# PAPER • OPEN ACCESS

# Calculation of the Pump-Ejecting Systems Characteristics for SWAG Injection Using Flue Gas

To cite this article: Y A Gorbyleva and A N Drozdov 2022 IOP Conf. Ser.: Earth Environ. Sci. 988 032086

View the article online for updates and enhancements.

# You may also like

- <u>Application of 3D Design Technology in</u> <u>Substation Design</u> Yang Gao
- MAGNETOHYDRODYNAMIC MODELING FOR A FORMATION PROCESS OF CORONAL MASS EJECTIONS: INTERACTION BETWEEN AN EJECTING FLUX ROPE AND AN AMBIENT FIELD Daikou Shiota, Kanya Kusano, Takahiro Miyoshi et al.
- Investigation and Calculation of Pump-Ejector System Parameters at SWAG in Conditions of Megion Oil Field V D Volkov and V B Ludupov





DISCOVER how sustainability intersects with electrochemistry & solid state science research



This content was downloaded from IP address 18.218.55.14 on 06/05/2024 at 16:50

**IOP** Publishing

# **Calculation of the Pump-Ejecting Systems Characteristics for SWAG Injection Using Flue Gas**

#### Y A Gorbyleva<sup>1</sup>, A N Drozdov<sup>1</sup>

<sup>1</sup>Peoples Friendship University of Russia, Moscow, 117198, Russia

E-mail: yana\_gorbyleva@mail.ru, drozdov\_an@mail.ru

Abstract. This paper is devoted to determining the main technological parameters of pumpejecting systems for exhaust (flue) gases utilization. The possibility of using exhaust gases from electric generating gas turbines and gas piston units built near oil fields is considered. We calculate pressure distribution in water supply lines and injection wells during water-gas mixture injection, determine the values of the required pressure at the outlet of the pump and ejector systems and the main characteristics of pump-ejecting systems, and select multistage electric centrifugal pumps and liquid-gas ejectors.

#### 1. Introduction

In the process of addressing the problems of enhancement of oil recovery and optimization of the process of oil production, as well as transport of hydrocarbons, researchers propose different variants of technological systems, in which one of the main elements is a jet apparatus (ejector) [1-4].

There are many works devoted to studying the characteristics of the liquid-gas ejector (LGE). The most significant contribution to the development of the LGE theory was made by E. Y. Sokolov and N. M. Zinger [5], K. G. Donets [6], L. D. Berman and G. I. Efimochkin [7], Б. К. Кореннова [8], E. K. Спиридонова [9], A. V. Podzerko [10], A. N. Drozdov [11], Y. A. Sazonov [12]. The methods for calculating the performance characteristics of the LGE developed by these authors are based on experimental research data.

Foreign experience in studies of jet apparatuses is devoted to the influence of the ejector design and its geometrical parameters, as well as numerical research to improve the efficiency of the liquid-gas ejector [13-16].

Technological solutions in the works [11, 17-18] are aimed at increasing oil recovery in the fields by injecting associated petroleum gas (APG). This technology is easy to implement and operate due to the advantages of the equipment used. Studies [19-21] are aimed at determining the parameters of pumpejecting systems under various conditions.

In the above-mentioned works it was proposed to use associated petroleum gas to increase oil recovery due to the need to reduce its flaring. In the modern world with high requirements in reducing harmful emissions into the atmosphere and decarbonizing the industry, the use of exhaust gases is relevant. Gas turbine and gas piston power generating units operating on APG can become a source of exhaust gases in the field.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

**IOP** Publishing

#### 2. Materials and methods

In this paper an analysis of number of gas turbine and gas piston power generating plants installed at the fields of Russian oil and gas companies was carried out. Based on the capacity and characteristics of the plants used, the daily flow rate of exhaust gases which can be utilized by injecting them as a water-gas mixture in field injection wells was determined.

Based on the experience of developing pump-ejecting systems for enhanced oil recovery in Russian fields [17, 22-23] a principal diagram suitable for utilization of exhaust gases (77007 kg/h) generated from the Taurus-603-7001 gas turbine unit has been selected.

According to the methodology described in [24] the pressure distribution in the water supply lines and injection wells during water-gas mixture injection, the required pressure values at the outlet of pump-ejecting systems and the basic characteristics of pump-ejecting systems were calculated. Both technological parameters of the system operation and geometrical dimensions of the ejector flow path (pressures of water-gas mixture injection into the well, pressures developed by ejectors and electric centrifugal pumps, ejector injection coefficients, diameters of working nozzles, diameters and lengths of mixing chambers, etc.) were determined

#### 3. Discussion

In order to increase the share of useful utilization of associated petroleum gas, as well as to obtain additional electric and thermal power, power plants are created at a number of fields. Basic information on some of the power plants running on both natural and APG at Russian fields is given in Table 1.

| No | Name of               | Company       | Condition      | Total power | Fuel         | Other characteristics |
|----|-----------------------|---------------|----------------|-------------|--------------|-----------------------|
|    | the electric power    |               |                | -           |              |                       |
|    | plant                 |               |                |             |              |                       |
|    | Energy center of the  | Irkutsk Oil   | in operation   | 72 MW       | APG          | 3 power units:        |
| 1. | Yaraktinskoye field   | Company       | since 2016     |             |              | 6 gas turbine units   |
|    | Gas turbine power     | Gazprom Neft- | in operation   | 26,5 MW     | natural gas, | 7 gas-fired modular   |
|    | plant at the          | Yamal LLC     | since 2013 and | (96-144 MW) | APG          | power plants based    |
| 2. | Novoportovskoye field | l             | 2016           |             |              | on Cummins GPUs       |
|    | Energy Center of the  | LLC LUKOIL-   | in operation   | 75 MW       | natural gas, | 3 power units based   |
| 3. | Yaregskoye field      | Komi          | since 2017     |             | APG          | on a gas turbine unit |
|    | Gas turbine power     | Messoyakhanef | in operation   | 84 MW       | APG          | 6 Titan 130 gas       |
|    | plant at the          | tegaz JSC     | since 2016     |             |              | turbine units (Solar  |
|    | Vostochno-            |               |                |             |              | Turbines Inc.)        |
| 4. | Messoyakhskoye field  |               |                |             |              |                       |
|    | Gas-turbine power     | OAO           | in operation   | 10 MW       | APG          | 10 MW GTPP            |
|    | plant of the Zapadno- | Tomskneft     | since 2007.    |             |              | OAO AK                |
| 5. | Poludennoye field     | VNK           |                |             |              | Yuzhtransenergo       |

 Table 1. Characteristics of electric generating facilities in the Russian Federation.

The units with "Taurus-603-7001" gas turbine are used at Konitlorskoye and Tyanskoye fields. The pump-ejecting system is selected for the emitted amount of exhaust gas from one such gas turbine with a nominal capacity of 5.2 kW. Figure 1 shows such a diagram.

IOP Conf. Series: Earth and Environmental Science 988 (2022) 032086 doi:10.1088/1755-1315/988/3/032086



**Figure 1.** Technological diagram of the pump-ejecting system for exhaust gas utilization: 1 - high-pressure water supply line from pumps of water-injection pumping stations, 2 low-pressure exhaust gas line, 3, 4 - ejectors of the first compression stage, 5, 6 - gas supply lines to the ejectors 3 and 4, 7 - water-gas mixture supply line after the first compression stage, 8 - water-gas separator, 9 - pump for the ejector drive 4, 10 - water supply line to pump 9, 11 - foaming surfactants supply line, 12 - pump for the second compression stage, 13 - gas line at the outlet from the first compression stage, 14 - ejector for the second compression stage, 15 - multistage centrifugal pump, 16 - high-pressure water line from water-injection pumping stations to water distribution point.

This diagram works in as follows. Water along line 1 from the pumps of the water-injection pumping station enters the nozzle of the first compression stage 3, which pumps out part of low-pressure exhaust gases along lines 2 and 5. A high-pressure water-gas mixture is sent to the water-gas separator 8, where the mixture is separated.

Then some volume of water from separator 8 is directed to pump 9, which drives the second ejector 4 of the first compression stage, pumping out the rest of low-pressure exhaust gas. The water-gas mixture after ejector 4 is sent to the line 7 and to the water-gas separator 8. Two ejectors in the first compression stage are necessary to ensure pumping of gas at high flow rate.

Another part of the water from the separator 8 comes to the inlet of the pump 12. In the same line 11 a foaming surfactant is supplied to maintain stability of the fine water-gas mixture. Pump 12 pumps water with surfactant into the nozzle of ejector 14 of the second compression stage. The ejector 14 evacuates the exhaust gas from the water-gas separator 8 in line 13 and delivers the water-gas mixture to the intake pump 15 of the third stage of the system. Pump 15 boosts the mixture to the required discharge pressure. Then the water-gas mixture flows through the water supply line to the water distribution point, from where it is distributed to the injection wells through a distribution manifold.

Table 2 shows the initial data for calculating the characteristics of pump-ejecting systems for watergas mixtures injection with exhaust gases. IOP Conf. Series: Earth and Environmental Science 988 (2022) 032086 doi:10.1088/1755-1315/988/3/032086

|                                                                                                               | Parameter<br>measurement units | Parameter value |
|---------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|
| Initial exhaust gas pressure                                                                                  | MD-                            | 0.4             |
| Initial exhaust gas pressure                                                                                  | MPa                            | 0.4             |
| Current value of exhaust gas flow rate under standard conditions                                              | m³/day                         | 78419           |
| Highest pressure value at the wellhead of the injection wells                                                 | MPa                            | 10              |
| Fluid flow rate at the water-injection pumping stations                                                       | m³/day                         | 5625            |
| Length of water supply line from water-injection pumping stations to water distribution manifold              | m                              | 4101            |
| Actual pressure drop from water-injection pumping stations to water distribution point during water injection | MPa                            | 0.14            |
| Outer (and inner) diameter of water supply line from pumps for<br>water-injection pumping stations            | mm                             | 168 (130)       |
| Fluid flow rate at water distribution point                                                                   | m³/day                         | 1800            |
| Length of water supply line from water distribution point to the well                                         | m                              | 1950            |
| Water flow rate in the water supply line from the water distribution point                                    | m³/day                         | 370             |
| Actual pressure drop from the water distribution point to well during water injection.                        | MPa                            | 0.3             |
| Outer (and inner) diameter of water supply line from water distribution manifold                              | mm                             | 114 (88)        |
| Reservoir pressure                                                                                            | MPa                            | 13              |
| Density of exhaust gases at standard conditions                                                               | kg/m <sup>3</sup>              | 0,982           |
| Density of injected water                                                                                     | kg/m <sup>3</sup>              | 1110            |
| Viscosity of water                                                                                            | mPa*s                          | 1.1             |
| Water injection capacity of injection well                                                                    | m <sup>3</sup> /day            | 90              |
| Depth of well to the top of the reservoir                                                                     | m                              | 1500            |
| Outer (and inner) diameter of tubing                                                                          | mm                             | 73 (62)         |

|          |         |      | -   |       |         |
|----------|---------|------|-----|-------|---------|
| Table 2. | Initial | data | for | calcu | lation. |

The following results were obtained after calculating the pressure distribution in water supply lines and injection wells during water-gas mixture injection (Table 3).

|                                                                 | Parameter<br>measurement units    | Parameter value |
|-----------------------------------------------------------------|-----------------------------------|-----------------|
| Gas-water ratio under standard conditions at current exhaust    | R, m <sup>3</sup> /m <sup>3</sup> | 43.56           |
| flow rate                                                       |                                   |                 |
| Wellhead pressure in the injection well                         | P1, MPa                           | 14.8            |
| Water supply line pressure from water distribution point to the | P2, MPa                           | 15.23           |
| well                                                            |                                   |                 |
| Water supply line pressure from water-injection pumping         | P3, MPa                           | 17.9            |
| stations to water distribution point                            |                                   |                 |
| Required discharge pressure at the outlet of the pump-ejecting  | P4, MPa                           | 17.9            |
| system at current gas-water ratio                               |                                   |                 |

Table 3. Results of pressure distribution calculation during water-gas mixture injection.

As a result of selection of pumping equipment according to the catalog of Novomet-Perm JSC for the selected technological diagram, the standard sizes of multistage electric centrifugal pumps have been determined. A brief characteristic of multistage electric centrifugal pumps is given in table 4.

| ISTC-EARTHSCI                                                       | IOP Publishing                     |
|---------------------------------------------------------------------|------------------------------------|
| IOP Conf. Series: Earth and Environmental Science 988 (2022) 032086 | doi:10.1088/1755-1315/988/3/032086 |

In order to select the flow part of the jet apparatus and to calculate the system operation performance, the injection coefficients were determined under the conditions of inlet to the jet apparatus. Using nomograms of [17], relative dimensionless pressure drops  $\Delta P_c/\Delta P_p$ , created by ejectors, and optimal ratios of mixing chamber diameter  $d_{mc}$  to nozzle diameter  $d_n$  of liquid-gas ejector were determined.

The results of calculation of parameters and determination of the flow path of the ejector are given in table 5. For convenience of further operation and regulation of the system parameters, it is reasonable to calculate the parameters of ejectors 3 and 4 in such a way that they are operated with the same values of working pressure and the same injection coefficients. The opening angle of diffusers of all three ejectors is set to 60, because the largest increase in pressure during the flow expansion is achieved at this value.

|         | Size<br>of the pump | Inlet<br>pressure         | Outlet pressure            | Developed<br>pressure    | Hydraulic<br>head | Number of stages, | Power    |
|---------|---------------------|---------------------------|----------------------------|--------------------------|-------------------|-------------------|----------|
|         |                     | P <sub>inl</sub> ,<br>MPa | P <sub>outl</sub> ,<br>Mpa | Pd <sub>p</sub> ,<br>MPa | m                 | pcs               | N,<br>kW |
| Pump 9  | ESP8-2500E          | 2.52                      | 11                         | 8.48                     | 764               | 59                | 326.2    |
| Pump 12 | ESP8-1600E          | 2.52                      | 10.52                      | 8                        | 735               | 48                | 194.2    |
| Pump 15 | ESP8-2000E          | 5.48                      | 17.9                       | 12.42                    | 1525              | 110               | 377.5    |

Table 4. Characteristics of multistage electric centrifugal pumps.

|            | Gas injection Relative<br>coefficient dimensionle<br>pressure dro |                         | Optimal Nozzle<br>diameter ratio diameter |                        | Mixing<br>chamber<br>diameter | Distance<br>from the<br>nozzle to the<br>inlet of the<br>mixing<br>chamber | Optimal<br>mixing<br>chamber<br>length |
|------------|-------------------------------------------------------------------|-------------------------|-------------------------------------------|------------------------|-------------------------------|----------------------------------------------------------------------------|----------------------------------------|
|            | Ug                                                                | $\Delta P_c/\Delta P_p$ | $d_{mc} / d_n$                            | d <sub>n</sub> ,<br>mm | d <sub>mc</sub> ,<br>mm       | l,<br>mm                                                                   | L <sub>mc.opt</sub> ,<br>mm            |
| Ejector 3  | 4.56                                                              | 0.2                     | 2.3                                       | 17.67                  | 40.64                         | 60.96                                                                      | 1580                                   |
| Ejector 4  | 4.56                                                              | 0.2                     | 2.3                                       | 20.83                  | 47.9                          | 71.85                                                                      | 1862                                   |
| Ejector 14 | 1.73                                                              | 0.37                    | 1.54                                      | 18.96                  | 29.2                          | 43.8                                                                       | 637                                    |

Table 5. Characteristics of liquid-gas ejectors.

# 4. Conclusion

As a result of the study, the technological diagram of the pump-ejecting system for creating a water-gas mixture with the exhaust gases from electric generating units was proposed. This technology is considered as a method to increase oil recovery and improve the environmental situation by reducing harmful emissions.

The pressures in water supply lines and injection wells required for efficient production, as well as the parameters of the main elements of the system such as multistage electric centrifugal pumps and liquid-gas ejectors are calculated.

# 5. References

- [1] Martynenko Y V, Bolobov V I and Voronov V A 2021 Use of liquid-gas ejector in liquefied natural gas (LNG) sampling system *E3S Web of Conferences* **266** 01006
- [2] Sarshar S 2012 The recent application of jet pump technology to enhance production from tight oil and gas fields *SPE Middle East Unconventional Gas Conference and Exhibition* SPE 152007
- [3] Sonawat A and Samad A 2012 Flare gas recovery using ejector-a review *Proceedings of the Thirty Ninth National Conference on Fluid Mechanics and Fluid Power* 13-15
- [4] Drozdov A N and Drozdov N A 2020 Investigation of the ejector characteristics to improve the

IOP Conf. Series: Earth and Environmental Science **988** (2022) 032086 doi:10.1088/1755-1315/988/3/032086

technology of pumping gas from the annular space during well operation by electrical submersible pump unit *Oil Industry Journal* **02** 54-57

- [5] Sokolov E Y and Zinger N M 1989 Jet devices (Moscow: Energoatomizdat) 352
- [6] Donets K G 1990 Hydraulic jet compressor installations (Moscow: Nedra) 174
- [7] Berman L D and Efimochkin G I 1966 Characteristics and calculation of low-pressure water jet ejectors *Teploenergetika (Thermal Power Engineering)* **6** 89-92
- [8] Korennov B E 1980 *Study of water-air ejectors with extended cylindrical mixing chamber* Extended Abstract of Cand. Sci. Dissertation (Moscow) 23
- [9] Spiridonov E K 1996 *Theoretical basis of calculation and design of liquid-gas jet pumps* Extended Abstract of Doctoral Dissertation (Chelyabinsk) 34
- [10] Podzerko A V 2000 *Research and calculation of a jet pump with gas-liquid ejected fluid* Extended Abstract of Cand. Sci. Dissertation (Perm : South Ural State University) 22
- [11] Drozdov A N 1998 Development, research and results of industrial use of submersible pumpejecting systems for oil production Doctoral Dissertation (Moscow: Gubkin University) 423
- [12] Sazonov Yu A 2010 Development of methodological bases for design of pump-ejector installations for conditions of oil and gas industry Doctoral Dissertation (Moscow: Gubkin University) 394
- [13] Cunningham R G and Dopkin R J 1974 Jet Breakup and Mixing Throat Lengths for the Liquid-Jet Pump *Journal of Fluids Engineering* **96** 216-226
- [14] Cunningham R G 1995 Liquid Jet Pump for two Phase Flows Journal Fluids Engineering 117 309-316
- [15] Sugati D and Effendy M 2018 RANS study of the liquid jet gas ejector AIP Conference Proceedings 1983 020006
- [16] Yadav R L and Patwardhan A W 2008 Design aspects of ejectors: Effects of suction chamber geometry *Chemical Engineering Science* 63 3886-3897
- [17] Krasilnikov I A 2010 Development of methods for calculating the characteristics of liquid-gas ejectors for well operation and simultaneous water and gas injectiont on formation using pump-ejecting systems Cand.Sci. Dissertation (Moscow: Gubkin University) 140
- [18] Drozdov A N, Kalinnikov V N, Solovyova K E, Gorelkina E I, Gorbylyova Ya A 2020 On the possibility of a pump-ejector system implementation for SWAG with using nitrogen *Neftyanaya Provintsiya* 3 (23) pp 153-163
- [19] Karabaev S D 2021 IOP Conf. Ser.: Earth Environ. Sci. 666 062003
- [20] Olmaskhanov N P 2021 IOP Conf. Ser.: Earth Environ. Sci. 666 062005
- [21] Drozdov A N, Karabaev S D, Olmaskhanov N P, Esniyazov D G, Kosjanov A A, Musina A K and Kasan G K 2020 Investigation of the ejectors characteristics for oil and gas and mining technologies *Business magazine Neftegaz.RU* 5 pp 35-42
- [22] Drozdov A N, Krasilnikov I A, Verbitsky V S, et al 2007 Test stand researches of the technology of preparation and pump up the water-gas mix in the layer with application the tubing ejecting systems *Burenie i neft (Drilling and oil)* **11** pp 22-23
- [23] Drozdov A N and Drozdov N A 2017 Simple solutions of complex SWAG injection problems Burenie i neft (Drilling and oil) **3** pp 38-41
- [24] Drozdov A N and Drozdov N A 2019 *Water-gas injection technology for enhanced oil recovery* (Moscow: Peoples' Friendship University of Russia) 160

# Acknowledgments

The reported study was funded by RFBR, project number 20-35-90115.