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Abstract. The paper proposes an algorithm for determining the flow rate of an oil producing 
well based on dynamometer data. The dynamogram is presented as a two-dimensional image 
processed using a convolutional neural network that solves the problem of nonlinear regression 
between the dynamogram image and the flow rate value. The structure of the dynamometer 
data collection and processing system is presented, the main steps of the data analysis 
algorithm are described. The resulting model makes it possible to estimate the production rate 
with an error in the range of 15-20%. 

1.  Introduction 
The main characteristic of an oil producing well is the flow rate, i.e. the volume of products extracted 
from an oil well during the day. One of the most common methods of oil production from marginal 
wells is the use of sucker rod pumping units. To improve production efficiency, it is necessary to 
control the well operation mode by establishing and maintaining the pumping equipment productivity 
corresponding to the rate of fluid flow to the bottom of the well. Therefore, it is necessary to be able to 
determine the current production rate of the well in real time. 

To determine the flow rate of a well, flow meters are most often used. There are methods that make 
it possible to estimate the flow rate of a well without a flow meter, using the data of the dependence of 
the force at the suspension point of the rod string on the stroke of the polished rod (dynamogram). An 
alternative option is to calculate the flow rate according to the dependence of the power consumption 
of the electric drive of the pumping unit on the movement of the suspension point of the rod string 
(wattmetrogram) [1]. This article discusses the possibilities of practical application of flow rate 
estimation algorithms based on the approximation of the dependence of the flow meter readings on the 
shape of the dynamometer chart, which will make it possible to abandon constant measurements using 
a flow sensor. 

2.  Diagnostics and control based on dynamometer and wattmeter data 
In [2], the issues of automatic control of fluid height and bottom hole pressure in wells are considered. 
The combined model of the rod string and the well allows to determine the dynamic operating 
conditions of the well and increases the cumulative oil production by maintaining the optimal height 
of the liquid level. 

In [3], the use of dynamometer data in the system of intelligent diagnostics of the state of sucker 
rod pumps of oil wells is considered. The use of a neural network classifier for diagnosing the state of 
the sucker rod pumping unit based on the extracted features has been tested on real field data. 
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In [4], an approach to solving the problem of predicting the technical state of sucker rod pumps 
using neural network technologies is considered. The neural network model makes it possible to 
predict the load values on the polished rod based on the accumulated historical data. 

The work [5] proposes a method for diagnostics of sucker rod pump systems by analyzing the 
segments between the points of valve opening and closing, determined on the maps of downhole 
dynamometers. 

In articles [6-8], the issues of bench modeling of loads on the drive of sucker rod installations are 
considered. A method of mechanical modeling of loads on the balancer head is proposed. An approach 
has been developed for diagnosing the state of sucker rod pump units based on dynamometer data. 

The primary information from the sensors comes in real time due to the creation of a permanent 
communication channel between the dynamograph, the equipment for fixing the currents consumed by 
the electric drive installed on the sucker rod pumping unit, and an intelligent control system created on 
the basis of a control computer (figure 1) [1, 9-11]. 

 

 

Figure 1. Intelligent diagnostic and control system. 
 
Here: SRPU – sucker rod pumping units, D – dynamograph, W – fixing consumed electric currents, 

A – actuator, AGMU – automated group measuring unit. 
Based on the results of diagnostics and monitoring of the state of the equipment, the operating 

modes of the installation are controlled through the actuators. 
The well flow rate is the amount of fluid in the cavity of the downhole sucker rod pump during the 

double stroke. GOST R 8.615-2005 defines the requirements for the error when measuring the amount 
of crude oil, the methods for calculating the flow rate from the dynamometer chart cannot be used for 
commercial purposes due to the tangible error in the result, but they allow to accurately estimate the 
current flow rate of the well to control the productivity of the installation [12, 13]. 

In [1], a comparison was made of various algorithms for assessing the flow rate: according to the 
dynamometer chart and according to the wattmetrogram. 

To estimate the well flow rate, the formula proposed by Sh. F. Takhautdinov is widely used [12]: 

,ar rQ F S n      (1)

Where Q – the well fluid flow rate (bbl/day); arF  – cross-sectional area of the plunger of the 

submersible pump (sq.inch); rS  – effective stroke length of the polished rod (inch); n – swing 

frequency of the pumping unit (min – 1);   – pump flow rate. 
According to [14], the performance of the sucker rod pumping unit Q is proportional to the work 

performed by the drive on the wellhead rod. The work is determined by the active power consumed by 
the pump unit drive and the pressure developed by the pump at the wellhead. 

In [15], it was proposed to take into account not the absolute values of pressure and power, but 
their relative increments. To identify interdependencies, active power diagrams are recorded at various 
wellhead pressures and the corresponding wellhead dynamometer charts. 
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3.  Approximation of the dependence of the well flow rate on dynamometer data 
The initial data for assessing the flow rate of the well are represented by a set of dynamometer charts 
and measurements of automated group measuring units (AGMU). Measurements were used for four 
wells equipped with sucker rod pumps. The series of experiments includes 2629 examples of 
dynamometer charts and corresponding measurements of the AGMU. 

The block diagram of the processing and analysis of the collected data when constructing a neural 
network regression model that makes it possible to estimate the flow rate based on the current 
dynamometer data of each well is shown in figure 2. 

The module for collecting parameters  F t ,  S t  and measurements from AGMU for each well 

allows to create and update a historical database (BD1). The data  F t ,  S t  then needs to be 

normalized and oversampled (2) to bring it to a fixed length. Next, a visual image of each 
dynamometer chart is constructed with the possibility of saving in BD2 in tandem with the normalized 
flow rate value obtained from the AGMU. Data from DB2 are used to build a training, test and 
validation sample and create a neural network model (5) of the regression dependence of the flow rate 
on dynamometer data. Models for each well are saved to the model bank (DB3) for subsequent use 
and operational assessment of the flow rate D* based on the incoming data from the dynamometer (6). 

 

 

Figure 2. Block diagram of the processing and analysis of the collected data when 
building a neural network regression model. 

 
For each example, the dependences of the force  F t  and the stroke  S t , which form the 

dynamogram, were brought into the range [0, 1] using minimax normalization: 

min

max min

.
X X

X
X X

 


 (2)

To unify the length of each row  F t  and  S t  for various examples, resampling is applied based 

on the cubic spline interpolation algorithm and the subsequent reduction of the length of each row to 
n = 256 samples. 

For each example sample, a normalized dynamogram is constructed as a dependence of   F S t  

in the form of an image in grayscale of 72 by 72 pixels (figure 3). 
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Figure 3. Visualization of a sample of dynamograms from a series of experiments. 
 

The value of measurement with AGMU is similarly reduced to the range [0, 1] using minimax 
normalization. 

All data are divided into training (70% of the total number of records) and test (30%). Of the 
training set, 10% of the examples are used as a control set to prevent overfitting of the neural network 
regression model. Thus, the training set contains 1656 examples. 

To solve the problem of multivariate neural network regression, a convolutional neural network of 
the following architecture is used (tables 1, 2). 
 

Table 1. Convolutional neural network architecture for predicting flow rate based on dynamogram 
shape. 

Neuron layer type Layer configuration Number of parameters 
Conv2D (72, 72, 32) 320 

MaxPooling (36, 36, 32) 0 
Conv2D (36, 36, 64) 18469 
Conv2D (36, 36, 32) 18464 

MaxPooling (18, 18, 32) 0 
Flatten (10368) 0 
Dense (128) 1327232 
Dense (1) 129 

 
Table 2. Training parameters of the neural network model. 

Parameter Value 
Package size 512 
Mean squared error control on a validation set to prevent overfitting 5 iterations 
Optimizing the learning rate factor  
Optimization algorithm NAdam [16] 
Number of training iterations 100 

 
The graph of the dependence of MSE on the training and control samples on the number of 

iterations of training the model is shown in figure 4 (resulting MSE = 0.3774 for the control sample). 
 

 

 Figure 4. Dependence of MSE on training and control samples on the number of training epochs. 
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4.  Results and discussion 
The production rate forecast for the model for 75 random examples of the test sample is shown in 
figure 5. 

 

 
Figure 5. Forecast (“cross” marker) and true value (“circle” marker) production rate for 75 random 
examples. 

 
The 50 most successful predictions for the initial data of the test sample are shown in figure 6. 
 

 
Figure 6. Forecast (“cross” marker) and true value (“circle” marker) production rate for 50 random 
examples from the test sample. 

 
The 50 least successful predictions on the test sample and visualization of dynamometer charts, 

flow rate according to AGMU and predicted values are shown in figure 7. 
 

 
Figure 7. Forecast (“cross” marker) and true value (“circle” marker) flow rate value for the 50 least 
successful forecasts from the test sample. 
 

In the course of testing the calculation algorithms, an estimate of the relative error in determining 
the flow rate using the dynamometer chart was obtained at the level of 15-20%. 

5. Conclusion 
Clarification of the experimental conditions, improvement of the procedure for identifying unknown 
parameters of the model and telemetry parameters will increase the accuracy of the assessment. 

Evaluation of the relationship between the calculated and measured values of the flow rate shows 
the consistency of the approach to determining the flow rate from a two-dimensional image of a 
dynamometer chart, which allows one to estimate the flow rate of a well without a flow meter. Thus, 
operational control of the operation modes of each well is provided by expanding the functionality of 
the control station of the sucker rod pumping unit based on the use of diagnostic information 
additionally for control purposes. 
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