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Abstract. This article develops numerical algorithms for solving inverse problems of 

recovering diffusion coefficient from additional information about the solution of reaction-

diffusion equation. The results of computational experiments are presented and discussed. 

Their contribution to the methods of mathematical modeling of technological disasters and the 

solution of problems of peoples safety ensuring in case of  living near potentially dangerous 

objects is estimated. 

1. Introduction 

This article continues a small cycle of papers [1-4] devoted to the theoretical and numerical study of 

boundary and extremun problems for the reaction-diffusion equation and their applications. The 

reaction-diffusion model describes the process of the pollutant propagation, in particular, the release 

and spread of substances which are hazardous to human health after a techogenic accident. The articles 

[1, 2] consider the application of these models while solving problems of the location of enterprises, 

where technological disasters could be possible. It was assumed that the accident was inevitable and 

the volumes of pollutant emissions were known. Using mass transfer models, we establish the possible 

concentration of pollutants in the domain of interest. The latter is determinative when choosing both 

the location of the enterprise itself and its infrastructure. Let us note that the mass transfer model 

contains a number of physical parameters that may not be known. In this case, inverse problems arise, 

which consist in finding the indicated parameters from additional information about the solution of the 

boundary value problem [1-19]. 

Unlike [1, 2], this article focuses on numerical algorithms for solving inverse problem of diffusion 

coefficient’s recovering from the pollutant measured in a certain subdomain. This problem is very 

important for applications. Assuming that the diffusion coefficient depends only on a spatial variable 

or is constant, we can find it by measuring the concentration of a (harmless)substance in a measurable 

domain. Obviously, knowing the parameters of the model, we can easily solve the direct problem. 

Finally, we note that in this paper we develop numerical algorithms based on optimality systems for 

inverse coefficient problems obtained in [1, 2]. 

2. Boundary value and extremum problems 

We study the following mass (pollutant) transfer model: 

mailto:soboleva22@mail.ru
mailto:brizitskaya.av@dvfu.ru
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considering in a bounded domain Ω of the space 
dR , d = 2,3 with Lipschitz boundary Γ. Here 

λ≡λ(x)>0 is the variable diffusion coefficient, k≡k(x)≥0 is quantity characterizing disintegration of 

pollutant by chemical reactions, f≡f(x) is the volume source density, ψ=ψ(x) is a function given on 

boundary Γ. 

The boundary value problem (1) contains a number of parameters that must be given to ensure the 

uniqueness of the solution. In practice, situations can arise when some of the parameters are 

unknown(see [1-19]). For this reason, we need additional information about solution  of problem (1). 

As we can use this information, for example, concentration d(x) is measured in some subdomain 

QΩ. Let coefficients λ is unknown function and we must determine this function together with the 

solution  of problem (1).  

For the study of this identification problem, we apply optimization method and reduce solution of 

this problem to the corresponding extremum problem (see [1-17]). For this purpose, we introduce the 

following cost functional: 
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here r is the characteristic function of the set Q.  

Our inverse extremum problem consists of finding two functions (φ, λ) such that 
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here μ0 ≥ 0, μ1 ≥ 0 are positive constants. Description of the other symbols used can be found, for 

example, in [17, Chapter 3]. 

Using the mathematical apparatus of the book [17] we obtained the optimality system. This system 

has the meaning of the necessary extremum condition of the first-order. The optimality system is 

essentially used to prove the uniqueness and stability of the solution of the extremum problem and for 

creation of numerical algorithms. This system consists of the direct problem, adjoint problem and 

variational inequality which has the meaning of the minimum principle. The optimality system has the 

following form: 
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G

infk  (3) 
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 .01 +   (5) 

3. Results of numerical experiments 

Similar to papers [17-18], algorithm of numerical solution of inverse extreme problem (2) based on 

system of optimality (3), (4) and (5) was built. Discretization of boundary problems was carried out 

using the finite differences method, and the solution to the optimality system was based on using the 

Newton method [20].The algorithm was tested using the Scilab software package [21].  

The initial data was set as follows. The domain Ω was selected as a unit square (see Fig. 1).The 

source of pollution was described by the formula yxf 66 −−= and simulated the situation when the 

emission of the pollutant occurs at the point (1,1) of the investigated domain Ω, and under the 

influence of the diffusion process, the substance spreads throughout the domain. The chemical 

reaction coefficient was zero (k= 0), i.e. the contaminant did not react chemically with other 

substances. At the boundary of the domain, the presence of a contaminant was observed, the amount 

of which was described by the formulae ( ) 11, 3 += xx , ( ) 30, xx = , ( ) 3,0 yy = , ( ) 1,1 3 += yy . 

Additional information on the solution of the φ problem (1) was assumed to be known throughout the 

domain of Ω (i.e., Q = Ω) and was described by the formula 33 yxd += . The desired diffusion 

https://www.translate.ru/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/source%20of%20pollution
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coefficient was assumed to be equal 1=d . The accuracy of solving the extreme problem was 

determined using relative errors 
dQdE  −=0

and 
ddE  −=1

. 

 

Figure 1. The geometry of the domain Ω. 

 

At the first stage of the study, the effect of the regularization parameter μ1 on solving the inverse 

extreme problem was studied. Figure 2 and figure 3 show the behavior of the relative errorsE0 and E1 

for the two initial approximation choices. Figure 2 for bλ =1
, and Figure 3 for )+b)*(y-y*(x-xλ 22

2 3= , 

where parameter b allows you to select a group from the following families of functions. In further 

studies, the regularization parameter was chosen as µ1=10-8. 

  

Figure 2. Dependence of errors E0 and E1 on 

parameter of regularization µ1 for initial 

approximation λ1. 

Figure 3. Dependence of errors E0 and E1 on 

parameter of regularization µ1 for initial 

approximation λ2 . 
 

The second stage of research was to determine the number of iterations in the Newton method that 

will be required to obtain a solution with a certain accuracy. Figure 4 and figure 6 show graphs of the 

dependencies of errors E0 and E1 on the number of iterations for each of the initial approximations λ1 

and λ2.The graphs show that 5-6 iterations are sufficient to restore the values of the concentration 
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function with an accuracy of 10-6, while the coefficient λ is restored with an accuracy of 10-4.Figure 5 

and Figure 7 show the process of restoring the coefficient λ  in the form of slices of the surfaces λd 

("Toch") and λ  ("Iter = [1:5]") at y =0.5. Graphs are shown for 5 iterations, since for the following 

iterations the differences in the graphs are invisible. 

  

Figure 4. Dependence of errors E0 and E1 on the 

number of iterations for λ1. 

Figure 5. The recovered coefficient λ on each 

iteration, starting from λ1. 

  

Figure 6. Dependence of errors E0 and E1 on the 

number of iterations for λ2. 

Figure 7. The recovered coefficient λ on each 

iteration, starting from λ2. 

 

It is well known that Newton's method requires a good initial approximation. And many 

researchers wonder what initial approximation to choose when solving a particular problem. As 

mentioned above, as an initial approximation, the functions λ1 and λ2 were chosen. The function λ1 is 

the simplest choice of the initial approximation and at the same time repeats the form of the sought 

function λ, while the form of the function λ2 is significantly different from the sought function, but at 

the same time makes it possible to find the sought function λ with an accuracy of µ1=10-8. To obtain a 

group of functions that are initial approximations for task (2), the parameter b was used, which is part 

of the selected functions λ1 and λ2. Figure 8 (for λ1) and Figure 9 (for λ2) show the value ranges of 

parameter b, using the relative error graphs E0 and E1. 
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Figure 8. Graphs of dependence of errors E0 and 

E1 on values of parameter b for λ1. 

Figure 9. Graphs of dependence of errors E0 and 

E1 on values of parameter b for λ2. 

 

Based on the results of the studies, the inverse extreme problem (2) was solved. Figure 10 – Figure 

13 shows the surfaces of the restored functions a and the surfaces of absolute errors 
d −  and

d − . 

The function responsible for the concentration of the substance is restored with accuracy 10-6, and the 

diffusion coefficient with accuracy 10-3 (see Figure 11 and Figure 13).The maximum error value at a 

point close to (0,0) is associated with an inequality (5) in which there is a term  . At the 

specified point, it quickly tends to 0 and, unfortunately, does not allow you to qualitatively restore the 

values of the functions you are looking for at this point. 

 

Figure 10. Restored coefficient λ. Figure 11. Absolute error
dλλ − . 

 

Figure 12. Restored concentration φ. Figure 13. Absolute error 
d − . 



ISTC-EARTHSCI
IOP Conf. Series: Earth and Environmental Science 988 (2022) 032017

IOP Publishing
doi:10.1088/1755-1315/988/3/032017

6

Based on the results of the studies, it can be concluded that the developed algorithm for solving the 

inverse extreme problem for the diffusion-reaction model (2) allows you to solve quickly these 

problems and restore unknown parameters with sufficiently high accuracy. By changing the 

parameters of the algorithm, such as the regularization parameter or the number of iterations, it is 

possible to obtain the required accuracy in solving inverse extreme problems. Initial approximations 

can be functions that both repeat the geometry of the desired parameters and have different geometry. 

4. Conclusion 

In this work, the main attention is paid to the problem of restoring the diffusion coefficient depending 

on the spatial variable. For this inverse problem the efficient numerical algorithm was developed and 

implemented, based on the optimality system. The algorithm was implemented in a package Scilab. 

The study of various parameters of the developed algorithm showed its effectiveness in finding the 

diffusion coefficient and concentration of matter. The obtained algorithm for finding unknown 

parameters for the diffusion-reaction model will allow modeling the process of distribution of 

pollutants resulting from a man-made disaster. Analysis of simulation results will allow to identify 

areas exposed to high level of contamination and make them non-residential at the stage of production 

design. 
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