
IOP Conference Series: Materials
Science and Engineering

     

PAPER • OPEN ACCESS

Prediction of two-phase pressure drop in heat
exchanger for mixed refrigerant Joule-Thomson
cryocooler
To cite this article: P M Ardhapurkar and M D Atrey 2015 IOP Conf. Ser.: Mater. Sci. Eng. 101
012111

 

View the article online for updates and enhancements.

You may also like
Characterization of a mini-channel heat
exchanger for a heat pump system
A Arteconi, G Giuliani, M Tartuferi et al.

-

Micro-structured heat exchanger for
cryogenic mixed refrigerant cycles
D Gomse, A Reiner, G Rabsch et al.

-

Condensation heat transfer in
minichannels: a review of available
correlations
M Azzolin, A Berto, S Bortolin et al.

-

This content was downloaded from IP address 18.221.141.44 on 12/05/2024 at 04:12

https://doi.org/10.1088/1757-899X/101/1/012111
https://iopscience.iop.org/article/10.1088/1742-6596/501/1/012023
https://iopscience.iop.org/article/10.1088/1742-6596/501/1/012023
https://iopscience.iop.org/article/10.1088/1757-899X/278/1/012061
https://iopscience.iop.org/article/10.1088/1757-899X/278/1/012061
https://iopscience.iop.org/article/10.1088/1742-6596/1224/1/012038
https://iopscience.iop.org/article/10.1088/1742-6596/1224/1/012038
https://iopscience.iop.org/article/10.1088/1742-6596/1224/1/012038
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstsWMktW1fVRFXlkhtnAPIgp0txLm0ewvE4haDhFxD9-FvBfD6CGd6_LwD2WhclB8sLdO7EiU_XVM2XMymCsYMfTZ8fptto4zBKIXCcbDoo1IbQr9CmC7pRVTg7SrHr2E2KGdSV1Zhbe5g6FfQpy_9jUD-kTJ2GhLqzadw4j0-teL1pJeXP7qy6rb5ndLGK35pB_YzOiNMRpdHCWJCtX30hH6oljy8uCdb_RwGg3Jtvg2lz0TNb0Fao08_dF_HbFExiVkymmKqhJuQi054-xs7GFmPw-X4EzlQ4eSLA4K0mNvARjYbBRtODh8pDV-j_V3GIBOvjduelkqf2u5bFH03nuqev2Q&sig=Cg0ArKJSzJnVHvq_HnUh&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


 
 
 
 
 
 

Prediction of two-phase pressure drop in heat exchanger for 
mixed refrigerant Joule–Thomson cryocooler 

P M Ardhapurkar1, M D Atrey2 
1 S.S.G.M. College of Engineering, Shegaon, 444 203, India 
2 Mechanical Engineering Department, Indian Institute of Technology Bombay, 
Mumbai, 400 076, India 
 
E-mail: matrey@iitb.ac.in 

Abstract. The overall efficiency of a mixed refrigerant Joule–Thomson (MR J–T) cryocooler 
is governed by the performance of the recuperative heat exchanger. In the heat exchanger, the 
hot stream of the mixed refrigerant undergoes condensation at high pressure while the cold 
stream gets evaporated at low pressure. The pressure drop in the low pressure stream is crucial 
since it directly influences the achievable refrigeration temperature. However, experimental 
and theoretical studies related to two-phase pressure drop in mixtures at cryogenic 
temperatures, are limited. Therefore, the design of an efficient MR J–T cryocooler is a 
challenging task due to the lack of predictive tools.  
 

In the present work, the existing empirical correlations, which are commonly used for the 
prediction of pressure drop in the case of pure refrigerants, evaporating at near ambient 
conditions, are assessed for the mixed refrigerants. Experiments are carried out to measure the 
overall pressure drop in the evaporating cold stream of the tube-in-tube helically coiled heat 
exchanger. The predicted frictional pressure drop in the heat exchanger is compared with the 
experimental data. The suggested empirical correlations can be used to predict the hydraulic 
performance of the heat exchanger. 

1.  Introduction 
Joule-Thomson (J–T) cryocoolers are known for fast cool-down time, low cost and low vibrations at 
the cold end because of no moving parts in the cold section. The use of a refrigerant mixture of 
nitrogen-hydrocarbons as a working medium in these cryocoolers enhances their efficiency. 
Additionally, pressure requirements drastically get reduced up to 2 MPa in comparison to that of using 
a pure component as a working fluid, which allow the use of oil-lubricated compressors. However, the 
overall performance of such mixed refrigerant Joule–Thomson (MR J–T) cryocoolers greatly depends 
on the refrigerant mixture, heat exchanger and compressor. Numerous experimental and theoretical 
studies of MR J–T cryocoolers operating in the temperature range of 80–230 K have been reported in 
the literature [1-4]. These studies are mainly related to the optimization of mixtures used and the 
overall performance of the refrigeration systems. However, little work [5-7] is done on the 
performance analysis of the recuperative heat exchanger used in the MR J–T cryocooler, even though 
it plays a crucial role in its efficient operation. This is mainly due to the lack of the experimental data 
available, related to flow boiling/condensation heat transfer and pressure drop of mixed refrigerants at 
cryogenic temperatures. The refrigerant mixture undergoes boiling and condensation heat transfer 
simultaneously, in the counter-flow heat exchanger. The hydraulic diameter of the heat exchangers is 
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in the range of 2–3 mm to have better thermal performance. However, unfortunately, the small channel 
diameters lead to a higher pressure drop which may adversely influence the effectiveness of the heat 
exchanger. Therefore, accurate predictive tools for both pressure drop and heat transfer coefficients are 
necessary to design the heat exchanger for the efficient operation of the cryocooler. 

A closed cycle MR J–T cryocooler mainly comprises of a compressor, an after cooler, a 
recuperative counter flow heat exchanger, an expansion device and an evaporator. The compressor 
compresses the refrigerant which is partially cooled in the after cooler and further cooled inside the 
tube of the heat exchanger by the return line low pressure refrigerant stream flowing through the 
annulus of the heat exchanger. Throttling the high pressure refrigerant in the expansion device results 
in the low pressure, low temperature stream. This low pressure, low temperature stream produces a 
cooling effect at the evaporator and then returns to the compressor through the heat exchanger. 

There are many experimental studies and models available in the literature to predict the frictional 
pressure drop in macro and micro channels of the heat exchangers. These models are mainly 
developed for pure component fluids such as air, water, CFC, HCFC and HFC refrigerants and their 
mixtures. These methods are validated only for specific flow configurations and relatively narrow 
ranges of operating conditions. There is no generalized correlation for two-phase frictional pressure 
drop in the literature, which is applicable to a wide range of working fluids, mass velocities, pressures 
and channel diameters. On the other hand, studies related to two-phase pressure drop in the MR J–T 
heat exchanger are scarce. Baek et al. [8] measured the pressure drop in low pressure channels of the 
heat exchangers for a MR J–T cryocooler during cool-down. They concluded that the pressure drop of 
a mixed refrigerant flow can be estimated with pure fluid two-phase pressure drop correlations. 

In view of the above, the present study attempts to assess the existing empirical correlations for 
prediction of frictional pressure drop in the cold stream of the heat exchanger. Experiments are carried 
out to measure the overall pressure drop across the MR J–T heat exchanger. The distribution of 
pressure along the length of the heat exchanger is obtained using various well known existing 
correlations based on the homogeneous and the separated flow models. The predicted pressure drop is 
compared with the experimentally obtained results for two different mixture compositions. 

2.  Two-phase pressure drop correlations 
Two-phase pressure drop is the sum of the static pressure drop, the momentum pressure drop and the 
frictional pressure drop. It is essential to have the knowledge of void fraction to calculate static and 
momentum components of the pressure drop. No study is found related to prediction of void fraction 
for flow boiling of mixtures at cryogenic temperatures in the open literature. In the present analysis, 
the static and momentum pressure drop is neglected. The correlations, commonly used to estimate 
frictional pressure drop, are based on either a homogeneous flow or separated flow models. The 
existing correlations which are evaluated in the present study are described in the following section. 
 
2.1Homogeneous flow model (HFM) 
Homogeneous flow models (HFM) treat two-phase flow as a single phase fluid flow with averaged 
properties of the liquid and the vapor phase. It assumes no difference in the velocities of the two 
phases of the fluid. This approach is typically valid for flow regimes such as mist flow or bubbly flow 
where one phase is evenly dispersed into the other [9]. Whalley [10] argued that the homogeneous 
model is suitable to calculate the frictional pressure drop for the mass velocities greater than 2000 
kg/m2s. The two-phase frictional pressure drop, ∆Pfrict is given in equation (1). 
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                                                         (1) 

 
where L is length, G is mass flux and dh  is hydraulic diameter. The two-phase friction factor ftp, is 
calculated on the basis of the two-phase Reynolds number, Retp as expressed in equation (2). 
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where, μtp is two-phase viscosity. The effective density of two-phases, ρtp is given in equation (3).  
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where ρf and ρg is liquid and vapour phase density, respectively and x is vapour quality. Table 1 gives 
commonly used two-phase mixture viscosity models.  
 
2.2 Separated flow model (SFM) 
The separated flow model (SFM) on the other hand, considers the flow of the two phases distinctly 
along with the interaction between them. The Lockhart-Martinelli two-phase multiplier is the most 
typical form of the separated flow model. The total frictional pressure gradient in the two-phase flow 
is calculated with a frictional multiplier, ϕf  as expressed in equation (4). 
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(4) 

 
where, (dp/dz)f is the frictional pressure gradient if the liquid phase flows alone in the channel. 
Lockhart and Martinelli [14] correlated the frictional multiplier, ϕf in terms of a parameter X. Later, 
Chisholm [15] presented the simplified form of the correlation for the two-phase multiplier as a 
function of the Lockhart-Martinelli parameter, X, and the coefficient C as given in equation (5). 
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(5) 

 
The constant C is viewed as the interaction parameter between the liquid and the vapor phases which 
is varied from 5 to 20, based upon whether the liquid or the vapor phase is in the laminar or turbulent 
regime. Following the work of Lockhart and Martinelli [14], several correlations are proposed for 
predicting two-phase pressure drop in large diameter tubes. The widely used empirical correlations to 
predict pressure drop for flows through macro channels are Lockhart and Martinelli [14], Friedel [16], 
Gronnerud [17], Muller-Steinhagen and Heck [18], Chisholm [19] and Sami and Duong [20] 
correlation, which are evaluated in the present work. OuldDidi et al. [21] assessed various correlations 
against the two-phase pressure drop data for different refrigerants and found that the Muller-
Steinhagen and Heck [18] correlation gives the best prediction for the annular flow regime. 

 
Table 1. Two-phase mixture viscosity models 

Author(s) Equation 
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Most of the available empirical correlations for the prediction of pressure drop in mini/micro-
channels are based on the Lockhart-Martinelli [14] method. Several researchers focused their work on 
determination of accurate values of C in order to improve the accuracy of separated flow models and 
to consider micro scale effects. In the present study, Mishima and Hibiki [22], Yu et al. [23], Lee and 
Mudawar [24], Li and Wu [25], Zhang et al. [26] and Kim and Mudawar [27] correlations, which are 
developed for micro-scale channels, are selected to predict two-phase frictional pressure drop in the 
heat exchanger. More details on the two-phase pressure drop models for micro-scale channels can be 
found in the recent review articles [28-29]. 

In the present work, three different correlations based on the homogeneous model from Table 1 and 
twelve correlations which are developed for macro-scale and micro-scale channels based on separated 
flow model are used to determine two-phase frictional pressure drop. These correlations are integrated 
numerically along the length of the heat exchanger to predict the total frictional pressure drop. The 
properties of the mixture are updated locally along the length of the heat exchanger. 

3.  Experimental set-up 
Figure 1 (a) shows the schematic of the experimental set-up. It is described in detail elsewhere by the 
authors [7]. It mainly consists of a compressor, an after-cooler, oil filters, a heat exchanger, an 
expansion device, and an evaporator. The heat exchanger, the capillary tube and the evaporator are 
insulated with multi-layer insulation (MLI) and are placed in a stainless steel vessel in which, a 
vacuum of the order of 10-5 mbar is maintained using a diffusion pump. Figure 2 shows the 
photograph of a helically coiled heat exchanger, which is a concentric tube-in-tube arrangement. The 
inside and outside diameter of the inner tube is 4.83 and 6.35 mm respectively, whereas it is, 7.89 and 
9.52 mm respectively, for the outer tube. The length of the concentric tubes is 15 m. The suction and 
the discharge pressures of the compressor are measured by two pressure gauges (Make: WIKA) 
located at the inlet and the outlet of the compressor, respectively. Pressures of the low and the high 
pressure stream are measured both at the inlet and the outlet to the heat exchanger with the help of 
piezo-resistive type pressure sensors (Make: Endevco, UK). 

The temperature sensors (PT100) are used to measure temperatures of the hot and the cold fluid at 
an interval of 1.5 m along the length of the heat exchanger as shown in Figure 1 (b). All the 
temperature sensors are calibrated down to liquid nitrogen temperature (77 K). The temperatures of 
the hot and the cold fluid are recorded at the steady state using the data logging system, Data Taker-
800 and are averaged over the period of a minimum 10 minutes. A rotameter is installed in the suction 
line to measure the volume flow rate of the refrigerant. The mass flow rate of the mixture is calculated 
using the density of the mixture in circulation, at the inlet conditions. The mixture composition in 
circulation is measured using a gas chromatograph (Make: Perkin Elmer-Clarus 500GC). 

 
 
 
 
 
 
 
 
 
 

 

 
 

 

Figure 1. (a) Experimental set-up [7] (b) Locations of sensors 
Figure 2. Photograph of helical 

heat exchanger 

(a) 

(b) 
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4.  Results and discussion 
Experiments are conducted on a MR J–T cryocooler to determine the total pressure drop along the 
length of the heat exchanger. Two specific compositions of the mixture of gases viz. nitrogen, 
methane, ethane, propane and iso-butane are used as a refrigerant in the system. Table 2 gives the 
composition of the charged mixture, and operating conditions like mass velocity, pressure and 
temperature for the cold fluid in the heat exchanger. The mass velocity of the cold fluid is calculated 
on the basis of the annulus area between the two tubes. The molar percentage of the higher boiling 
point components such as propane and iso-butane is nearly the same for both mixtures. However, the 
molar percentage of the low boiling point components such as nitrogen is significantly more in Mix#1 
than that for Mix#2, while that of methane in Mix#1 is relatively less. These mixtures are designed to 
produce different refrigeration temperatures in the range of 100–125 K. The heat exchanger essentially 
operates in the two-phase region at such low temperatures. Figure 3 shows the temperature-entropy 
diagram for one of the mixtures used in the present work for which pressure variations are not 
considered. It can be noted from the figure that both the condensing and the evaporating stream remain 
in two-phase state over the greater portion of the heat exchanger. 

During experimentation, it is observed that, the cold fluid enters the heat exchanger in the two-
phase state for all the tests conducted on different mixtures. On the other hand, the cold fluid leaves 
the heat exchanger at a temperature greater than its dew point temperature indicating single-phase state 
of the fluid. The length of the heat exchanger over which the mixed refrigerant is in single-phase state 
depends on the mixture composition and operating conditions in the cryocooler. The temperature 
profile for the cold fluid flowing through the annulus is known. Therefore, the length of the single-
phase region at the hot end of the heat exchanger can be calculated easily using dew point temperature 
of the mixture under consideration. The length of the two-phase region is obtained by subtracting the 
length of the single-phase region from the total length of the heat exchanger.  

 
Table 2. Experimental conditions  

Mixture Composition (% mol) 
(N2/CH4/C2H6/C3H8/iC4H10) 

Mass flux, 
G (kg/m2s) 

Cold fluid temperature, (K) Pressure, (bar) 
Inlet Outlet Inlet Outlet 

Mix#1 36.0/15.0/13.0/19.0/17.0 215 100.2 293.5 5.61 2.61 
167 108.8 293.8 5.23 2.41 
132 112.7 294.7 4.25 2.01 

Mix#2 15.5/31.0/16.5/21.0/16.0 151 119.1 297.6 5.32 2.31 
146 125.4 300.1 4.94 2.31 

 
 

 
Figure 3. Temperature–entropy diagram of Mix#1 
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The single-phase pressure drop is determined using the conventional Blasius correlation [10]. The 
experimental two-phase frictional pressure drop is obtained by subtracting the single-phase pressure 
drop from the measured value of the total pressure drop for the cold fluid. In the present case, the 
effect of helical channel on the pressure drop is neglected. The test conducted on each mixture is 
repeated at least three times to ensure repeatability of the results. All the properties of the mixture are 
calculated using aspenONE [30] considering Peng-Robinson equation of state [31]. The experimental 
two-phase frictional pressure drop data are compared with 15 existing correlations which are used for 
flows through both macro and mini/micro channels. The average absolute deviations (AAD) for the 
predicted results are calculated using equation (6), in order to find applicability of the correlations. 

 

exp

1 exp

1 100
N

predictedP P
AAD

N P
 

 
                                 (6) 

 
where N is the number of data points, ΔPexp and ΔPpredicted  are the frictional pressure drop obtained 
from experiment and model, respectively. Table 3 gives the AAD of the predicted pressure drop from 
the existing correlations with the experimental frictional pressure drop. It is noted that the differences 
between the predictions obtained from different correlations and the experimental data are significant. 

It is clear from the table that two correlations for macro channel and two correlations for micro 
channel show the best predictions among the all the predicted results of pressure drop. Namely, Zhang 
et al. [26], Kim and Mudawar [27], Muller-Steinhagen and Heck [18] and Sami and Duong [20] 
correlation are relatively close to the experimental data. Interestingly, in the case Mix#1, these 
correlations over predict the experimental pressure drop for higher mass velocity of 215 kg/m2s.  It is 
found that the Zhang et al. [26] and Kim and Mudawar [27] correlations which are developed for 
micro-channels predict the experimental data within 30 % error limit. These correlations give the best 
prediction of the frictional pressure drop among all the 15 correlations assessed in the present work. 
However, some correlations are recommended for specific laminar or turbulent flow states. For 
example, Zhang et al. [26] correlation is not suitable when the flow is turbulent liquid and turbulent 
vapour flow. In the present study, it is found that the liquid flow is laminar, (Rel < 2000) while the 
vapour flow is turbulent. 

 
Table 3. Assessment of existing two-phase frictional pressure drop correlation 

Correlation AAD, % 
Mix#1 Mix#2 

Mass velocity, G (kg/m2s) 215 167 132 146 151 
Homogeneous 
model 

 McAdams et al. [11] 21.4 44.4 40.2 41.7 48.6 
Cicchitti et al. [12] 126.8 23.0 35.8 10.4 13.2 
Dukleret al. [13] 21.5 44.3 42.0 47.2 52.4 

SFM: Macro-
scale model 

Lockhart-Martinelli [14] 143.2 102.0 116.8 42.2 15.2 
Friedel [16] 62.4 7.9 15.9 8.4 11.1 
Gronnerud [17] 125.4 59.8 82.6 46.8 28.1 
Muller-Steinhagen and Heck [18] 31.6 13.6 6.0 7.2 24.8 
Chisholm [19] 143.6 160.4 143.7 108.6 69.5 
Sami and Duong [20] 14.2 20.4 21.7 34.1 40.5 

SFM: Micro-
scale model 

Mishima and Hibiki [22] 103.5 37.5 46.4 1.8 14.8 
Yu et al. [23] 76.0 82.3 80.8 82.9 84.0 
Lee and Mudawar [24] 135.9 38.7 26.3 11.9 4.3 
Li and Wu [25] 134.7 45.4 55.2 12.1 15.1 
Zhang et al. [26] 22.0 9.2 3.2 27.6 27.6 
Kim and Mudawar [27] 27.5 16.3 17.6 20.8 29.5 
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The Muller-Steinhagen and Heck correlation [18] is ranked as the second best correlation. It may 
be due to the fact that the correlation is derived from very large database, 25000 data points and covers 
a wide range of refrigerants. Also, with this correlation, the two phase pressure drop reduces to single-
phase liquid pressure drop at vapour quality, x = 0 and single-phase vapour pressure drop at vapour 
quality, x = 1. Ribatski et al. [28] assessed this correlation at micro scale and found that it gives the 
best predictions among the twelve different correlations tested. The Sami and Duong correlation [20] 
is ranked as the third best suitable correlation since the AAD of the predicted results for Mix#2 is 
slightly higher for this correlation. All other correlations do not predict the results consistently and 
scatter of the data is significant. Therefore, only four best correlations are used for further analysis of 
the pressure drop characteristics in the heat exchanger. 

Figure 4 shows the variation in pressure drop with respect to mass velocity for Mix#1. It also 
compares the predicted variation in pressure drop using four correlations against the experimental 
values. It is found that the pressure drop increases with the increase in mass velocity. However, it 
should be noted here that the inlet conditions of pressure and temperature of the cold fluid entering the 
heat exchanger are not exactly same for all the cases. The comparison of pressure drop for both the 
mixtures revealed that the mixture composition affects the pressure drop significantly due to 
significant changes in the thermo-physical properties with the mixture composition. 

Figure 5 compares the pressure profiles of the evaporating stream in the heat exchanger predicted 
by the four recommended correlations. The measured values of pressure at the inlet and the exit of the 
heat exchanger are shown in the figure, for Mix#1. It can be seen from the figure that the pressure 
profile obtained by the Zhang et al. [26] correlation is relatively linear in nature, while the pressure 
gradient for the Muller-Steinhagen and Heck correlation is more towards the exit of the heat 
exchanger. The pressure profiles predicted by Kim and Mudawar [27] and Sami and Duong [20] are 
almost similar over the entire length of the heat exchanger. 

The recommended empirical correlations can be used with care to predict the frictional pressure 
drop in a MR J–T heat exchanger. However, for more accurate predictions of two-phase pressure drop 
in the heat exchanger for a MR J–T cryocooler, further experimentation is necessary towards 
development of a generalized correlation suitable to a wide range of mixture compositions and 
operating conditions. 
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Figure 5. Predicted pressure profiles of the 
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5.  Conclusions 
In the present work, an extensive evaluation of the existing two-phase frictional pressure drop 
correlations is presented. A total of 15 widely used correlations based on the homogeneous and 
separated flow models developed for both macro-scale and micro-scale channels are selected to study 
their applicability for the mixed refrigerants at cryogenic temperatures. The experiments are conducted 
to measure overall pressure drop in the evaporating stream of the MR J–T heat exchanger for two 
different mixture compositions. It is observed that the mass flux and the mixture composition have a 
significant influence on the pressure drop in the heat exchanger. The comparison of the predicted 
pressure drop with the experimental data shows that the Zhang et al. [26] and Kim and Mudawar [27] 
correlation, which are developed for micro-channels give the best prediction of pressure drop among 
all the correlations assessed. These correlations can be used for predicting the hydraulic performance 
of the heat exchanger for a MR J–T cryocooler. 
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