input. In general, activation function types 
that used are step, linear, sigmoid, tanh, etc. [18]. 

In this research Recurrent neural networks (RNN) used as representing of ANNs, RNN is a non-
linear kind of ANNs where the results or output from this model are fed back again as input for next 
step. In conventional ANNs, suppose that inputs and outputs discrete from each other, in many cases of 
problems that is not a good idea. It is termed as recurrent since the task will done for all elements in time 
series depending on the computation's previous output. RNN has a memory caught data about what has 
been determined yet. This type of neural network can simulate weather conditions with high precision 
such as rain, wind, earthquake, drought, and temperature, etc. RNN has input-delay feature where not 
all data is tested in once time but by a certain number of data step by step [19]. 

 

 
Figure 2. Schematic diagram of Artificial Neural Networks 
(ANNs) [17]. 

 

 
                       

 

 
Figure 3. scheme of RNN [18]. 
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The stepest descent used as a technique in RNN which make minimizes for the function in 
weight space, weights will modify in opposite way of error due to the weights. Input data corresponds 
to output data called training group [20]. The computed error gave in an equation below: 

                                                                                                            ….. (12) 

Where, ok and dk refers to real output and required output (k= node output), the term e (error) 
must be minimized by modifying weights (layer output) relative to   as shown in equation 

below[24]: 

                                                                                                                    ….. (13) 

Where, j is a hidden node, k is output,  is weight between k and j. 

It’s possible to write: 

                                                                                                                     ….. (14) 

Where is rate learning, output for j is a hidden node. Also  given in the equation below: 

                                                                                                ….. (15) 

The weight modification for the lower layer node j (layer input or hidden layer) shown in the 
equation below: 

                                                                                                                       ….. (16) 

Where,  is the node j output layer and is: 

                                                                                                 ….. (17) 

The k in equation (15) refers to a node k of a higher layer (layer output or hidden layer). 

Fast training can be done if momentum α term added to weight modification in equations (14 and 
15). Therefore, the new equation will be [20]: 

                                                                                      ….. (18) 

 

3. RESULT AND DISCUSSION 
After extraction SPI time series of drought for both short-term (spi6) and long-term (spi24), drought 
periods were statistically analyze for short and long terms for all 24 meteorological stations during 
duration 1950-2016 at months (October-April). Percent of occurrence for the SPI classes was calculated 
for both terms are shown in the figures (4 and 5). 
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Figure 4. Percent of occurrence for the SPI 6 during 1950-2016 at months (October-April). 

 

 
Figure 5. Percent of occurrence for the SPI 24 during 1950-2016 at months (October-April). 

 
 

Figure (4) clarify SPI 6 time scale for all 24 stations during the period 1950-2016 for months 
(October-April). The southern region of Iraq was almost equal intensity with respect to drought 
classification, whereas in the middle region it can be seen that Baghdad capital exposed to a clear 
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severely class of drought. In additional, the west region of Iraq was almost same levels of classes except 
severely class is high. Also, the north region of Iraq (Kirkuk and Mosul) suffered from obvious extreme 
drought. 

Figure (5) shows percent of occurrence for SPI 24 time scale for all stations in Iraq during the 
period 1950-2016 for months (October-April). The southern region of Iraq, it can be noticed that the 
extreme, severe and moderate was almost equal. Whereas for middle region, it is obvious there were 
some differences especially in Najaf, also the west region almost was equal in drought classes. The 
northern region of Iraq was almost equal in drought classification except for Kirkuk, it can be noticed 
that the severe drought level higher than other cities and provinces in this region. 

Modeling and forecasting done for both short-term (spi6) and long-term (spi24) where the 
assessment for the performance results is mean square error (MSE), Root mean square error (RMSE) 
and regression (R). 

Results for SPI 6 and Spi 24 for duration 1950-2016 were gotten from SPI program, and insert 
them into ANN to model and forecast spi for period 2020-2030. Values of Spi for both terms were 
divided into two parts for ANN, the first part was used for training and the other for testing. One hidden 
layer used with 40 neurons inside, training function that used is ‘trainscg’ with 10 input delay for spi 6 
and 15 delay for spi 24.  

A sample of regions and governorates were choose to clarify results for the rest of the regions. 
Table (3 and 4) and figures (6 to 11) station’s name, R, MSE, RMSE and series time between output 
from training and target (test) data, which refers to efficient results for Spi 6 and SPI 24. 

The results shown have high accuracy where MSE close to zero and RMSE very small values 
with 100% regression(R). 

 
 
 

Table 3. Name of station, R, MSE, RMSE and time of training for SPI 6. 
 

No. Name of station R MSE RMSE Time of training 
1 Nasirya 1 9.24e-15 9.61e-08 5:15 min. 
2 Anna 1 1.72e-14 1.31e-07 5:43 min. 
3 Mosil 1 1.26e-14 1.53-07 4:46 min. 

 
 

Table 4. Name of station, R, MSE, RMSE and time of training for SPI 24. 
 

No. Name of station R MSE RMSE Time of training 
1 Nasirya 1 2.67e-14 1.63e-07 6:09 min. 
2 Anna 1 2.89e-14 1.70e-07 5:37 min. 
3 Mosil 1 4.93 e-14 2.22e-07 6:31 min. 

 
 
 



ICEST 2020
IOP Conf. Series: Materials Science and Engineering 1090  (2021) 012112

IOP Publishing
doi:10.1088/1757-899X/1090/1/012112

10

 

 
(a) Nasirya 

 

 
b) Anna 

 
(c) Mosil 

 

Figure 6. SPI 6 performance (MSE). 
 
 

 
Figure 7.  Sample of SPI 6 series time between output and target 
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Figure 8. SPI 6 month regression (R). 

 
 

 
(a) Nasirya 

 

 
b) Anna 

 
(c) Mosil 

 

Figure 9. SPI 24 performance (MSE). 
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Figure 10.  Sample of SPI 24 series time between output and target. 

 
 

 
Figure 11. SPI 24 regression (R). 

 

After getting high accuracy for modeling Spi 24 for three stations, Spi 6 and SPI 24 forecasting 
done for 10 years forward during the period 2020-2030. Figure (12 and 13) show percent of occurrence 
for the SPI 6 and SPI 24 forecasting during 2017-2030 at months (October-April). 
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Figure 12. Percent of occurrence for the SPI 6 forecasting during 2020-2030 at months (October-April). 

Figures (12) shows Percent of occurrence of the SPI 6 forecasting during 2020-2030 at months 
(October-April). the drought levels of most southern and middle cities and provinces are somewhat high 
classes of drought, while in the west region of Iraq at Rutba city it can be seen that the classes of drought 
is high. The northern region are almost moderate and convergent. 

 Figures (13) shows Percent of occurrence for the Spi 24 forecasting during 2020-2030 at months 
(October-April). The figure shows that the Amara province in southern region suffers from high levels 
of drought, while the middle region of Iraq almost same level scale of drought. Nukhaib city at west 
region of Iraq will suffers from extreme level of drought. In addition, the figure (13) shows that the 
northern region of Iraq will be dry and moderate classes of drought. 

Spatial drought distribution used to represent Spi 6 and Spi 24 for April month for years (2025 
and 2030) in figures (14 to 17). 
 

 
 

Figure 13. Spatial drought distribution map for Spi 6 at Apri month from 2025. 
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Figure (14) shows Spi 6 drought spatial distribution map for April from the year 2025. It can be 
seen that the southern region ranging between mild wet and very wet at Amara province, while most of 
the middle region of Iraq will be mild wet with some parts will have mild dry and very wet level. The 
west region of Iraq will ranging between wet at Nukhaib city and dry at Rutba city. The northern region 
of Iraq will expose to mild wet and mild dry with extreme wet at Sinjar city. 
 

 
Figure 14. Spatial drought distribution map for Spi 6 at April month from 2030. 

 
 

 
 

Figure 15. Spatial drought distribution map for Spi 24 at April month from 2025 
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Figure 16. Spatial drought distribution map for Spi 24 at April month from 2030. 

 

Figure (15) shows Spi 6 month spatial distribution map for April month for the year 2030. The 
southern and middle region of Iraq will be wobbling as shown in figure, while most of west and northern 
regions of Iraq will be mild dry, dry at Rutba city, very dry at Kirkuk city and mild wet at Sinjar city and 
its adjacent area. 

Figure (16) shows Spi 24 spatial distribution map of drought levels for April month for the year 
2025. All southern region will be mild wet, while the middle and west regions of Iraq will expose to 
mild wet and wet class of drought towards the north. The northern region of Iraq varies from wet to 
extreme wet at Kirkuk province. 

Figure (17) shows Spi 24 spatial distribution map of drought levels for April for the year 2030. 
The southern region of Iraq will be mild dry with very dry class at Basrah province. Whereas the middle 
of Iraq , the part that  adjacent to southern region will be mild dry and other part towards north region 
will be mild wet while the west region of Iraq will ranging from mild wet to wet at Rutba city. In addition, 
the northern region will varies between mild wet and mild dry class of drought. 
 

4.  CONCLUSION 
 

. 1- Percent of occurrence for drought in short term (SPI 6) during the period 1950-2016 at months 
(October-April) was about 52%, whereas for the long term (SPI 24) during the period 1950-2016 at 
months (October-April) was about 51%. 

2- Recurrent neural networks (RNN) was used to make forecasting which proved its effective analysis 
through training the time series of drought for short and long terms analysis and reaching very high 
accuracy, where the results from RNN show that regression  (R) was 100 %, performance (MSE) 
and  Root Mean Square Error (RMSE) were close to zero for all stations. 

3- Percent of occurrence for drought short term (SPI 6) during forecasting period 2020-2030 at months 
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(October-April) will be about 49%, while for the long term (SPI 24) during forecasting period 2020-
2030 at months (October-April) will be about 48%. Wet periods will be higher than dry periods, 
which must be invested in the future. 

4- Drought distribution on the map of Iraq for the month (April) from years (2025 and 2030), generally 
for both terms the year 2025, most regions in Iraq will be wet which must be invested and preserve these 
water resources as well as protecting areas that will expose to extreme wet from risk of flooding that 
may result. Whereas, the year 2030 will expose to varying drought which must take into consideration. 
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