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Abstract: Natural soil coagulants were used for domestic drinking water treatment in Ethiopia 

because of lacking drinking water supply. In this study, two soils were collected from Ethiopia 

and jar test was used to investigate the optimum working conditions, performance and safety of 

them. The turbidity removal efficiencies of soil A and soil B are 74.5% and 91.1% (initial 

turbidity=400 NTU), respectively. The pH of purified water can meet drinking water standards 

of Ethiopia (pH=6.5-8.5). Both soils contribute to remove TOC when the initial concentration 

of it is high. A small amount (0.5 mg. L-1 or 1 mg. L-1) of poly-aluminum chloride can 

improve the performance of soil coagulants for the removal of turbidity. The application of soil 

coagulants didn’t introduce coliforms, although the total bacteria number of treated water 

increased to 40 CFU (soil A) and 81 CFU (soil B), still meeting the drinking water quality 

standards (<=100 CFU). 

 

1. Introduction 

The population growth and lack of infrastructure had made it a serious problem to get safe drinking 

water for people in developing countries, such as Ethiopia [3]. High turbidity, which decreases the 

quality of drinking water, is one of the major problems of sources of drinking water in Africa. For 

instance, in Nairobi, the turbidity of raw water can be 3 NTU in the dry season, and it may reach to 

5000 NTU during the rainy season [17, 18]. It is reported that the turbidity of Blue Nile and River Nile 

may reach 7,275 NTU and 6,575 NTU, respectively [11]. 

Conventional chemical-based coagulants, such as alum, ferric chloride and poly-aluminum chloride 

(PAC) are extensively used to remove turbidity from water [6]. However, the cost of importing these 

kinds of chemical coagulants may be too high for many developing countries. Natural local coagulants 

may be one of the best choices due to their low price and environment-friendly characteristics. Some 

natural coagulants, such as Moringa oleifera seeds [3], alginate [15], chitosan [21], strychnos 

potatorum and Pistacia atlantica seed extract [2], were used to treat drinking water or industrial 

wastewater. 

In Africa, local soils are a kind of natural coagulant which have been used for point-of-use drinking 

water treatment [12, 14] for hundreds of years [5] because of the lack of centralized drinking water 

treatment and the high turbidity of source water. People in some rural areas can’t afford to use 

synthetic chemical coagulants to purify water. However, the use of natural soil coagulants was seldom 

put into research. It was reported that lots of Ethiopians use local soils to purify drinking water 

http://creativecommons.org/licenses/by/3.0
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according to Central Statistical Agency (CSA) [5]. Eyasu Getahun mentioned that people living in 

Boke-Tino, Ethiopia, use different kinds of soils to treat drinking water now [5]. 

Besides low cost and sufficient quantity, clay minerals have high cationic exchangeable capacity, 

and they had already been used as coagulants to treat water [7, 8]. However, there is a lack of 

systematic and detailed study about the application of natural soils. The soil coagulants studied in this 

paper are used for point-of-use drinking water treatment [12, 14]. Therefore, the purpose of this 

research is to study the optimal conditions of these soils for domestic water treatment and to 

investigate possible mechanism of coagulation. We have studied the optimum dosage and settling time, 

investigated effects of pH and total organic carbon (TOC), and explored the combination use of soils 

and PAC, detected total coliform groups and total bacterial colony number after coagulation by soils.  

2. Materials and Methods 

2.1 Collection and preparation of natural soil coagulant 

Both soil A and soil B were collected from Boke-Tino, located at the middle of Ethiopia. Soils were 

dried under 50℃ first, and then were ground to pass through a 100 mesh sieve. The basic composition 

of soil A and soil B are shown in table 1. 

Table 1 Basic composition of soil A and soil B (g· kg-1) 

Sample TOC TN Al Ca Fe K Mg Mn Pb Zn Cd Cr Cu 

Soil A 10.13 0.20 12.34 156.69 11.22 2.97 0.42 0.22 0.10 6.01 0.64 6.26 6.10 

Soil B 13.43 0.90 4.76 147.74 6.93 1.23 0.08 0.05 0.02 8.58 0.41 0.99 1.45 

*TOC: Total organic carbon; TN: Total nitrogen 

2.2 Preparation of synthetic water, PAC and humic acid solution 

Synthetic water of different turbidity was prepared by adding kaolin into tap water. The quality of tap 

water was shown in table 2. 10 g. L-1 kaolin stock suspension solution was made first, and other 

desired concentrations of turbid water were prepared by diluting suspension of stock solution using tap 

water. 

Table 2 The quality of tap water 

Turbidity(NTU) pH TDS(mg/L) EC(μs/cm) 

0.25 7.5 188.1 378 

*TDS: Total dissolved solids; EC: Electrical conductivity 

The stock solution of PAC was made by adding 0.2 g PAC into 100 mL deionized water. During 

coagulation test, different dosages (0.5 mg. L-1, 1 mg. L-1, 3 mg. L-1 and 5 mg. L-1, respectively) of 

PAC solution was added into 200 mL suspensions of kaolin solution. 

The humic acid (HA) was purchased from Sigma-Aldrich, and the basic features have been 

characterized in others’ work [20]. In addition, our previous work has presented the features of this HA 

[10].  The stock solution of HA was prepared by adding 0.16 g HA into 100 mL deionized water. Then 

different dosages of HA stock solution was added into 200 mL turbid water just before coagulation test. 

The concentrations of TOC were determined to be 2.94 mg. L-1, 4.66 mg. L-1 and 11.37 mg. L-1, 

respectively. 

2.3 Measurements of turbidity, TOC, electrical conductivity, zeta potential and particle size 

A 2100Q Protable Turbidimeter (HACH, USA) was used to measure the turbidity. The removal 

efficiency of turbidity was calculated as below: 

Removal efficiency=
initial turbidity-final turbidity

initial turbidity
×100% 

A Shimadzu TOC V-CPN (Shimadzu, Japan) was used to measure the TOC of synthetic water. The 

electrical conductivity was measured by a conductivity meter DDSJ-318 (Inesa, China). The zeta 
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potential of water samples was measured by a Malvern Zetasizer (Nano ZS 90, UK). The particle size 

of soils was measured by Laser Scattering Particle Size Distribution Analyzer LA-960 (Horiba, Japan).  

2.4 Coagulation test 

Jar test was conducted to evaluate coagulation process of soils under different conditions. First, 200 

mL synthetic water was added into 250 mL beaker, and then 0.1 mol/L HCl and 0.1 mol/L NaOH were 

used to adjust pH. The desired concentration of TOC was obtained by adding HA solution into turbid 

water. Different dosages of soil were added into each beaker with a rapid stirring of 300 r/min for 5 

minutes, followed by a slower stirring of 100 r/min for 15 minutes. Finally, the residual turbidity was 

measured after settling for a certain time (ranging from 30 minutes to 8 hours) according to different 

purposes. 

In order to investigate the influences of ionic strength, NaCl was used to adjust the electrical 

conductivity of water. The initial EC is 2 mS/cm, 6 mS/cm and 10 mS/cm, respectively, and the 

coagulation test was repeated. 

2.5 Detection of total coliform groups and bacterial colony number 

To investigate the microorganism risk of soils, we measured the coliforms and bacterial colony 

number in the treated water. Firstly, tap water was boiled for 10 minutes to avoid the influence of 

residual chlorine and microorganism. Secondly, jar test was performed according to the above-

mentioned steps (Coagulation test). Finally, four kinds of water sample were prepared including 

distilled water, 400 NTU kaolin suspension, water treated by soil A or soil B, respectively. In addition, 

all apparatus were sterilized by moist heat sterilization before using, and coagulation process was 

conducted near the flame of alcohol burner. 

The coliform groups were tested by multiple-tube fermentation technique, and the colony form unit 

technique (CFU) was used to test bacterial colony number. 

3. Results And Discussion 

3.1 The effects of soil dosage on coagulation 

Fig.1 shows the removal efficiency of turbidity under different dosages of coagulant after 2 hours 

settling.  

 
Figure 1. Turbidity removal efficiency of different dosages of soils after 2 hours settling (initial 

turbidity=400 NTU) 
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It can be found that both of the coagulants performed better with higher coagulant dose, and the 

turbidity removal efficiency of soil A and soil B was found to be the highest (81.6% and 92.6%, 

respectively) when the dosage is 15 g. L-1. However, Fig. 1 shows that the removal efficiency of 

turbidity of soils has reached 74.5% and 91.1% (soil A and soil B, respectively) when the dosage is 5 g. 

L-1. The cost should be considered because people need to pay for the soils. Our on-site investigation 

in Ethiopia shows that the dosage used there is about 5 g. L-1. Therefore, 5 g. L-1 was selected as a 

reasonable and practical dosage in this study. 

3.2 The effects of initial turbidity and settling time on coagulation 

In consideration of the huge variation of turbidity in raw water in Ethiopia, three kinds of water with 

different initial turbidities were chosen in this study, including high turbidity (745 NTU), middle 

turbidity (370 NTU) and low turbidity (85 NTU). 

Fig.2 shows that, when low turbidity water was tested, the removal efficiency of turbidity for soil A, 

soil B and control (without soils) is 31.9%, 28.8% and 38.6% respectively even after 2 hours settling. 

Therefore, it can be concluded that soils showed little capacity to treat low turbidity water. On the 

contrary, the removal rate of soils for middle turbidity or high turbidity water is above 79.4%, which is 

higher than the control (42.0%). Therefore, soils may be appropriate in the treatment of high or middle 

turbidity water. In consideration of the fact that the turbidity of raw water in Ethiopia is usually close 

to the middle turbidity level [5], we use middle turbidity (400 NTU) as the initial turbidity in this study. 

According to Fig. 2, two hours is optimal settling time for both coagulants at middle and high turbidity. 

 
Figure 2. Final turbidity of different turbid water at different times 

Fig. 2 shows that, when the initial turbidity is 370 NTU, the turbidity removal efficiency of soil B 

(89.3%) is much higher than that of soil A (79.4%) after 2 hours settling. As described in Fig. 3 (a), the 

average electrical conductivity (EC) of water treated by soil B is 2223 μS/cm, which is higher than 

that by soil A (1539 μS/cm). Fig.3 (b) demonstrates that the turbidity removal efficiencies of both soils 

(after 2 hours) increase with the increase of EC. And the final removal efficiencies of soil B are always 

higher than that of soil A because the EC of soil B is higher than that of soil A. Therefore, soil B 

results in higher ionic strength and contributes to the process of coagulation by condensing the electric 
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double layer [16].  

In addition, the absolute values of zeta potentials were determinized to be lower than 5 mv, which 

indicates that charge neutralization isn’t the main mechanism of the soil coagulation [9, 19]. 

  

 

Figure 3 (a) The average electrical conductivity of different soils; Figure 3 (b) The influences of 

electrical conductivity on turbidity removal efficiency 

3.3 The effects of pH on coagulation 

Fig. 4 (a) shows that both soil A and soil B are not pH sensitive when they are used to remove turbidity, 

and the removal efficiency of both coagulants ranged between 85% and 93%. In contrast, the control 

test indicates that the removal rate is the highest at pH=7. 

Fig. 4 (b) indicates that the final pH varied from 7.4 (initial pH=5) to 8.5 (initial pH=9), and this 

pH range meets the drinking water standards of Ethiopia (6.5< pH <8.5). Therefore, both soil A and 

soil B have buffering capacity to maintain a stable pH range.  

Fig.4 (b) indicates two possible mechanisms why the removal efficiency of soil B is better than that 

of soil A. First, the final pH of water treated by soil B is closer to 7.0, where coagulants acquire the 

highest removal efficiency. Second, the electrical conductivity of soil B is much higher than that of 

soil A. Therefore, soil B may result in higher ionic strength and contribute to the coagulation process 

by condensing electric double layer. 

Figure 4 (a) The effects of initial pH on turbidity removal efficiency; (b) on final pH and EC after 2 h 

settling (In Figure 4 (b), bar graph is final pH, and dot pattern is EC
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3.4 The effects of TOC concentrations on the turbidity and TOC removal efficiency 

Fig.5 (a) shows that the removal rate of turbidity increased as the concentration of TOC increased, and 

was higher than the control (TOC=2.94 mg. L-1). HA is a kind of natural macromolecule organic 

matter, which may contribute to efficiency of coagulation by bridging and sweeping [1, 13, 19]. 

Fig. 5 (b) indicates that TOC removal efficiency of soil A is higher than that of soil B. When the 

concentration of TOC is 2.94 mg. L-1, the TOC removal efficiency of soil B is -21.29%. The result of 

TOC measurement shows that the TOC of soil A is 10.13 g. kg-1, and that of soil B is 13.43 g. kg-1. 

Therefore, soil B may introduce more TOC to the water than soil A during coagulation process. And 

the residual TOC of water purified by both soil A and soil B is becoming similar with the increasing of 

TOC concentrations. In conclusion, the reasons why soil A behaves better than soil B in removing low 

concentration of TOC may be that soil B contains more organic matter than soil A. 

It should be pointed out that these soils are not suitable for removal of organic matters. However, 

the removal of organic matter is sometimes of critical importance (e.g. minimizing the formation of 

disinfection by-products). Potential counter measures (such as activated carbon adsorption) may be 

applied in such situation. 

 
Figure 5 (a) The effects of initial concentrations of TOC on final turbidity; Figure 5 (b) The effects of 

initial concentrations of TOC on the removal efficiency of TOC 

3.5 Combined use of soils and PAC 

Fig. 6 shows the combination use of soils and PAC. Fig. 6 (a) and Fig.6 (b) showed that the final 

turbidity of water treated by the combination of soils and PAC is lower than the control (coagulation 

by PAC without soils) when the dosage of PAC is 0.5 mg. L-1 or 1 mg.L-1. However, Fig. 6 (c) and Fig. 

6 (d) indicated that the result was opposite when the dose of PAC increased to 3 mg. L-1 or 5 mg. L-1. 

Therefore, both soil A and soil B contributed to the removal of turbidity when 0.5 mg. L-1 or 1 mg. L-1 

PAC was used, even though the final turbidity of all of these kinds of purified water is still higher than 

the drinking water standard of Ethiopia (5 NTU). 
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Figure 6. Change of turbidity under different dosages of PAC over time 

Another interesting result is that the performance of soil A in combination with PAC is better than 

that of soil B in combination with PAC. One possible reason may be that the particle size of soil B is 

much smaller than that of soil A. The average particle size of soil A is 106.35 μm, and that of soil B is 

54.41 μm. The medium diameter of soil A and soil B is 98.99 μm and 38.88 μm, respectively. In 

addition, soil B is powdered, and soil A is sand-like particles. Therefore, it is easier for soil B to be 

suspended in water and to result in higher turbidity.  

Fig. 7 (a) indicates that the pH of the water before and after adding PAC is stable (about 8.0). Fig. 7 

(b) shows that the electrical conductivity of soil B is much higher than that of soil A and the control, 

which indicates that condensing the double layer does not play the main role during the coagulation-

flocculation process. Therefore, the combined use of soil A and 0.5 mg. L-1 or 1 mg. L-1 PAC could 

improve turbidity removal efficiency, and the electrical conductivity of treated water meets the 

drinking water standards of World Health Organization (WHO) (<2000 μs/cm). In addition, the 

absolute value of zeta potential is measured to be near zero (0.0875~5.280 mV), which indicated that 

charge neutralization doesn’t play the main role. 
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Figure 7 (a) The effects of PAC dosages on pH after 2 hours settling; Figure 7 (b) The effects of PAC 

dosages on electrical conductivity after 2 hour settling 

3.6 Microorganism measurements in treated water 

As described in Table 3, the results of microorganism measurements showed that no coliforms were 

detected after coagulation. Although the bacterial colony number (BCN) has increased slightly after 

coagulation by the soils, it still meets the China National Standard for Drinking Water Quality (GB 

5749-2006), which requires BCN<100 CFU/mL (There is no standard of BCN in drinking water 

standards of Ethiopia or WHO). In addition, soil B introduced much more bacteria than soil A. 

Table 3 Bacterial colony number (BCN) and coliforms 

Water samples Undiluted Diluted 10 times 

 BCN 

(CFU/mL) 

Coliforms 

(CFU/mL) 

BCN 

(CFU/mL) 

Coliforms 

(CFU/mL) 

Distilled water <30 0 <30 0 

Kaolin suspension <30 0 <30 0 

Water purified by soil A 31 0 30 0 

Water purified by soil B 84 0 40 0 

 

4. Conclusion 

In this study, we investigated the characteristics of two local natural soils from Ethiopia for 

coagulation in drinking water treatment. It was found that pH, TOC and the combination of poly-

aluminum chloride (PAC) influence the performance of these soils. Both soils achieved high turbidity 

removal efficiency (>84.3%) at a wide initial pH range (5~ 9). When the initial pH varied from 5 to 9, 

the final pH of water treated by soils ranged from 7.4 to 8.5, which meets the drinking water standards 

of Ethiopia (6.5<pH<8.5). Both soil A and soil B could help improve the turbidity removal rate when 

0.5 mg. L-1 or 1 mg. L-1 PAC was used as coagulant, and PAC at these concentrations also play a 

leading role and have positive influence during the combination use process. The electrical 

conductivity of combination of soil A and PAC meets the drinking water standards of WHO. The final 

turbidity of water treated by 5 g. L-1 soils could meet the drinking water standards of Ethiopia (5 NTU) 

after settling for more than 10 hours. Because the soil coagulants are used for point-of-use water 

treatment, 10 hours settling is acceptable. In addition, the microorganism tests indicated that the total 

bacteria number of treated water increased from less than 30 CFU to 40 CFU (soil A) or 81 CFU ( soil 



9

1234567890

MSETEE 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 81 (2017) 012018    doi   :10.1088/1755-1315/81/1/012018

 
 

B), which still meet the drinking water standards of China (<=100 CFU). 
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