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Abstract. In this work, ε-constraint approach within ASPEN Plus environment is used to 
generate the Pareto solutions for two objectives: maximize productivity and minimize energy 
consumption, for the ethylene glycol production. Each point of Pareto solutions consists of 
different optimal temperature and hydrogen flowrate values, which lead to distinct amount of 
energy consumption and ethylene glycol product rate. These solutions give flexibility in 
evaluating the trade-offs and selecting the most suitable operating policy. The most satisfactory 
optimum and trade-off of both objectives is determined. The optimum value for ethylene glycol 
production and energy consumption are 109.92 kmol/hr and 11227860.10 kJ/hr, respectively, 
while the trade-off values are 18.02 kmol/hr and 10903846.2 kJ/hr, respectively. The comparison 
between multi-objective optimization and single-objective optimization concludes that a high 
benefit against disadvantages is achieved by implementing multi-objective optimization. The 
difference between multi-objective optimization and single-objective optimization for ethylene 
glycol production and energy consumption are –5.65 kmol/hr and 17526931.8 kJ/hr, 
respectively. 

1.  Introduction 
Production of EG is rapidly increasing and is predicted that this increment will continue until 2030 [1]. 
EG is used as raw materials in the production of a wide range of products including polyester fibers, 
fiberglass and polyethylene terephthalate [2]. Industries involved in the production of EG have their 
own methods and approaches in attaining their target (high production rate or cost saving). Most of these 
techniques involved optimization of certain objectives. 

Optimization is to make the best or most effective use of a situation or resource. Referring to this 
statement, the production of EG requires optimization for; energy consumption reduction, maximizing 
productivity, reduction of side products, minimizing feed requirements etc. These objectives usually 
conflict with one another and thus most industries prioritized only one resulting in inefficient plant 
operations. In the EG process, there are conflicting objective functions, i.e. maximum production and 
minimum energy consumption which cannot be solved by single objective optimization technique. 
Simultaneous optimization of these objectives yields in a MOO problem, which is characterized by a 
set of multiple solutions, known as Pareto solutions. 

MOO is defined as an area of multiple criteria decision making that is concerned with mathematical 
optimization problems involving more than one objective function to be optimized simultaneously 
where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting 
objectives. For a nontrivial MOO problem, no single solution exists that simultaneously optimizes each 
objective. In that case, the objective functions are said to be conflicting, and there exists a (possibly 
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infinite) number of Pareto optimal solutions. A solution is called Pareto optimal, if none of the objective 
functions can be improved in value without degrading some of the other objective values. Different 
solution philosophies and goals are developed when setting and solving MOO problems due to the 
difference in points of views [3]. 

Pareto (optimal) solutions are range of solutions (objectives) used in acquiring the Pareto optimal 
set. Pareto optimal set is a set of all the solutions located in the feasible decision space. The boundary 
defined by the set of all point mapped from the Pareto optimal set is called the Pareto optimal front. 
Pareto optimal solutions are obtained through various applicable methods such as ε-Constraint Method 
- Keep just one of the objective and restricting the rest of the objectives within user-specific values, 
Weighted Sum Method - Scalarize a set of objectives into a single objective by adding each objective 
pre-multiplied by a user-supplied weight and Weighted Matrix Method - Combine multiple objectives 
using the weighted distance metric of any solution from the ideal solution [4]. 

MOO has been increasingly employed in chemical engineering and manufacturing. An optimization 
of the pressure swing adsorption process (cyclic separation process) involving dual maximization of 
nitrogen recovery and nitrogen purity using the multi-objective genetic algorithm (MOGA) was 
developed by Fiandaca and Fraga in 2009. A fine approximation of the Pareto frontier with acceptable 
trade-offs between the objectives results was produced [5]. In 2010, a multi-objective problem for the 
thermal processing of food involving two case studies (bi-objective and triple objective problems) with 
nonlinear dynamic models were solved by Sendín et al. using a hybrid approach consisting of the 
weighted Tchebycheff and the Normal Boundary Intersection approach [6]. 

A MOO of the combined carbon dioxide reforming and partial-oxidation of methane involving the 
objective functions of methane conversion, carbon monoxide selectivity and hydrogen to carbon 
monoxide ratio were performed by Ganesan et al. using the Normal Boundary Intersection (NBI) 
method in conjunction with two swarm-based techniques (Gravitational Search Algorithm (GSA) and 
Particle Swarm Optimization (PSO)) in 2013[7]. In the same year, an alternative technique to solve 
multi-objective optimization problems using the Aggregating Functions Approach, the Adaptive 
Random Search Algorithm, and the Penalty Functions Approach were used to compute the initial set of 
the non-dominated or Pareto-optimal solutions were proposed by Abakarov et al. [8]. In 2018, an 
approach using a Mixed-Integer Linear Program to solve the optimization problem for a weighted sum 
of the two objectives to calculate a set of Pareto optimal solutions were formulated by Pearce et al. The 
application of the approach showed improvements in at least one objective in most tasks and in both 
objectives in some of the processes [9]. 

Based on previous researches, various MOO techniques have been implemented to different kinds of 
processes. However, it is comprehended that the Single Objective Optimization (SOO) is used in the 
production of EG. This hinders the process to operate at its best optimal condition as SOO can mitigate 
only one objective. Thus, this research fills the gap by implementing MOO for the production of EG to 
maximize productivity and minimizing energy consumption simultaneously. 

2.  Methodology 

2.1.  Modelling and Initial Optimization 
A reactor model is taken from Yu and Chien (2017) and simulated using ASPEN Plus V11 [10]. The 
model is constructed as in figure 1. It is a Plug Flow Reactor (PFR) model which comprises the 
characteristics stated in table 1. 
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Figure 1. ASPEN Plus Plug Flow Reactor model. 

 
 

Table 1. Specification of ASPEN Plus PFR model. 

Feed Parameter Quantity Reactor Parameter Quantity 
Temperature 160 oC Temperature 210 oC 
Pressure 25 bar Pressure 25 bar 
Mole Flow 7059.97 kmol/hr Length 5 m 
DMO 0.0179072 % Diameter 1 m 
MEOH 0.264306 % Bed Voidage 0.5 
MG 0.0005002 % Particle Density 980 kg/cum 
H2 0.717187 %   
CO 0.00010004 %   

 
The model is then optimized to increase the production of EG by obtaining the highest possible yield. 

This optimization refers to SOO. The purpose of this optimization is compared (benchmarking) with 
MOO. First, all related inputs and outputs are defined. The objective is set to attain maximum yield. 
There are no constraints applied to the optimization process. Feed hydrogen and reactor temperature is 
set as the manipulated variable (MV). The executable statement for the process is set as shown in 
Equation 1. 

2.2.  Correlation of Objectives 
The objectives of MOO are determined which are EG production and energy consumption. The 
corresponding equations relating both objectives are constructed as shown equation 1 to 6. 

𝑎 = (𝐷𝑀𝑂	𝐼𝑁 · 65.57 +𝑀𝐸𝑂𝐻	𝐼𝑁 · 31.63 +𝑀𝐺	𝐼𝑁 · 129.32 + 𝐻2	𝐼𝑁 · 28.24 + 𝐶𝑂	𝐼𝑁 ·
29.15)(𝑇𝑂𝑈𝑇 − 𝑇	𝐼𝑁)             (1) 

𝑏 = (𝐷𝑀𝑂	𝐼𝑁 · 65.57 +𝑀𝐸𝑂𝐻	𝐼𝑁 · 31.63 +𝑀𝐺	𝐼𝑁 · 129.32 + 𝐻2	𝐼𝑁 · 28.24 + 𝐶𝑂	𝐼𝑁 ∙
29.15)(25 − 𝑇	𝐼𝑁)             (2) 

𝑐 = (𝐸𝐺	𝑂𝑈𝑇 · 162.5 + 𝐸𝑇𝑂𝐻	𝑂𝑈𝑇 · 209.9 − 𝐷𝑀𝑂	𝐼𝑁 · 372.8)         (3) 

𝑑 = (𝐷𝑀𝑂	𝑂𝑈𝑇 · 65.57 +𝑀𝐸𝑂𝐻	𝑂𝑈𝑇 · 31.63 +𝑀𝐺	𝑂𝑈𝑇 · 129.32 + 𝐻2	𝑂𝑈𝑇 · 28.24 + 𝐶𝑂	𝑂𝑈𝑇 ·
29.15 + 𝐸𝐺	𝑂𝑈𝑇 · 77.99 + 𝐸𝑇𝑂𝐻	𝑂𝑈𝑇 · 65.21 + 𝐻20	𝑂𝑈𝑇 · 33.59)(𝑇	𝑂𝑈𝑇 − 25)       (4) 

𝑒 = (111.7 + 77.99(𝑇	𝑂𝑈𝑇 − 25)            (5) 

𝐸𝐺	𝑂𝑈𝑇 = (𝑎 + 𝑏 + 𝑐 + 𝑑) ∙ 𝑒!"            (6) 
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2.3.  Optimization 
For the ASPEN Plus optimization process, three separated simulation is carried out relating EG 
production to energy consumption which are Low Energy (LE) optimization, High Product (HP) 
optimization and MOO. LE and HP Optimization is to determine the boundary of the Pareto optimal 
front. 

2.3.1.  LE and HP Optimization. For HP optimization, the objective is set to gain maximum product. All 
related inputs and outputs required for the process are defined. There are no constraints applied to the 
optimization process. Feed hydrogen and reactor temperature is set as the manipulated variable (MV). 
The executable statement for the process is set as shown in Equation 1. As for LE optimization, the 
objective is set to gain minimum energy consumption. All related inputs and outputs required, 
constraints and MV are the same as HP optimization. The executable statement for the process is set as 
shown in equation 1. 

2.3.2.  MOO. For MOO, the steps are the same as HP optimization. However, there are constraints added 
to the optimization process. These constraints (EGOUT and Q) are obtained and defined based on the 
ε-constraint method. The ε-constraint method is stated in equation 7. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑓#(𝑥), 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝑓$(𝑥) ≤ 𝜀$, 𝑚 = 1, 2, … ,𝑀	𝑎𝑛𝑑	𝑚 ≠ 𝜇 

𝑔%(𝑥) ≥ 0, 𝑗 = 1, 2, … , 𝐽 

ℎ&(𝑥) = 0, 𝑘 = 1, 2, … , 𝐾 

𝑥'
()) ≤ 𝑥' ≤ 𝑥'

(+), 𝑖 = 1, 2, … , 𝑛           (7) 

2.4.  Pareto Chart 
The Pareto front is plotted using the result obtained from the MOO section. The relationship between 
objectives, between MVs and between objectives and MVs are studied and discussed. The optimum 
values for EG production and energy consumption are determined. Comparison of MOO and SOO are 
made. 

3.  Result and Discussion 
The reactor model was validated by experimental data from Li et al. (2015) [11] and Yu and Chien 
(2017) [10]. 

3.1.  Objective Optimization 
In order to optimize the objectives, it is first required to understand the characteristic of the respective 
objectives with changes in MVs. Figure 2, 3, 4 and 5 displays the characteristic of individual objectives 
against MV. Objective 1 represents product flow (EG), objective 2 represents energy consumption (Q), 
MV1 represents hydrogen flowrate and MV2 represents temperature. Hydrogen flowrate and 
temperature is chosen as the MVs because they are the factors directly affecting the rate of reaction [12]. 

From figure 2, it shows a nonlinear curve of which objective 1 increase as MV1 increase. The 
increment reduces as objective 1 reaches its maximum point. The slow increase is caused by maximum 
reaction rate limit. In other words, the production of EG is at its highest due to the rate of reaction 
reaching its maximum point. This is in line with the reaction rate and kinetic [10]. Thus, the EG 
production rate cannot be further increased. 
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Figure 2. Relationship of MV1 and Objective 1. 

 
Figure 3 shows that objective 1 increase exponentially as MV2 increase. However, objective 1 suffers 

steady fall once MV2 rises beyond 194 °C. This is due to more side products are formed as the reactor 
temperature increases. A chain reaction causing the rise in formation of side product due to more main 
product being consumed explains the fall of objective 1. This follows the Le Chatelier’s principle [13]. 

 

 
Figure 3. Relationship of MV2 and Objective 1. 

 
From figure 4, it is seen that the graph has an almost linear increment. This shows that as MV1 rise, 

objective 2 increases. Since the reaction is exothermic, this leads to more energy released with increasing 
reaction thus, obeys the law of thermodynamics [14]. With higher hydrogen flowrate, lower energy 
consumption is achieved. 

Figure 5 shows that as MV2 rise, objective 2 increases. This increment however continues with a 
fall. This is due to at first low temperature is used, so the energy released from the exothermic reaction 
helps in providing additional energy [14]. But as the temperature increases, more energy is required to 
heat up the reactor causing the rise in energy consumption. 
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Figure 4. Relationship of MV1 and Objective 2. 

 

 
Figure 5. Relationship of MV2 and Objective 2. 

 
To achieve a fine MOO, the hydrogen flowrate must be high for better EG production and lower 

energy consumption. The temperature must be strictly controlled in order to determine the best EG 
production while maintaining low energy consumption. 

3.2.  Multi-Objective Optimization 
ε-constraint method is selected because it is applicable to either convex or non-convex problems [15]. 
That makes it perfect for this case since no solid grasp on the Pareto foundation can be made at this 
point. In addition, the method is thoroughly simple except in determining the epsilon (multi-objective) 
range. The range must fulfilled the requirements in which the objectives have to be within the range. 
This is the reason for the LE and HP optimizations. With the optimizations data, a range (constraints) 
for the objectives is developed as shown in equation 8. 

𝑚𝑎𝑥	𝑓,-(𝑥);	𝑓. = −24900468.30 ≪ 𝜀 
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𝑓,- = 127.93 ≫ 𝜀 

min𝑓. (𝑥);		𝑓,- = 7.81 ≫ 	𝜀 

𝑓. = −324013.90 ≪ 𝜀 

−24900468.30 ≪ 𝜀 ≪ 127.93           (8) 
The constraints are manipulated within the range and a set of data are obtained. A Pareto front is 

plotted for production of EG against energy consumption. The purposed of the plot is to identify the 
optimum point which satisfied both objectives accordingly. 

From figure 6, an inverse s-curved plot is obtained.  A point named Utopia point is marked on the 
plot. The Utopia point is the ideal point in which is the ideal values for each objective. This point serves 
as a reference point in regards of finding the actual optimum point [16]. Thus, point B which is the true 
optimum point (value) is acquired. Point B is selected as the optimum point because it has the shortest 
distance with the Utopia point which justified that point B is the nearest to ideal-optimum value. From 
the plot, the trade-off between both objectives is also known. This shows that indeed both the objectives 
are in conflict without dominating each other. 

 

 
Figure 6. Pareto Optimal Front. 

 
The optimum value for EG production and energy consumption are 109.92 kmol/hr and 11227860.10 

kJ/hr, respectively. On the other hand, the trade-off value for EG production and energy consumption 
are 18.02 kmol/hr and 10903846.2 kJ/hr, respectively. 

To further proved that the Pareto front in figure 6 is acceptable, figure 7 is plotted. From the plot, it 
is observed that MV2 rises with constant MV1. MV1 then decrease drastically once MV2 is beyond 
194°C. The MVs for optimum point (Utopia point) is located before 194°C. This corresponds with the 
objective and MV relationship in figure 2, 3, 4 and 5. Thus, the validity of the Pareto optimal solution 
is confirmed. 
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Figure 7. Pareto Optimal Solution. 

3.3.  Comparison of MOO and SOO 
From table 2, it is seen that the production of EG for SOO is higher and with much lower feed hydrogen 
than MOO. However, the reactor temperature and energy consumption for MOO is lower than SOO. As 
observed in figure 2, 3, 4 and 5, energy consumption can be reduced by increasing hydrogen flowrate. 
The difference between MOO and SOO for ethylene glycol production and energy consumption are -
5.65 kmol/hr and 17526931.8 kJ/hr, respectively. The difference in energy consumption is large with 
MOO having lower value and the difference in EG production is relatively small with SOO having 
higher value. 

Table 2. Results for SOO and MOO. 

 SOO MOO Unit 
H2 IN 5063.32 12642.43 kmol/hr 

H2 OUT 4574.38 12192.00 kmol/hr 
EG OUT 115.57 109.92 kmol/hr 
T OUT 210.00 192.56 ℃ 

Q -28754791.9 -11227860.1 
11227860.10 

kJ/hr 
The decrease in EG production is acceptable because of the high drop in energy consumption which 

leads to a lower operating temperature creating a safer environment. The increase in hydrogen required 
is exceptionally high but can be countered by proper recycling of feed. Thus, the overall comparison 
showed high benefits with slight trade-off. 

4.  Conclusion 
The overall optimization process is a success. A well-developed PFR model served excellently in error 
prevention. The interaction between MV1 and MV2 with objective 1 and objective 2 is highly 
dependent. Objective 2 is much more sensitive towards the change in MV1 and MV2 compared to 
objective 1. The interaction between MV1 and MV2 is unique in which it cannot be seen until 194°C. 
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The optimum value for EG production and energy consumption are 109.92 kmol/hr and 11227860.10 
kJ/hr, respectively while the trade-off values are 18.02 kmol/hr and 10903846.2 kJ/hr, respectively. The 
difference between MOO and SOO for EG production and energy consumption are -5.65 kmol/hr and 
17526931.8 kJ/hr, respectively. This shows that the comparison between MOO and SOO results in 
objective 1 for SOO is slightly higher than MOO but for objective 2, MOO is significantly higher than 
SOO. This concludes that a high benefit with slight trade-off (high energy consumption reduction and 
slight decrease in EG production) is achieved by implementing MOO. 
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