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Abstract. This paper is intended to create an artificial neural network capable of generating new 
values for the roughness on the basis of experimentally obtained data bases. Experimentally you 
will measure the roughness of the flat surfaces processed with the toroidal milling, the process 
factors being the input neurons of the neural network, following the roughness values being the 
output neurons. It aims to modify the input neurons from the same neural network and generate 
new roughness values. 

1. Introduction 
 In recent years, artificial neural networks (RNA) are offered in front of the largest model offerings 
that can be kept and are now successful in certain engineering fields for modeling complex relationships 
difficult to describe with physical models.  
 Artificial neural networks have been widely applied in modeling many cutting operations, such 
as turning, drilling and milling [1]. Several researchers have used artificial neural networks to predict 
the influence of cutting parameters on production rate, production cost [2] or to predict the influence of 
cutting parameters on surface roughness [3], [4], tool wear [5] ], [6] or the cutting force [1], [7]. 
 Examples of optimization attempts can be found in the work of Mohana et al. [8] aimed at 
modeling surface roughness using neural networks. Genetic algorithms have been used in their research 
to optimize the weighting factors of the network. Ortiz-Rodrigues et al. [9] proposed the use of Taguchi 
methods (DOE technique) for robust RNA-driven design by the back propagation algorithm and develop 
a systematic and experimental strategy that emphasizes the simultaneous optimization of artificial neural 
network parameters under different conditions. 
 Several examples can be found in the works of Assarzadeh and Ghoreishi [11], meant to optimize 
the surface roughness using neural networks. The authors stated the effectiveness of using RNA to 
predict the removal rate of materials and Ra. In Hossain et al. [11], an RNA model was developed to 
investigate and predict the relationship between milling parameters and surface roughness during high-
speed milling of Inconel 718 alloy.  A very good predictive performance of the neural network was 
observed. Other approaches include the work of Panda and Mahapatra [12] in which the main 
components were used to model the drill wear. The main components of the drilling parameters were 
calculated and the networks were trained to predict them. The networks were able to classify low wear 
and high wear with an accuracy of 90% and to predict the wear of the main edge with an error of ± 6.5%. 
 MatLab® (MATrix LABoratory) is a high-performance, interactive software package for 
mathematical, scientific and engineering calculus. MatLab integrates calculation, programming and 
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visualization, in a friendly work environment, solving problems involving the use of classical 
mathematical notations. 
 With tools and functions for managing large data sets, MatLab offers different types of specialized 
tools with machine learning, neural networks, deep learning, computer vision and machine learning. 
 Improving the generalization of the network helps prevent overload, a common problem in neural 
network design. Overload occurs when a network has memorized the training set, but has not learned to 
generalize to new entries. Overload produces a relatively small error on the training set, but a much 
larger error when new data is obtained in the neural network.  

2. Approximation of functions with the artificial neural network 
 RNA approximation can be solved in MatLab: 
From the command line, using specific functions Neural Network Toolbox; 
Using the Neural Network Fitting Tool (nftool) graphical interfaces. 
 Before starting to create an artificial neural network, it is necessary to create input and output 
data.  This is where computer resources based on previous research come in [13], [14], [15]. 
 

 
Figure 1. Images with input data and target data of the neural 
network. 

 
 To create the input data and the output data, we chose to debate the quality of the flat surfaces 
obtained with the toroidal milling cutter. Thus, the input data are the three process variables. These are 
the cutting speed, the feed on the tooth and the angle of inclination. As for the output data, the target 
information, they are represented by the average values of Ra, measured parallel and perpendicular as 
well as by the average values of Rt, measured parallel and perpendicular. Therefore, the input data and 
the output data are shown in Figure 1. 
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 To approximate the functions with artificial neural networks, using the graphical interfaces, the 
Neural Network Fitting Tool interface will be opened with the command "nftool". 
 This type of neural network is able to associate an input data set with a target data set for 
estimating certain values. This application has the function of helping to select data, to create and train 
a neural network, as well as to evaluate performance.  
 

 
Figure 2. Neural Fitting Tool. 

 
 It has a power supply network with two layers of hidden neurons being trained with a back 
propagation algorithm as shown in Figure 2. 
 The next step in creating a neural network is to load the input and target data, as well as select the 
type of matrix, as shown in Figure 3. 
 

 
Figure 3. Selection of input and target data for RNA creation. 

 
 The next step is illustrated in Figure 4 and represents the establishment of the data assigned to the 
neural network training, but also the establishment of the number of values assigned to the network 
validation and testing function. 
  In this case, we chose to use 25 values for the training function, leaving only one for validation 
and testing. 
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Figure 4. Selection of percentages assigned to neural network 

training, validation and testing. 
 
 Regarding the network architecture, here are defined the number of hidden neurons of the neural 
network, in our case we decided to use 20 neurons for the network to function in optimal conditions, as 
shown in Figure 5. 
 

 
Figure 5. Neural network architecture. 

 Once the input data are established, the percentage of training, validation, testing, as well as the 
number of hidden neurons can only be transmitted to the network to learn the working algorithm, as in 
Figure 6. Following the training of the neural network, it transmits a series of indices, these are shown 
in Figure 7.  
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Figure 6. Neural network training model.  Figure 7. Neural network training. 

 
 Following the training of the network, it provides some information about the network, one of the 
information is supported by the number of interactions within the network, in this case it is about 9 
interactions or 9 periods as shown in Figure 8. 
 In terms of network performance, the best performance was recorded during interaction number 
3. 
 The training conditions of the neural network are dependent on the value of the gradient, which 
is a vector field whose vectors are directed in the direction of the highest growth rate of the scalar field. 
Thus, the mode is the highest rate of change, the maximum value being performed in the case of 
interaction number 9. The validation checks were 6, also at interaction 9, being presented in figure 9. 
 

 

 

 

Figure 8. Neural network performance.  Figure 9. Training conditions. 
 
 
Any system also has a series of errors, in the case of the neural network created, it has the most common 
type of error of 0.01469, as shown in Figure 10. 



IManEE 2020
IOP Conf. Series: Materials Science and Engineering 1037  (2021) 012028

IOP Publishing
doi:10.1088/1757-899X/1037/1/012028

6

 
 
 
 
 
 

 

 

 

 
Figure10. Histogram of errors.  Figure 11. Linear regression of the neural network. 

 
  Regarding the linear regression, in the case of the artificial neural network studied and created 
on the surface quality, this is illustrated in figure 11, both in terms of training and validation and testing 
of the network. 
 For the implementation of the solutions in the next subchapter is presented the MatLab function 
as matrix support. The neural network diagram consists of 3 input neurons, 20 hidden neurons and 4 
output neurons, as in Figure 12. 
 

 
Figure 12. Diagram of the neural network. 

 
 Once the whole process of creating and training the neural network is completed, all that remains 
is to put the target data face to face with the outputs that the network offers. 
 In the next chapter are highlighted the measured data of roughness, having as input the three 
variables, and in comparison are the approximate values obtained after training the neural network, with 
a column with network errors attached. 
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3. Comparison of approximations 
According to the previous chapter, where a neural network was created and trained using MatLab 
software, this network is able to approximate the output values based on the input values.  As established, 
the network was created on the flat surface processed with toroidal milling cutter to approximate the 
roughness values.  As input data, the input neurons are the three variables, the cutting speed, the feedrate 
on the tooth and the angle of inclination of the tool axis. The target values, output neurons are 
represented by the measured values both parallel and perpendicular to the roughness Ra and Rt, so there 
are 4 output neurons. 
 
Table 1. Approximate values of RNA for the Ra quality of the flat surface processed with the toroidal 

milling cutter. 
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Roughness Ra[µm] 
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SPLN -TR-1 0.160 0.464 0.241 0.426 -0.081 0.038 
SPLN -TR-2 0.289 0.403 0.270 0.397 0.019 0.006 
SPLN -TR-3 0.264 0.376 0.279 0.372 -0.015 0.004 
SPLN -TR-4 0.194 0.494 0.116 0.505 0.078 -0.011 
SPLN -TR-5 0.311 0.435 0.566 0.517 -0.255 -0.082 
SPLN -TR-6 0.288 0.425 0.525 0.552 -0.237 -0.127 
SPLN -TR-7 0.450 0.688 0.462 0.684 -0.012 0.004 
SPLN -TR-8 0.727 0.632 0.857 0.578 -0.130 0.054 
SPLN -TR-9 0.894 0.761 0.975 0.651 -0.081 0.110 
SPLN -TR-10 0.689 0.672 0.610 0.802 0.079 -0.130 
SPLN -TR-11 0.817 0.756 0.822 0.811 -0.005 -0.055 
SPLN -TR-12 0.876 0.851 0.884 0.947 -0.008 -0.096 
SPLN -TR-13 0.597 0.786 0.499 0.691 0.098 0.095 
SPLN -TR-14 0.693 0.805 0.737 0.622 -0.044 0.183 
SPLN -TR-15 1.071 1.119 1.016 1.157 0.055 -0.038 
SPLN -TR-16 0.457 0.535 0.555 0.463 -0.098 0.072 
SPLN -TR-17 0.773 0.627 0.859 0.569 -0.086 0.058 
SPLN-TR-18 1.131 0.812 1.182 0.848 -0.051 -0.036 
SPLN -TR-19 0.530 0.549 0.540 0.579 -0.010 -0.030 
SPLN -TR-20 0.859 0.757 0.813 0.731 0.046 0.026 
SPLN -TR-21 0.893 0.869 0.840 0.874 0.053 -0.005 
SPLN -TR-22 0.568 0.543 0.464 0.548 0.104 -0.005 
SPLN -TR-23 0.598 0.573 0.517 0.698 0.081 -0.125 
SPLN -TR-24 0.513 0.618 0.362 0.745 0.151 -0.127 
SPLN -TR-25 0.402 0.445 0.423 0.416 -0.021 0.029 
SPLN -TR-26 0.402 0.475 0.298 0.452 0.104 0.023 
SPLN -TR-27 0.423 0.596 0.445 0.640 -0.022 -0.044 
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 Table 1 shows the roughness values Ra measured parallel and perpendicular to the direction of 
advance, as well as the approximate values using the neural network, also on the two measuring 
directions. 
 From a percentage point of view, the nearest value is in the case of the flat surface with number 
11, processed with the toroidal milling cutter (SPLN-TR-11) with an approximation error of 0.61% with 
a difference of 0.005 µm for the value measured in parallel , and for the value measured perpendicularly, 
the nearest value is in the case of the flat surface number 7, processed with the toroidal milling cutter 
(SPLN-TR-7) with an error of 0.58%, with a difference of 0.004 µm. The graphical representation is 
shown in Figure 13. 
 The largest error identified is in the case of the SPLN-TR-5 surface, measured in parallel with an 
approximation error of 81.9% and a difference of 0.255 µm, and in the case of perpendicular 
measurement, the largest error obtained is 22.7 %, for the surface of SPLN-TR-14 with a difference of 
0.183 µm. 
 

 
Figure 13. Graphical representation of the percentage error diagram for the approximate 

values Ra. 

 
 Table 2 represents the values of the roughness Rt measured on the flat surface processed with the 
toroidal milling cutter, and in comparison the approximate values are passed with the help of the neural 
network, following in the columns on the right to represent the approximation errors of the neural 
network. 
 In terms of percentage, the lowest value was made on the flat surface with number 12, processed 
with toroidal milling cutter (SPLN-TR-12) with a percentage of 0.27% and a minimum difference of 
0.003 µm, determined value on the measuring direction parallel to the feed direction.  
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 The lowest percentage value recorded in the direction of perpendicular measurement shall be 
0.86% over the flat surface number 13 (SPLN-TR-13) with a difference of 0.048 µm. 
 
Table 2. Approximate values of RNA for the Rt quality of the flat surface processed with the toroidal 

milling cutter. 

Surface type 

Roughness Rt[µm] 
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SPLN -TR-1 0.926 2.920 1.235 2.733 -0.309 0.187 
SPLN -TR-2 1.680 2.593 1.715 2.410 -0.035 0.183 
SPLN -TR-3 1.706 2.400 1.776 3.147 -0.070 -0.747 
SPLN -TR-4 1.466 2.613 1.311 2.920 0.155 -0.307 
SPLN -TR-5 2.413 3.499 2.406 4.552 0.007 -1.053 
SPLN -TR-6 2.719 2.953 2.704 3.786 0.015 -0.833 
SPLN -TR-7 2.609 4.273 2.786 4.445 -0.177 -0.172 
SPLN -TR-8 4.413 4.353 4.303 4.733 0.110 -0.380 
SPLN -TR-9 4.639 5.840 4.723 5.571 -0.084 0.269 
SPLN -TR-10 3.486 4.519 3.361 5.236 0.125 -0.717 
SPLN -TR-11 4.646 5.406 4.372 6.337 0.274 -0.931 
SPLN -TR-12 5.094 6.086 5.097 6.465 -0.003 -0.379 
SPLN -TR-13 3.247 5.579 2.563 5.531 0.684 0.048 
SPLN -TR-14 3.906 4.826 4.788 3.901 -0.882 0.925 
SPLN -TR-15 5.760 7.666 5.722 7.477 0.038 0.189 
SPLN -TR-16 3.273 3.619 2.961 3.782 0.312 -0.163 
SPLN -TR-17 4.306 5.106 4.716 4.352 -0.410 0.754 
SPLN-TR-18 6.103 6.293 5.785 6.865 0.318 -0.572 
SPLN -TR-19 3.786 4.053 3.523 4.806 0.263 -0.753 
SPLN -TR-20 4.833 4.759 4.820 4.660 0.013 0.099 
SPLN -TR-21 4.799 6.326 5.262 6.114 -0.463 0.212 
SPLN -TR-22 3.899 4.146 3.127 4.193 0.772 -0.047 
SPLN -TR-23 3.753 4.496 3.920 4.741 -0.167 -0.245 
SPLN -TR-24 2.966 4.586 2.880 4.492 0.086 0.094 
SPLN -TR-25 3.552 3.700 2.871 3.239 0.681 0.461 
SPLN -TR-26 2.993 3.853 2.892 3.900 0.101 -0.047 
SPLN -TR-27 3.186 4.560 3.206 4.985 -0.020 -0.425 

 
 
 The maximum approximate percentage value was obtained on the palmar surface number 1 
(SPLN-TR-1) with an error rate of 33.37% and a difference of 0.309 µm on the parallel measuring 
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direction and on the perpendicular measuring direction, the maximum percentage value given is 30.09% 
with a difference of 1.053 µm. 

 
Figure 14. Graphical representation of the percentage error diagram for the approximate values Rt. 

 
 Following the graphical illustration of the error percentages in figure 14, a constant can be 
observed in the approximation of values Rt measured perpendicularly, as well as in the approximate 
values Rt measured in parallel. 

4. Conclusions 
 The research and data modeling plan starts from the measurements, 3 measurements for each 
surface performed parallel to the feed direction and 3 measurements on each surface performed 
perpendicular to the feed direction. These measurements deserve as output neurons of the artificial 
neural network.  
 Data processing using MatLab software made it possible to create an artificial neural network, 
capable of approximating roughness values, having as input neurons the process variables during 
processing, and as output parameters the measured roughness. 
 With the creation and training of the artificial neural network it is able to learn the connections 
between neurons so as to generate new values of roughness. 
 These new values generated by the neural network for both the arithmetic roughness Ra and the 
total roughness Rt were compared with the real values. The comparisons resulted in a series of errors, 
the smallest error being 0.27% with a difference of 0.003 µm. This result certifies the adaptability of the 
neural network in generating new values of roughness. 
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