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Abstract. This paper is intended to create an artificial neural network capable of generating new
values for the roughness on the basis of experimentally obtained data bases. Experimentally you
will measure the roughness of the flat surfaces processed with the toroidal milling, the process
factors being the input neurons of the neural network, following the roughness values being the
output neurons. It aims to modify the input neurons from the same neural network and generate
new roughness values.

1. Introduction

In recent years, artificial neural networks (RNA) are offered in front of the largest model offerings
that can be kept and are now successful in certain engineering fields for modeling complex relationships
difficult to describe with physical models.

Artificial neural networks have been widely applied in modeling many cutting operations, such
as turning, drilling and milling [1]. Several researchers have used artificial neural networks to predict
the influence of cutting parameters on production rate, production cost [2] or to predict the influence of
cutting parameters on surface roughness [3], [4], tool wear [5] ], [6] or the cutting force [1], [7].

Examples of optimization attempts can be found in the work of Mohana et al. [8] aimed at
modeling surface roughness using neural networks. Genetic algorithms have been used in their research
to optimize the weighting factors of the network. Ortiz-Rodrigues et al. [9] proposed the use of Taguchi
methods (DOE technique) for robust RNA-driven design by the back propagation algorithm and develop
a systematic and experimental strategy that emphasizes the simultaneous optimization of artificial neural
network parameters under different conditions.

Several examples can be found in the works of Assarzadeh and Ghoreishi [11], meant to optimize
the surface roughness using neural networks. The authors stated the effectiveness of using RNA to
predict the removal rate of materials and Ra. In Hossain et al. [11], an RNA model was developed to
investigate and predict the relationship between milling parameters and surface roughness during high-
speed milling of Inconel 718 alloy. A very good predictive performance of the neural network was
observed. Other approaches include the work of Panda and Mahapatra [12] in which the main
components were used to model the drill wear. The main components of the drilling parameters were
calculated and the networks were trained to predict them. The networks were able to classify low wear
and high wear with an accuracy of 90% and to predict the wear of the main edge with an error of + 6.5%.

MatLab® (MATrix LABoratory) is a high-performance, interactive software package for
mathematical, scientific and engineering calculus. MatLab integrates calculation, programming and
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visualization, in a friendly work environment, solving problems involving the use of classical
mathematical notations.

With tools and functions for managing large data sets, MatLab offers different types of specialized
tools with machine learning, neural networks, deep learning, computer vision and machine learning.

Improving the generalization of the network helps prevent overload, a common problem in neural
network design. Overload occurs when a network has memorized the training set, but has not learned to
generalize to new entries. Overload produces a relatively small error on the training set, but a much
larger error when new data is obtained in the neural network.

2. Approximation of functions with the artificial neural network
RNA approximation can be solved in MatLab:
From the command line, using specific functions Neural Network Toolbox;
Using the Neural Network Fitting Tool (nftool) graphical interfaces.
Before starting to create an artificial neural network, it is necessary to create input and output
data. This is where computer resources based on previous research come in [13], [14], [15].

AL ZOpen v Rows Cokur AL [ Z Open v Rows Cokamns =
New from _SPrint v 1 1 New from _ SPrist v 1 1 ns
Selection v Selecton v ]
VARIABLE SELECTION VARIABLE SELECTION
SPLN_TR Input SPLN_TR_Target SPLN_TR Input SPLN_TR_Target
13 27x3 double 11 27x4 double
1 2 3 1 2 3 4

| 15 om0 |1 0.4640 09260 2.9200
2 80 15 0.1500 2 0.2890 0.4030 1.6800 2.5930
3 80 15 0.1500 3 0.2640 0.3760 1.7060 24000
< 80 35 0.1100 - 0.1940 0.4340 1.4660 2.6130
5 80 35 0.1500 5 03110 0.4350 24130 34590
6 80 35 0,1500 6 0.2880 0.4250 2.71%0 2.9530
7 80 55 0.1100 7 0.4500 0.6880 26050 4.2730
8 80 55 0.1500 8 0.7270 0.6320 44130 43530
9 80 55 0.1500 9 0.8940 0.7610 4.63%0 5.8400
10 170 15 0.1100 10 0.6890 0.6720 34860 4519
1 70 15 0.1500 n 0.2170 0.7560 46460 54060
12 170 15 0.1900 12 0.8760 0.8510 5.0940 6.0860
13 170 38 0.1100 13 0.5970 0.7860 3.2470 5.5790
14 170 3% 0.1500 14 0.6930 0.8050 3.9060 4.8260
15 170 35 0.1900 15 1.0710 1.1190 5.7600 7.6660
16 170 55 0.1100 16 0.4570 0.5350 32730 3.61%0
17 170 55 01500 |17 0.7730 0.6270 43060 5.1060
18 170 55 01000 |18 11310 08120 6.1030 6.2930
19 210 15 0.1100 19 0.5300 0.5490 3.7860 4.0530
2 210 15 01500 |20 0.85%0 0.7570 48330 4.75%0
2 210 15 0.1500 21 0.8930 0.8690 4.79%0 6.3260
2 210 35 0.1100 22 0.5680 0.5430 3.89%0 41480
23 210 35 0.1500 23 0.5980 0.5730 3.7530 44560
24 210 35 0.1500 24 0.5130 0.6180 2.966 45880
2 210 55 0.1100 25 0.4020 0.4450 3.5520 3.7000
2 210 55 0.1500 26 0.4020 0.4750 29930 3.8530
| >7 210 55 0.1500 27 0.4230 0.5960 3.1860 4,5600

Figure 1. Images with input data and target data of the neural
network.

To create the input data and the output data, we chose to debate the quality of the flat surfaces
obtained with the toroidal milling cutter. Thus, the input data are the three process variables. These are
the cutting speed, the feed on the tooth and the angle of inclination. As for the output data, the target
information, they are represented by the average values of Ra, measured parallel and perpendicular as
well as by the average values of Rt, measured parallel and perpendicular. Therefore, the input data and
the output data are shown in Figure 1.
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To approximate the functions with artificial neural networks, using the graphical interfaces, the
Neural Network Fitting Tool interface will be opened with the command "nftool".

This type of neural network is able to associate an input data set with a target data set for
estimating certain values. This application has the function of helping to select data, to create and train
a neural network, as well as to evaluate performance.

) Neural Fitting (nftool)
@ Welcome to the Neural Fitting app.

Solve an input-output fitting problem with a two-layer feed-forward neural network.

Introduction Neural Network

In fitting problems, you want a neural network to map between a data set oo e
of numeric inputs and a set of numeric targets.

Input Output
Examples of this type of problem include estimating house prices from o0” o B
such input variables as tax rate, pupil/teacher ratio in local schools and
crime rate  estimating engine emission levels based on

measurements of fuel consumption and speed o
predicting a patient's bodyfat level based on body measurements

A two-layer feed-forward network with sigmoid hidden neurons and linear
output neurons 1111, can fit multi-dimensional mapping problems

The Neural Fitting app will help you select data, create and train 2 network, | arbitrarily well, given consistent data and enough neurons in its hidden
and evaluate its performance using mean square error and regression layer.
analysis.
The network will be trained with Levenberg-Marquardt backpropagation
algorithm . unless there is not enough memory, in which case
scaled conjugate gradient backpropagation will be used.
B To continue, dlick [Next].
& Neural Network Start M4 Welcome 4 Back @ Cancel

Figure 2. Neural Fitting Tool.

It has a power supply network with two layers of hidden neurons being trained with a back
propagation algorithm as shown in Figure 2.

The next step in creating a neural network is to load the input and target data, as well as select the
type of matrix, as shown in Figure 3.

) Neural Fitting (nftool)

3 Select Data
What inputs and targets define your fitting problem?

Get Data from Workspace

Summary

Input data to present to the network. Inputs 'SPLN_TR_Input'is a 273 matrix, representing static data: 27 samples

B Inputs: SPLN_TRnput | | .. of 3 elements.

[Jaraet data defining desived network outpLt. Targets 'SPLN_TR Target'is a 27x4 matrix, representing static data: 27
@ Torgets: SPLN_TR Target v | | .. samples of 4 elements.

Samples are: O] Matrix columns @ [E] Matrix rows

Want to try out this tool with an example data set?

Load Example Data Set

B To continue, dlick [Next].

& Neural Network Start Hi Welcome @ Back & Next @ Cancel

Figure 3. Selection of input and target data for RNA creation.

The next step is illustrated in Figure 4 and represents the establishment of the data assigned to the
neural network training, but also the establishment of the number of values assigned to the network
validation and testing function.

In this case, we chose to use 25 values for the training function, leaving only one for validation
and testing.
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Select Percentages Explanation
& Randomly divide up the 27 samples: & Three Kinds of Samples:
@ Training: 90% 25samples | @ Training:
© vaicat 1 samples | These are presented to the network during training, and the network is
pcenoR o G adjusted according to its error.
W Testing: 5% v 1samples
@ Validation:
These are used to measure network generalization, and to halt training
when generalization stops improving.
W Testing:
These have no effect on training and so provide an independent measure of
network performance during and after training.
|
Restore Defaults

B Change percentages if desired, then dlick [Next] to continue.

& Neural Network Start K welcome

@ Back & Next @ Cancel

Figure 4. Selection of percentages assigned to neural network
training, validation and testing.

Regarding the network architecture, here are defined the number of hidden neurons of the neural
network, in our case we decided to use 20 neurons for the network to function in optimal conditions, as

shown in Figure 5.

) Neural Fitting (nftool)

x|

Hidden Layer

Network Architecture

Set the number of neurons in the fitting network's hidden layer.

Define a fitting neural network. ~(fitnet)

Number of Hidden Neurons: 2

Restore Defaults

Neural Network

Hidden Layer

Recommendation

Return to this panel and change the number of neurons if the network does
not perform well after training.

Output Layer

B Change settings if desired, then dlick [Next] to continue.

& Neural Network Start

Hd Welcome

@ Back & Next

@ Cancel

Figure 5. Neural network architecture.

Once the input data are established, the percentage of training, validation, testing, as well as the
number of hidden neurons can only be transmitted to the network to learn the working algorithm, as in
Figure 6. Following the training of the neural network, it transmits a series of indices, these are shown

in Figure 7.
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4 o
Train Network
Train the network to fit the inputs and targets.
Train Network Results
Choose a training algorithm: & Samples (=) mse R
Levenberg-Marquardt v @ Training: ® -
@ Validation: 1
This algorithm typically requires more memory but less time. Training
automatically stops when generalization stops improving, as indicated by @ Testing: 1
an increase in the mean square error of the validation samples.
Train using Levenberg-Marquardt. (trainim) Plot Fit Plot Error Histogram
2y Train Plot Regression
Notes
"y Training multiple times will generate different results due Mean Squared Error is the average squared difference
to different initial conditions and sampling. between outputs and targets. Lower values are better, Zero
means no error.
Regression R Values measure the correlation between
outputs and targets. An R value of 1 means a close
relationship, 0  random relationship.
0 Train network, then click [Next].
& Neural Network Start K Welcome @ Back ® Next @ cancel

Figure 6. Neural network training model.

) Neural Network Training (nntraintool) - o X

Neural Network

S s R

Algorithms

Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error (mse)
Calculations:  MEX

Progress

Epoch: 0 1000
Time
Performance: 192 0.00
Gradient: 193 [ R2e 05 | 1.00e-07
Mu: 0.00100 1.00e-08 1.00e+10
Validation Checks: 0 6 6

Plots

(plotperform)
Training State | (plottrainstate)
Error Histogram | (ploterrhist)
Regression (plotregression;

Fit (plotfit
Plot Interval: ' 1 epochs

o Validation stop.

@ Stop Training @ Cancel

Figure 7. Neural network training.

Following the training of the network, it provides some information about the network, one of the
information is supported by the number of interactions within the network, in this case it is about 9

interactions or 9 periods as shown in Figure 8.

In terms of network performance, the best performance was recorded during interaction number

3.

The training conditions of the neural network are dependent on the value of the gradient, which
is a vector field whose vectors are directed in the direction of the highest growth rate of the scalar field.
Thus, the mode is the highest rate of change, the maximum value being performed in the case of
interaction number 9. The validation checks were 6, also at interaction 9, being presented in figure 9.

Best Validation Performance is 0.41692 at epoch 3

Train
Validation | _

10° Tt =
Best

10.10 L L L " L L L L ),
0 1 2 3 4 5 6 7 8 9
9 Epochs

Figure 8. Neural network performance.

Gradient = 4.7172e-05, at epoch 9

10°
=
Q of |
g 10
o \
10 s s - -
Mu = 1e-08, at epoch 9
10° T T T T T T T T
10710 : * - - * * * *
- Validation Checks = 6, at epoch 9
& >
Z 51 ¢ :
g R . ¢
—e b N
v v
0 1 2 3 4 5 6 7 8 9
9 Epochs

Figure 9. Training conditions.

Any system also has a series of errors, in the case of the neural network created, it has the most common

type of error of 0.01469, as shown in Figure 10.
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o
o
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=

Output ~= 0.93*Target +0.12
»

2 4 6 2 4 6
Target Target

Figurel0. Histogram of errors. Figure 11. Linear regression of the neural network.

Regarding the linear regression, in the case of the artificial neural network studied and created
on the surface quality, this is illustrated in figure 11, both in terms of training and validation and testing
of the network.

For the implementation of the solutions in the next subchapter is presented the MatLab function
as matrix support. The neural network diagram consists of 3 input neurons, 20 hidden neurons and 4
output neurons, as in Figure 12.

Hidden Output

20

Figure 12. Diagram of the neural network.

Once the whole process of creating and training the neural network is completed, all that remains
is to put the target data face to face with the outputs that the network offers.

In the next chapter are highlighted the measured data of roughness, having as input the three
variables, and in comparison are the approximate values obtained after training the neural network, with
a column with network errors attached.
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3. Comparison of approximations

According to the previous chapter, where a neural network was created and trained using MatLab
software, this network is able to approximate the output values based on the input values. As established,
the network was created on the flat surface processed with toroidal milling cutter to approximate the
roughness values. As input data, the input neurons are the three variables, the cutting speed, the feedrate
on the tooth and the angle of inclination of the tool axis. The target values, output neurons are
represented by the measured values both parallel and perpendicular to the roughness Ra and Rt, so there
are 4 output neurons.

Table 1. Approximate values of RNA for the Ra quality of the flat surface processed with the toroidal
milling cutter.

Roughness Ra[um]

Approximate RNA

Real values
values

The direction of measurement in relation to
the direction of advance

Parallel Ra approximation error
Perpendicular approximation
error Ra

Surface type - N

= =

= 2 3 S

A o A o

& &
SPLN -TR-1 0.160 0.464 0.241 0.426 -0.081 0.038
SPLN -TR-2 0.289 0.403 0.270 0.397 0.019 0.006
SPLN -TR-3 0.264 0.376 0.279 0.372 -0.015 0.004
SPLN -TR-4 0.194 0.494 0.116 0.505 0.078 -0.011
SPLN -TR-5 0.311 0.435 0.566 0.517 -0.255 -0.082
SPLN -TR-6 0.288 0.425 0.525 0.552 -0.237 -0.127
SPLN -TR-7 0.450 0.688 0.462 0.684 -0.012 0.004
SPLN -TR-8 0.727 0.632 0.857 0.578 -0.130 0.054
SPLN -TR-9 0.894 0.761 0.975 0.651 -0.081 0.110
SPLN -TR-10 0.689 0.672 0.610 0.802 0.079 -0.130
SPLN -TR-11 0.817 0.756 0.822 0.811 -0.005 -0.055
SPLN -TR-12 0.876 0.851 0.884 0.947 -0.008 -0.096
SPLN -TR-13 0.597 0.786 0.499 0.691 0.098 0.095
SPLN -TR-14 0.693 0.805 0.737 0.622 -0.044 0.183
SPLN -TR-15 1.071 1.119 1.016 1.157 0.055 -0.038
SPLN -TR-16 0.457 0.535 0.555 0.463 -0.098 0.072
SPLN -TR-17 0.773 0.627 0.859 0.569 -0.086 0.058
SPLN-TR-18 1.131 0.812 1.182 0.848 -0.051 -0.036
SPLN -TR-19 0.530 0.549 0.540 0.579 -0.010 -0.030
SPLN -TR-20 0.859 0.757 0.813 0.731 0.046 0.026
SPLN -TR-21 0.893 0.869 0.840 0.874 0.053 -0.005
SPLN -TR-22 0.568 0.543 0.464 0.548 0.104 -0.005
SPLN -TR-23 0.598 0.573 0.517 0.698 0.081 -0.125
SPLN -TR-24 0.513 0.618 0.362 0.745 0.151 -0.127
SPLN -TR-25 0.402 0.445 0.423 0.416 -0.021 0.029
SPLN -TR-26 0.402 0.475 0.298 0.452 0.104 0.023

SPLN -TR-27 0.423 0.596 0.445 0.640 -0.022 -0.044
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Table 1 shows the roughness values Ra measured parallel and perpendicular to the direction of
advance, as well as the approximate values using the neural network, also on the two measuring
directions.

From a percentage point of view, the nearest value is in the case of the flat surface with number
11, processed with the toroidal milling cutter (SPLN-TR-11) with an approximation error of 0.61% with
a difference of 0.005 um for the value measured in parallel , and for the value measured perpendicularly,
the nearest value is in the case of the flat surface number 7, processed with the toroidal milling cutter
(SPLN-TR-7) with an error of 0.58%, with a difference of 0.004 um. The graphical representation is
shown in Figure 13.

The largest error identified is in the case of the SPLN-TR-5 surface, measured in parallel with an
approximation error of 81.9% and a difference of 0.255 pm, and in the case of perpendicular
measurement, the largest error obtained is 22.7 %, for the surface of SPLN-TR-14 with a difference of
0.183 um.

90
80
70
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50

40

30

20 H [

10 . .

NTRRR [ RTImirmi il
AR R E R EE R R R
EEECEECEEEE g ppapgpppoadpa oo
>z ez v B REBREREBBRERRRRRERR
.—‘l.—'l.—'!.J.J.—‘I.J.J.JZZZZZZZZEZZZZZZZZZ
O-C\-Q-Q-ﬂ-ﬁ-ﬂ-ﬂ-ﬂ-ddddddddg‘ddddddddd
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v v v i v » v Y mvw v v vH vHvh vvh Mmv vmv v

I Ra parallel [%] I Ra perpenicular [%]
—— Ipappr (Ra parallel [%]) —— Ipappr (Ra perpenicular [%])

Figure 13. Graphical representation of the percentage error diagram for the approximate
values Ra.

Table 2 represents the values of the roughness Rt measured on the flat surface processed with the
toroidal milling cutter, and in comparison the approximate values are passed with the help of the neural
network, following in the columns on the right to represent the approximation errors of the neural
network.

In terms of percentage, the lowest value was made on the flat surface with number 12, processed
with toroidal milling cutter (SPLN-TR-12) with a percentage of 0.27% and a minimum difference of
0.003 pm, determined value on the measuring direction parallel to the feed direction.
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The lowest percentage value recorded in the direction of perpendicular measurement shall be
0.86% over the flat surface number 13 (SPLN-TR-13) with a difference of 0.048 um.

Table 2. Approximate values of RNA for the Rt quality of the flat surface processed with the toroidal
milling cutter.

Roughness R¢[um]

Approximate RNA

Real values
values

The direction of measurement in relation to
the direction of advance

Parallel Rt approximation error
Perpendicular Rt approximation
error

Surface type

5 5

S S

& &
SPLN -TR-1 0.926 2.920 1.235 2.733 -0.309 0.187
SPLN -TR-2 1.680 2.593 1.715 2.410 -0.035 0.183
SPLN -TR-3 1.706 2.400 1.776 3.147 -0.070 -0.747
SPLN -TR-4 1.466 2.613 1.311 2.920 0.155 -0.307
SPLN -TR-5 2.413 3.499 2.406 4.552 0.007 -1.053
SPLN -TR-6 2.719 2.953 2.704 3.786 0.015 -0.833
SPLN -TR-7 2.609 4.273 2.786 4.445 -0.177 -0.172
SPLN -TR-8 4.413 4.353 4.303 4.733 0.110 -0.380
SPLN -TR-9 4.639 5.840 4.723 5.571 -0.084 0.269
SPLN -TR-10 3.486 4.519 3.361 5.236 0.125 -0.717
SPLN -TR-11 4.646 5.406 4372 6.337 0.274 -0.931
SPLN -TR-12 5.094 6.086 5.097 6.465 -0.003 -0.379
SPLN -TR-13 3.247 5.579 2.563 5.531 0.684 0.048
SPLN -TR-14 3.906 4.826 4.788 3.901 -0.882 0.925
SPLN -TR-15 5.760 7.666 5.722 7.477 0.038 0.189
SPLN -TR-16 3.273 3.619 2.961 3.782 0.312 -0.163
SPLN -TR-17 4.306 5.106 4.716 4.352 -0.410 0.754
SPLN-TR-18 6.103 6.293 5.785 6.865 0.318 -0.572
SPLN -TR-19 3.786 4.053 3.523 4.806 0.263 -0.753
SPLN -TR-20 4.833 4.759 4.820 4.660 0.013 0.099
SPLN -TR-21 4.799 6.326 5.262 6.114 -0.463 0.212
SPLN -TR-22 3.899 4.146 3.127 4.193 0.772 -0.047
SPLN -TR-23 3.753 4.496 3.920 4.741 -0.167 -0.245
SPLN -TR-24 2.966 4.586 2.880 4.492 0.086 0.094
SPLN -TR-25 3.552 3.700 2.871 3.239 0.681 0.461
SPLN -TR-26 2.993 3.853 2.892 3.900 0.101 -0.047
SPLN -TR-27 3.186 4.560 3.206 4.985 -0.020 -0.425

The maximum approximate percentage value was obtained on the palmar surface number 1
(SPLN-TR-1) with an error rate of 33.37% and a difference of 0.309 pm on the parallel measuring
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direction and on the perpendicular measuring direction, the maximum percentage value given is 30.09%
with a difference of 1.053 pm.
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Figure 14. Graphical representation of the percentage error diagram for the approximate values Rt.

Following the graphical illustration of the error percentages in figure 14, a constant can be
observed in the approximation of values Rt measured perpendicularly, as well as in the approximate
values Rt measured in parallel.

4. Conclusions

The research and data modeling plan starts from the measurements, 3 measurements for each
surface performed parallel to the feed direction and 3 measurements on each surface performed
perpendicular to the feed direction. These measurements deserve as output neurons of the artificial
neural network.

Data processing using MatLab software made it possible to create an artificial neural network,
capable of approximating roughness values, having as input neurons the process variables during
processing, and as output parameters the measured roughness.

With the creation and training of the artificial neural network it is able to learn the connections
between neurons so as to generate new values of roughness.

These new values generated by the neural network for both the arithmetic roughness Ra and the
total roughness Rt were compared with the real values. The comparisons resulted in a series of errors,
the smallest error being 0.27% with a difference of 0.003 um. This result certifies the adaptability of the
neural network in generating new values of roughness.
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