Paper The following article is Open access

Study on dynamic response of slope under near-fault pulse-like ground motion

, , , and

Published under licence by IOP Publishing Ltd
, , Citation Yao Xiao et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 861 052024 DOI 10.1088/1755-1315/861/5/052024

1755-1315/861/5/052024

Abstract

Compared with far-field ground motion, the most significant feature of near-fault pulse-like ground motion is the long-period, large-scale velocity pulse. This paper proves through statistical analysis that near-fault pulse-like ground motion is an important cause of slope damage and landslide. And use numerical simulation software FLAC3D to establish a homogeneous rock slope model, select near-fault ground motions with velocity pulses and non-pulse near-fault ground motions, and use an improved energy method to identify and extract the selected near-fault ground motions. The dynamic response of the slope under the action of near-fault ground motions with and without velocity pulses is comparatively studied, and the dynamic response law of the slope under the original records, pulse records, and residual records of pulse-like ground motions is explored. The research results show that the near-fault ground motions with velocity pulses can cause a greater dynamic response than ground motions without velocity pulses. There is an elevation magnification effect in the PGA distribution of the slope horizontally. The shorter-duration pulse record can cause a larger dynamic response, and the PGA magnification factor under the effect of the residual record is smaller than the original record. The velocity pulse strengthens the earthquake damage to the slope, and the slope produces a stronger dynamic response.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1755-1315/861/5/052024