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Abstract. The paper considers aspects of the development of algorithms for optimizing 

complex systems, and also develops an algorithm for solving problems of convex stochastic 

programming with a non-smooth goal function. The principles of constructing adaptive 

procedures for adjusting the parameters of variable gradient optimization algorithms are 

proposed. Note that in almost any iterative algorithm, as a rule, there are parameters that 

require their adjustment. To control and adjust parameters, - criteria are formed that determine 

the quality of adjustments. At the same time, the problem of determining the best value of the 

adjustment parameters belongs to the same class as the original optimization problem. Usually, 

iterative algorithms that work in the same class of optimization problems are used to adjust the 

available parameters. Thus, it turns out that two algorithms work simultaneously, in the source 

space and in the parameter space. Since algorithms are adapted by parameters during operation, 

this type of algorithm is called adaptive. The current stage of development of computer 

technology and mathematical support requires the development of algorithms that must 

function successfully without the user's participation, both in the process of solving the 

problem and in the process of finding a solution to the problem. The paper provides 

recommendations for software implementation of adaptive stochastic algorithms and 

construction of computational procedures for stochastic computational experiments based on 

them. 

1. Subject of research  

Adequate modeling of complex systems involves taking into account their nonlinear, stochastic 

structure. This provision is necessary in the process of modeling systems, when the "randomness" 

seems to be dependencies in the simulated system, such as: - productivity-weather, electric power 

stations, solar activity, the adaptability of manufacturing operations - the volume of replacement jobs, 

needs picking product from the direct presence or absence of the desired product production in a given 

time, etc. 

We refer the proposed algorithm to direct algorithms for optimization of stochastic systems, since 

they do not require translation of the stochastic problem to a deterministic equivalent. The problem is 

solved without the specified intermediate stage. 

Difficulties. Numerical methods for optimizing stochastic systems involve calculating two 

functionals, the goal functional and the constraint functional, which are usually represented by 

integrals - the multiplicity of which can reach very large values determined by the decision-maker 

(LPR), taking into account the computational tools available to the LPR. 
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Features. The problem of stochastic programming with incomplete information about the goal 

function, existing constraints, and their combinations is considered. 

Idea. The implemented algorithm uses random directions of stochastic gradients instead of exact 

values of gradients, as probabilistic estimates of their vectors. The problem of minimizing a convex 

function      is presented as follows: 

                                                                              (1) 

where X – is a convex set in Euclidean space R
n
. 

If the function      gradients as: 

                                                                        (2) 

is convex in X, then the following condition must be met for the differential of this convex function: 

∂f(x)=∫∂φ(x,ω)P(dω)                                                        (3) 

If this is the case, then ∂φ(x,ω) – can be represented by a set of vectors that are probabilistic estimates 

of the generalized gradient of the function     . 

On the convergence of the algorithm. By the algorithm we mean the rule for constructing a 

sequence of points {x
s
} that belong to the set     . 

Conditions for convergence of the algorithm. Consider some set of initial solutions     . We will 

consider the algorithm convergent if the following condition is met: 

                                                                              (4) 

From (4) follows if we consider the problem of linear programming: 

                                                                          (5.1) 

the concept of the algorithm will match the following rule: 

                                                                         (5.2) 

solving the problem 5.1. 

As the set    can be taken multiple solutions to problem (5.1), or a set of the necessary conditions 

of extremum in this task. 

In this case, the statement about the convergence of the algorithm will be a statement about the 

fulfillment of the necessary extremum conditions at all limit points of the sequence {x
s
}. 

Let's clarify the conditions that may imply convergence of the algorithm. 

Assume that the sequence {x
s
} and the set of solutions            are such that the following 

conditions hold: 

1.        , where   is a compact subset of   ; 

2.       is a continuous function; 

3. If the sequence      converges at x’, such that            , then for any ξ > 0, there is a 

subset of the index sequence {ik} for which                   for               and  

                       ; 

4. (        )       Ø , i.e. the open interval          is not contained on the set 

                     ; 
5. If a subset of the sequence {x

sk
} converges at a point x* such that           , then 

(               )                                                       (6) 

when k ∞. 

Generalization of the idea. Suppose that the LPR needs to select a resource (stock) of the product of 

production x. Let the demand for the resource be given by a random variable θ. If the demand is 
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greater than the supply, i.e. x < θ, then we assign a penalty equal to:        .. And if x > θ, then the 

penalty will be defined as         .. In both cases, a and b are positive penalty values. 

We write the target function as: 

                                                                            (7) 

random function 

     {
         
         

                                                                 (8) 

let's represent it as a stochastic gradient. 

An unknown minimum point of a convex function f(x) on a set X is evaluated by a recurrent 

sequence 

                  , s=0,1, … ∞.                                             (9) 

where – s -  is the iteration number of the algorithm, X – is a convex closed set in R
n
,    is a 

projection operation on the set X,   - is a stochastic gradient, the conditional expectation Ms. of this 

vector is relative to the σ-algebra Fs, given by random vectors (x
0
,  0

,x
1
,  1

, … ,x
s
), which satisfies the 

condition: 

   
                                                                         (10) 

   - a sequence of random variables, step multipliers;   - a sequence of random vectors. 

For the    steps, we suggest choosing a pre-defined sequence {ak}that satisfies the following 

conditions: 

∑      
 ,   > 0, k=0,1, …                                                   (11) 

We outline a way to minimize a convex, non-smooth function f(x) on a convex compact subset X of 

the space R
n
. The function f(x) has known stochastic gradients. Let all the random variables used be 

defined on the probability space (Ώ, A, Р). The algorithm will generate sequences of random 

directions d
s
 and points x

n
   R

n
 (s=0, 1, …) based on the following relations: 

   
           

    

      
                                                               (12) 

     {
                                        

   (     
  

    
)                     

                           (13) 

where –   - stochastic gradient, i.e.                , the σ--algebra generated by    random 

variables (x
0
, … ,x

s
,,ε

0
, …, ε 

s-1
);     positive step multiplier;    - positive averaging factor; is is   

{0,1} - reduction factor; ts   {0;+∞} is the bounding constant. 

At the starting point x   X, we assume d
-1

=0. In accordance with (12), it follows that the direction 

d
s
 is a convex combination of the zero vector and the previous stochastic gradients ξ 

i
 (i=0, … , s). 

The recovery factor is defined as follows: 

                                                                          (14) 

is = 0, если ξ 
s-1

 > σ 

where is a fixed threshold value. 

To construct recurrent relations for the modification of parameters   ,     we assume that the 

algorithm operates in the allowed range X and t = +∞. For data x
s-1

, d
s-2

, and λ ≥ 0, we consider a 

function that characterizes the quality of the selected parameters ρ and γ. 

         (             )          
 

 
                                       (15) 
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where -                                        are determined by the relations (12,13). 

The values of ρs-1 and γs-1 must be chosen from the minimality condition of the function         
           . 

Differentiate the function        . at the point ρs-1 and γs-1, and we reduce the expression to the 

form: 

                        
 

    
                                          (16) 

  
         

             
                                                       (17) 

where            . 

Given the previous expressions 

                     ,                                                (18) 

                                                                    (19) 

 get: 

   (
 

    
   

    
            

   

)                                                       (20) 

 Based on the above, the vector (     ) can be interpreted as a stochastic gradient of the function Ф at 

the point (         ) up to positive factors. 

Thus, the use of the vector (     ) for constructing recurrent relations for calculating the step factor 

ρ0 > 0 is justified. 

                
                                                              (21) 

 where -   >0, η>0,  >0,  ≥0, δ>0 – are fixed parameters, and the coefficient    is defined as follows: 

                                                                        (22) 

                                                                      (23) 

       is a small positive value. 

The ratio for calculating the averaging coefficients     is represented as follows: 

{
       

                
                  

                                             (24) 

where -   >0,  >0. 

In the relations (23,24), the terms (         ) and (         ) increase the rate of decrease of 

the coefficients (  ,   ) if the values     and    are close to zero. 

A note on generalization. The previous arguments justify the following assumptions regarding the 

parameters of the developed algorithm and the function f(x): 

1. Condition for the control coefficient λ and the convexity constant of the function – ν: 

                                                                            (25) 

where – 

                                                                      (26) 

for all x, y   X and all        . 

It follows from (25) that in the case of a strong convexity of the objective function, the control 

coefficient λ in (15) can be assumed to be zero. 

2. There are constants q0 and Q such that 
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           s=0,1, …                                                     (27) 

For any z   R
n
 such that ||z| |≤ q0, where 

                                                                       (28) 

Condition (27) is related to the exponential form of relations (21, 23). Condition (27) holds for both 

bounded and unbounded distributions. 

Problems with probabilistic estimates of gradients of objective functions arise when minimizing 

functions of the following type: 

                           
   

   
                                         (29) 

Since, under any General assumptions, the generalized differential of the function f(x) is calculated by 

the following formula: 

                     
   

   
                                                 (30) 

 then          is the set of vectors that are probabilistic estimates of the gradients of the function 

    . 

The classical stochastic generalization problem (Weber's problem) is formulated as follows: 

- given n points yI (i=1, … ,n) in two-dimensional Euclidean space R
2
, you need to find a point x   

R
2 

such that the sum of the distances to all points yI (i=1, … ,n) is minimal. In the generalized 

statement, we assume that each point yI (i=1, … ,n) is a random variable defined by some probability 

measure θi(y)on R
2
. 

The problem is to find a point x   R
2
 that will minimize the weighted sum of mathematical 

expectations of distances from point x to points yI (i=1, … ,n): 

     ∑    ∬                
 

  
 
                                        (31) 

If random variables yI (i=1, … ,n) have densities of distributions θI (i=1, … ,n), then under certain 

conditions imposed on the function      ∑          
    the function Ψ(x) is strictly convex and 

twice differentiable. 

Software implementation. Software implementation of algorithms requires the introduction of 

heuristic elements. Denote by I the unit matrix. 

Algorithm. Set s=0 at the beginning of the count, set x
0
, ρ0, P=n

-1
∙I. 

Step 1. Calculation of the stochastic gradient ξ
s
; 

Step 2. If s=0 go to step10. 

Step 3. Averaging the shift rate: 

                                   

At the beginning of the account, G0=0. 

Step 4. Checking the end of the invoice: 

If Gs < G* or s > s*, then finish the count, otherwise go to the next step; 

Step 5. The calculation of the scalar product, Ts: 

            ; 

Step 6. Averaging the Ts module: 

                      

At the beginning of the account, z0=0. 

Step 7. ρs step adjustment: 

         
  
   {

         
         

; 
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Step 8. Checking the value of the step change ρs: 

   {

                 
     

  

 
           

       

                  

 

Step 9. Calculating Ps weights: 

   [

                                      

                                              
                                        

                                              

], 

                           , 

      

{
 
 

 
 

        
      

     
    

 

 
    (  

      
 )    

    

 

 
                

 

m is the number of components for which (  
      

 )    
   ; 

Step 10. Finding the following approximation: 

                ; 

Step 11. Design for a valid area: 

              ; 

Step 12. Go to step 1 by increasing s by one. 

The algorithm implements two stop criteria: the first one is based on the number of iterations, and 

the second one is based on the average shift value. When the shift value becomes less than the 

threshold value G*, the algorithm terminates (steps 3, 4). 

Step adjustment includes the following points. The value of Ts in the exponent of R is normalized 

to a certain value of the module Ts. Therefore, if, for example, R=2, the step R=2will change (increase 

or decrease) due to the multiplier R
Ts/Zs

 on average twice. 

Instead of the step reduction parameter δ, an additional step reduction is used using the coefficient 

U, 0 < U ≤ 1. 

Additional reduction occurs only when 

                

Since Ts/zs in the indicator R is a random variable, the step ρs can both increase and decrease a very 

large number of times (step 7). In order for the next step to differ slightly from the previous one, the 

threshold coefficients for reducing and increasing the step multiplier are set (step 8). 

The weight coefficients ρs,..., pn(s) (step9) remain positive, with ∑          
   for          

Formulas for modifying the weights pi(s) have the following meaning. If a shift occurs in one 

direction for any component, then the corresponding weight of this component increases, otherwise it 

decreases. 

The design operation (step 11) is equivalent to solving a nonlinear programming problem. If 

             (A is a matrix, b is a vector), then the implementation of the design operation is 

reduced to a quadratic programming problem. 

Recommendations for selecting algorithm parameters. 

1. The value of the average step change R (1 < R < 3) is chosen to be equal to two. 
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2. Initially, the value of the initial step ρ0 does not significantly affect the convergence rate of the 

algorithm. However, if there is information, the initial value can be set as follows: 
       

    
, where x* is 

the extremum point. 

3. The k parameter defines the averaging coefficient   
 

 
  in the averaging formulas (steps 3, 6). We 

recommend choosing k in the range       when the algorithm uses stochastic estimates of the 

gradients of the objective function, and k=1 if the gradients are specified exactly. 

4. Parameter U-additional step reduction coefficient-is selected in the range         . 

5. If the information about gradients is probabilistic, then U is selected in the range         .  

6. If the gradients are specified exactly,      note that for    the coefficient U can be equal to 1, 

since the step decreases quickly and without additional reduction. 

7. The value of the average shift   in the stop criterion is set to the order of the required accuracy of 

the solution for the components x. 

8. The   parameter allows you to finish the work after a certain number of iterations of the algorithm 

set in advance. 

9. We recommend setting the parameter          , (step9) to 0,5. 
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