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Prediction of dissolved oxygen content in water based on 
EEMD-Pearson and LSTM hybrid models 

Qihua Lia, Xin WANGb, Jiangying Wang, Yun Zhou 
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Zhanjiang 524088, China 
ae-mail: 756483412@qq.com, bemail: 2681387129@qq.com 

Abstract: Improving the accuracy of dissolved oxygen (DO) prediction and establishing a 
water body DO prediction model are of great importance in water environment pollution 
management and planning management. In this paper, we propose a hybrid model 
(EEMD-Pearson-LSTM) of ensemble empirical modal decomposition-Pearson analysis and 
long-short memory neural network (LSTM), which firstly uses EEMD to decompose the 
non-stationary dissolved oxygen data into several sub-series that are easy to analyze, and 
secondly uses Pearson correlation analysis method to The screened subsequences are input to 
the LSTM network for training and prediction. By establishing the conventional LSTM model, 
EEMD-LSTM model, EEMD-BP model, and EEMD-Pearson-BP model for comparison under 
different time periods, root mean square error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE), and coefficient of determination (R2) were used as 
evaluation indicators. In predicting the first 90 days of data, the RMSE, MAE, MAPE, and R2 
of the EEMD-Pearson-LSTM model were 0.2355, 0.1893, 2.4710, and 0.8787, respectively, 
which were optimized by 37.88%, 35.44%, 37.42%, and 28.15%, respectively, compared with 
the traditional LSTM model, and the EEMD- LSTM model by 13.74%, 16.46%, 16.82%, and 
4.98%, respectively, and the error of EEMD-BP network by 23.93%, 22.70%, and 24.32%, 
respectively, and its R2 by 11.17%, and the error of EEMD-Pearson-BP network by 18.62%, 
14.07%, and 14.44%, and its R2 improved by 7.58%. To further demonstrate the advantages 
of EEMD-Pearson-LSTM, the prediction models for 30-day and 60-day time periods were 
selected for comparison, and the results showed that EEMD-Pearson-LSTM outperformed 
other models for the prediction of dissolved oxygen content in different time periods. 

1. Introduction 
Dissolved oxygen content is a comprehensive index reflecting the purification capacity of water 
quality, and the prediction of dissolved oxygen content (Cdo) in water bodies is of great significance 
in water environment pollution management [1] and planning management. 

There have been more studies on the prediction of dissolved oxygen content, Rankovic [2] et al. 

used the levenberg-marquardt (LM) algorithm for training Feed-Forward Neural Net (FNN) to 
achieve Cdo prediction by input PH and temperature, due to the using two-stage training mode, the 
upper limit of model prediction ability is low.Olyaie et al [3] used Support Vector Machines (SVM) 
model to predict Cdo and the results showed that better model prediction can be obtained using 
SVM, but a single SVM model has some limitations. Jing Wu et al [4] proposed a combined 
differential autoregressive moving average (ARIMA) model and genetic algorithm optimized 
wavelet neural network (GAWNN) Combined model of Cdo prediction method, the method has 



ICCAPC 2021
IOP Conf. Series: Earth and Environmental Science 760 (2021) 012012

IOP Publishing
doi:10.1088/1755-1315/760/1/012012

2

better results for river Cdo prediction compared to individual models, but Cdo data series generally 
have non-stationary characteristics, and ARIMA model is not suitable for non-stationary series. Shi 
Pei et al [5] proposed a Cdo prediction model based on General Regression Neural Network 
(GRNN), Elman neural network, and the experimental results showed that both networks have 
higher prediction accuracy and avoid the disadvantage that the BP prediction model is easy to fall 
into the local maximum-minimum. Zhu Nanyang et al [6] proposed a prediction model to improve 
its estimation accuracy for the low Cdo case by optimizing the loss function in LSTM 
backpropagation based on the Long Short-Term Memory (LSTM) model, which adjusts the weights 
of the network by choosing the sin function to assign different weights to the Cdo at different 
contents, and by This model is experimentally proven to improve the prediction accuracy of low 
Cdo. Liang Jian et al [7] proposed a wavelet transform combined with SVM model for Cdo 
prediction in water bodies, which used wavelet decomposition method to decompose the Cdo time 
series, and then input the series into the SVM model through phase space reconstruction, and finally 
superimposed to get the prediction value. Although this method has some improvement on 
dissolved oxygen prediction, wavelet decomposition needs to artificially select the number of 
decomposition layers, and thus has some limitations. Yu Chengzhou et al [8] proposed a 
combination of Ensemble Empirical Mode Decomposition (EEMD) and SVM to model the Cdo 

data of natural water bodies in the north hot spring control section of Jialing River, and the original 
Least Square  Support Vector Machines (LSSVM) model for comparison and analysis, the 
accuracy of the model is improved, but the SVM is more sensitive to the quality of the data, and the 
water body Cdo generally has the characteristics of non-stationary and high complexity, and there is 
no secondary processing of the sequence after EEMD decomposition. Chen Li et al [9] used EEMD 
to decompose the Cdo sequences, and the decomposed sequences were reconstructed into 
high-frequency terms, medium-frequency terms, low-frequency terms and trend terms by 
correlation analysis, and modeled by Least Square Support Vector Regression (LSSVR) and 
optimized BP networks, respectively, and then the prediction results were superimposed to derive 
the model, which had better Cdo prediction performance. Yi-Min Lu [10] proposed the method of 
time series decomposition and Elman neural network, and the combined model was used to predict 
the Cdo data at the Nan-Ying site in the Jinjiang River basin, and its RMSE was 0.31, MAE was 
0.20, and MAPE was 2.50, which was a large improvement compared with the single model. 
However, the method did not take into account the effect of low correlation series on the model. 

Given that the biggest advantage of EEMD is that it can automatically decompose non-stationary 
time series data into multiple stationary sub-series, making it possible to decompose highly 
complex series into simpler ones and facilitate prediction. Then, through Pearson correlation 
analysis, the sequences with higher correlation are filtered and input into the LSTM model. Due to 
the characteristics of LSTM [11], which has better applicability to long and complex sequence data 
and is well suited for problems with highly correlated time series, a hybrid model based on 
ensemble empirical modal decomposition-Pearson analysis (EEMD-Pearson) and LSTM is 
proposed in this paper to predict Cdo in water bodies. 

2. EEMD decomposition principle 
Empirical Mode Decomposition (EMD) was proposed by Huang [12], and EMD decomposition can 
decompose complex non-smooth data into multiple Intrinsic Mode Functions (IMFs) and a residual 
term. The construction of IMF mainly follows the following two conditions: first, the difference 
between the number of over-zero and over-polar points is at most 1, and second, the mean value of 
the upper and lower envelopes is zero. The expressions are as follows. 

 



n

i

i ttIMFtO
1

)()()(   , ,...,n,i 21                      (1) 

where )(tO is the original signal, )(tIMFi denotes the first i inner modal component, and )(t is the 

residual term. The decomposed )(tIMFi components and the residual term can be fitted to the 
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original series, )(tIMFi  reflecting the local fluctuation characteristics. With i the increase of IMF, the 

frequency of fluctuation decreases and finally decomposes into a smoother time series. When there 
are high frequency noise and abnormal events in the original signal, the EMD decomposition will 
have the phenomenon of "modal confusion", which will reduce the accuracy of the IMF 
components and make it impossible to fit the original time series. To solve the "modal confusion" 
phenomenon of EMD decomposition, Wu [13] et al. proposed the ensemble empirical modal 
decomposition method EEMD, which overcomes the modal confusion phenomenon in EMD by 
adding auxiliary noise and effectively suppresses the influence of high frequency noise and 
abnormal events. The decomposition steps are as follows. 

(1) White noise, which follows a normal distribution, is added to the original signal, starting 
from 1 and increasing. i  

 )()()(i tNtOtO i                             (2) 

where, (t)Oi denotes the original signal with white noise, )(tO denotes the original signal, and (t)Ni

denotes the white noise. 
(2) The decomposition is performed using the EMD pair (t)Oi to obtain n IMF components. 

 



n

i

ii λ(t)(t)IMF(t)O
1

                           (3) 

(3) The above two steps (1) and (2) are repeated m times until the components do not exceed two 
extreme values and stop. Then the mean values of the m sets of IMF components and residual terms 
obtained by decomposition are calculated separately to eliminate the interference of white noise on 
the IMF series, and the residual terms )(t are used as trend terms. The final result isθ(t)denoted by: 

 



n

i

i tIMF
m

t
1

)(
1

)(                             (4) 

3. LSTM structure and principle 
Recurrent Neural Network (RNN) [14] is usually considered as a deep learning network for 
processing time-series data, which is characterized by the fact that the output of the previous 
moment can be used as the input of the next moment. In the application of time-series data, 
historical data from different moments can be passed to the input layer of RNN to predict the next 
moment's data. The network structure of RNN is shown in Figure 1. 

 
Figure 1. RNN structure diagram 

 
where x , s , and o represent the values of the input layer, hidden layer, and output layer, 
respectively, andU ,V ,W and represent the weight matrix of the input layer, the weight matrix of 
the output layer, and the weight matrix of the hidden layer, respectively. Recurrent neural networks 
share the weights at different moments in order to reduce the number of computed parameters. In 
practice, it is found that the current state of the system may be influenced by the state of the system 
a long time ago, i.e., there is a long-term dependency problem, which cannot be solved by RNN. 
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Because in RNN algorithm, as the amount of data increases, the computation increases or decreases 
exponentially, and problems such as gradient explosion or disappearance occur. 

To solve the problem of gradient explosion and disappearance of RNN on long-term dependence, 
Hochreiter et al [15] proposed a long-short memory neural network. The network structure of 
LSTM is shown in Figure 2. 

 
Figure 2. LSTM structure diagram 

Analysis of the LSTM structure diagram shown in Figure 2 shows that the historical information 
tx and 1t h  is decayed and retained under the forgetting gate tf  function; the input gate function ti

suppresses the input information to the hidden layer; tC
~

is the input state value, and updates the 
original matrix information together ti  with the function; the output gate tO function will select the 
output part to the output layer. Through the control of forgetting gate, input gate and output gate 
functions, LSTM overcomes the gradient disappearance problem and mitigates the gradient 
explosion problem of RNN, whose expressions are as follows. 

)])1[*( fttft b,xhWσf                          (5)
 

)])[( 1 ittit b,xh*Wσi  
                          (6) 

)])[*tanh(
~

1 cttct b,xhWC  
                        (7) 

ttttt C*i*CfC
~

1  
                            (8) 

)][( 1 ottot b,xh*Wσo  
                           (9) 

)tanh( 1 ttt C*oh                             (10) 

where fW , cW , iW and oW are the parameter matrices,  are the sigmoid functions, fb , ib , ob , and

cb  are the bias bits, and tC , th  are t  the outputs at the time. 

4. Pearson correlation coefficient 
Pearson's correlation coefficient is a quantity to study the degree of linear correlation between 
variables, and the IMF component is denoted with the raw dissolved oxygen content data as ),( ii yx

)21( ,...,n,i  , then the Pearson's correlation coefficient equation is as follows. 

 














n

i

i

n

i

i

n

i

ii

yyxx

yyxx

r

1

2

1

2

1

)()(

))((

                          (11)

 

where x and y  are n  the means of the individual data, and r  is the correlation coefficient, which 
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indicates the different degrees of correlation of the two series. Its value range is [-1,1], and its 
grading [16] is shown in Table 1. 
 

Table 1 Correlation coefficient and intensity 
Absolute value of 

correlation coefficient 
Related Strength 

0.0-0.2  Very weak or no correlation 
0.2-0.4  Weak correlation 
0.4-0.6  Moderate correlation 
0.6-0.8  Strong Related 
0.8-1.0  Extremely strong correlation 

 
This study uses Pearson correlation analysis to perform secondary screening of the IMF 

components to further enhance the temporal and correlation properties of the neural network input 
data. 

5. Dissolved oxygen content prediction model based on EEMD-Pearson-LSTM algorithm 
In the prediction of dissolved oxygen content Cdo, due to the characteristics of non-stationary and 
high complexity of Cdo data, if the model is built directly, the fluctuation degree of Cdo time series 
cannot be accurately detected, and large errors will inevitably occur in the prediction. the feature of 
EEMD decomposition is that it can decompose non-stationary series into smoother ones, and when 
the smooth series is used for prediction modeling, the The prediction error will be significantly 
reduced, and the decomposed IMF components may be very weakly correlated or uncorrelated with 
the original Cdo series, leading to a decrease in prediction accuracy. Therefore, this paper uses the 
EEMD-Pearson method for multimodal decomposition and analysis of Cdo sequences, combines 
the advantages of LSTM neural network on long and short time series, and proposes a hybrid model 
of EEMD-Pearson-LSTM, and Figure 3 shows the flow chart of EEMD-Pearson-LSTM prediction. 

Normalized

EEMD

Pearson correlation analysis

LSTM

Subsequence prediction value 
superposition

Denormalize

 
Figure 3. EEMD-Pearson-LSTM prediction flow chart 

 
According to Figure 3, the model prediction steps can be seen as follows. 
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1) The data are X pre-processed and normalized to the range [0,1] using the linear function 
normalization method, calculated as follows. 

 
minmax

min

XX

XX
Xn




                             (12) 

where nX  is the normalized value, and maxX , minX  are the maximum and minimum values of the 
original data, respectively. 

2) The EEMD decomposition is used to obtain several IMF components with a trend term. 
3) Secondary screening is performed by Pearson correlation analysis to eliminate the very 

weakly correlated or uncorrelated components. The training samples, validation samples and test 
samples are appropriately selected for the screened subsequences, and the LSTM model is used for 
training, and the IMF subsequences are subsequently predicted separately, and then the model 
predictions of each subsequence are superimposed to obtain the final results. 

4) Inverse normalize the data and reduce the data in the range [0,1] to the original data with the 
following calculation formula. 

 minminmax )( X*XXXX n                        (13) 

5) The predicted value ）（tY  is the final result. 

6. Experiment and analysis 

6.1 Data analysis and processing 
The data in this paper were obtained from the Open Data Network of Zhejiang Provincial People's 
Government (http://data. zjzwfw.gov.cn/jdop_front/channal/ data_public.do? deptId=43 
&domainId=0), and a total of 1070 dissolved oxygen data were collected from May 21, 2017 to 
May 4, 2020. A total of 1070 dissolved oxygen data were collected from May 21, 2017 to May 4, 
2020, with a data recording interval of 1 day. Among them, anomalous values were detected using 
the isolated forest method, anomalous values were replaced by the mean replacement method, and 
missing values were supplemented by the Lagrangian interpolation method. The line graph of the 
processed dissolved oxygen series is shown in Figure 4, which shows that the Cdo data are volatile 
and nonlinear. The unit root test (Augmented Dickey-Fuller test, ADF) was applied to the original 
Cdo data series for the smoothness test, and the test results are shown in Table 2. Where the test 
obtained 1%, 5%, 10% are the confidence level critical values. From Table 2, the t-value of Cdo is 
-1.0489, which is greater than the 10% confidence level threshold value of -2.5673, indicating that 
the original Cdo data series is a non-stationary series. 
 

Table 2 ADF test results of original dissolved oxygen sequence 

t-value 
1% 

confidence 
-level 

5% 
confidence 

-level 

10% confidence 
-level 

-1.0489  -3.4328  -2.8625  -2.5673 
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Figure 4. Original Dissolved Oxygen Sequence 

 
EEMD was used to decompose the normalized data into modalities, and the results showed that 

the Cdo sequence tended to be smooth when the modal number was 7. The Cdo sequence was 
decomposed into 7 IMF components and 1 residual component (RES), and RES represented the 
trend of dissolved oxygen. The EEMD method decomposes the Cdo sequence into multiple 
subsequences, which reduces the complexity of the original sequence and each subsequence 
includes different scale information, preserving the characteristics of the dissolved oxygen sequence. 
To further test the stability of the seven IMF components, the same ADF method was used to test 
the results as shown in Table 3. According to Table 3, the t-values of each IMF component and the 
remaining components are much smaller than the critical value of -3.4328 at a confidence level of 
1%, indicating that the decomposed IMF components are smooth, i.e., the IMF components are 
smooth series. The experiments demonstrate that the EEMD method can decompose the 
non-smooth dissolved oxygen series into a smooth series, and show that the IMF component is 
more suitable to be the input data for LSTM modeling than the original Cdo data. 
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Figure 5. EEMD Modally Decomposed Waves 

 
Table 3 Results of the ADF test for the IMF component 

Portion 
size 

IMF1  IMF2  IMF3  IMF4 

t  -34.0850  -36.4161  -36.2961  -36.3738 

Portion 
size 

IMF5  IMF6  IMF7  RES 

t  -44.0961  -26.3743  -92.0751  -9.8257 

6.2 Pearson Correlation Analysis 
To further analyze the correlation between the IMF component and the original Cdo series, the IMF 
component derived from the previous section was subjected to Pearson correlation analysis with the 
original Cdo series, and the results obtained are shown in Table 4. 
 

Table 4 Correlation coefficients of IMF components 

IMF Portion  Correlation coefficient 

IMF1  0.1515 

IMF2  0.2373 

IMF3  0.3174 

IMF4  0.2826 

IMF5  0.3922 
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IMF6  0.6503 

IMF7  0.6929 

RES  0.2524 

 
Analysis of Table 4 shows that IMF1 is either very weakly correlated or uncorrelated with the 

original Cdo series, IMF2, IMF3, IMF4, IMF5, and RES show weak correlation, and IMF6 and 
IMF7 show strong correlation with the original series. Therefore, in order to reduce the prediction 
error of the model, this paper chooses to eliminate the very weakly correlated or uncorrelated IMF1 
components and select the remaining components for modeling. 

6.3 Model Training and Comparative Analysis 
In order to prove the effectiveness of EEMD-LSTM and Pearson hybrid model 
EEMD-Pearson-LSTM on Cdo prediction, the prediction results are chosen to compare with the 
conventional LSTM model and EEMD-LSTM model. Since BP network is a classical deep learning 
network, the model in this paper will compare the prediction results of EEMD-BP and 
EEMD-Pearson-BP models for comparative analysis to verify the advantages of 
EEMD-Pearson-LSTM hybrid model in improving the prediction accuracy. 

The 1070 Cdo data in the dataset were divided into 3 groups, where the first 80% were used as 
the training set, 10% as the validation set, and 10% as the test set. The models were trained 
separately, where the model loss was recorded using Mean Square Error (MSE) for each batch of 
training samples with the following equation. 

 



m

i

)y(y
m

MSE
1

21 
                           (14) 

where y is the observed value of the data and ŷ  is the predicted value. The experimental 

parameters are set as follows: 1) the model batch_size value is set to 16; 2) the activation function is 
selected as the relu function; 3) the number of model training rounds (epochs) is set to 100; 4) the 
Adam optimization algorithm is used for training. 

After constructing the five training models, the Cdo for the next 90 days is predicted, and the 
results are shown in Figure 6. As can be seen from Figure 6(a), when using the conventional LSTM 
model for prediction, although the LSTM can predict the trend of Cdo, the model shows a certain 
delay due to the non-stationary and high complexity of Cdo data, which leads to a large error with 
the original curve. In contrast, the EEMD-LSTM improves the latency problem of the LSTM to 
some extent, but its prediction for the peaks and valleys of the series shows a large deviation. From 
Figure 6(b), it can be seen that the trend of the EEMD-BP neural network model can fit the true 
value, but mostly there is a large error between the predicted and observed values, resulting in a 
lower accuracy of its prediction. the EEMD-Pearson-BP model has a better curve fit with the 
original series and achieves a higher prediction accuracy compared to the EEMD-BP model. 
Compared with other models, the prediction results of EEMD-Pearson-LSTM fit the original data 
better, and the prediction of peak and trough values is greatly improved compared with other 
models, so obviously the prediction of Cdo by EEMD-Pearson-LSTM has better accuracy and 
higher prediction accuracy compared with other models. 
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(a) Comparison between predicted and observed values of Cdo 

 
(b) Comparison of predicted and observed values of Cdo 
Figure 6. Model prediction results for the 90-day period 

 
To further judge the accuracy of the five models, the root mean square error (RMSE), mean 

absolute error (MAE), mean absolute percentage error, MAPE) and the coefficient of determination 
(R-Squared, R2) method for the comprehensive evaluation of their merits. The smaller the RMSE, 
MAE and MAPE, the better the model fit; the larger the R2, the better the model fit. the equations 
of RMSE, MAE, MAPE and R2 are as follows. 





m

i

ii )y(y
m

RMSE
1

21 
                           (15)

 





m

i

ii |y|y
m
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1
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                            (16) 
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
                            (18) 

Where, m  is the number of samples, iy  is the observed value of Cdo, iy is the sample mean, and iŷ  

is the predicted value of Cdo. 



ICCAPC 2021
IOP Conf. Series: Earth and Environmental Science 760 (2021) 012012

IOP Publishing
doi:10.1088/1755-1315/760/1/012012

11

The experimental results of the quantitative analysis of model merits by the integrated judging 
method are shown in Table 5. It can be seen that the values of RMSE, MAE, MAPE, and R2 of the 
EEMD-Pearson-LSTM model are 0.2355, 0.1893, 2.4710, and 0.8787, respectively, which is a large 
improvement relative to the LSTM and EEMD-LSTM models. Again By comparing the E 
EMD-Pearson-BP model, the EEMD-Pearson-LSTM has reduced RMSE by 18.62%, MAE by 
14.07%, MAPE by 14.44%, and R2 by 7.58%. Table 5 proves that after Pearson secondary 
screening, the prediction accuracy of EEMD-BP and EEMD-LSTM models has improved 
significantly, and all error indicators have been reduced, among which EEMD-Pearson-LSTM has 
the best performance, which proves that it has a greater advantage in predicting dissolved oxygen 
content. 

 

Table 5 Experimental Results Of Model Error 
 

RMSE  MAE  MAPE  R2 

LSTM  0.3791  0.2932  3.9551  0.6857 

EEMD-LSTM  0.2730  0.2266  2.9708  0.8370 

EEMD-Pearson 
-LSTM 

0.2355  0.1893  2.4710  0.8787 

EEMD-BP  0.3096  0.2449  3.2649  0.7904 

EEMD-Pearson 
-BP 

0.2894  0.2203  2.8881  0.8168 

 
To further compare the prediction adaptation time periods of the above models, two more time 

periods of 30 days and 60 days were selected for the prediction of dissolved oxygen content, as 
shown in Figs. 7 and 8. The EEMD-LSTM model also showed a fitting trend, but the peaks and 
valleys of the prediction curves were steeper than the original series, and the prediction errors were 
larger. The EEMD-Pearson-LSTM model after secondary screening improves the errors on the 
troughs and fits better with the original sequence. It can be seen by Figure 8(b) that EEMD-BP has a 
better fitting trend with lower error index and higher R2 compared to EEMD-LSTM and 
EEMD-Pearson-BP, but its fit to the original curve is poor compared to EEMD-Pearson-LSTM. 

 

 
(a) Cdo predicted versus observed values 
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(b) Comparison of predicted and observed values of Cdo 
Figure 7. Model prediction results for the 30-day period 

 
The prediction curve of the EEMD-BP network for the 60-day period no longer has an advantage 

over the EEMD-Pearson-BP network, and its fitting curve shows a large error, while the 
EEMD-Pearson-LSTM continues to perform optimally. 

 

 
(a) Comparison between predicted and observed values of Cdo 

 
(b) Cdo predicted values vs. observed values 

Figure 8. Model prediction results for the 60-day period 
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In order to more obviously determine the forecasting effects of the above models in the 30-day 
and 60-day time periods, the RMSE, MAE, MAPE, and R2 evaluation methods were used to test the 
forecasting accuracy of the models, respectively. Their evaluation indexes for the 30-day time 
period and 60-day time period are shown in Table 6. Combining Table 5 and Table 6, it can be seen 
that the EEMD-Pearson-LSTM has the optimal results for the forecasts in different time periods. 
The experiment proves that the EEMD-LSTM after secondary screening occupies a greater 
superiority in predicting the data of different time periods. 

 
Table 6 30-day and 60-day error evaluation index table 

Predictive 
Models 

30-day error indicator  60-day error indicator 

RMSE  MAE  MAPE  R2  RMSE  MAE  MAPE  R2 

LSTM  0.3057  0.2305  2.8794  0.3660  0.3376  0.2673  3.4698  0.6876 

EEMD- 
LSTM 

0.2760  0.2281  2.7888  0.4834  0.2640  0.2168  2.7308  0.8089 

EEMD-Pearson-
LSTM 

0.2036  0.1615  1.9904  0.7188  0.2318  0.1870  2.3581  0.8527 

EEMD-BP  0.2327  0.1930  2.4117  0.6328  0.2986  0.2358  3.0407  0.7556 

EEMD-Pearson-
BP 

0.2575  0.2023  2.4963  0.5503  0.2590  0.2045  2.5469  0.8161 

7. Conclusion 
The Cdo time series data of dissolved oxygen content are characterized by non-smoothness and 
high complexity. In this paper, the EEMD-Pearson-LSTM model is proposed to predict the 
dissolved oxygen content in three different time periods in the future. It is summarized as follows. 

(1) In order to fully exploit the hidden time-series of dissolved oxygen data and improve the 
prediction accuracy of the model, the non-smooth dissolved oxygen series were first decomposed 
into smooth IMF components by EEMD, the decomposed subsequences were screened by Pearson's 
secondary screening, the screened sequences were subjected to LSTM modeling, and finally 
multiple LSTM model prediction results were derived for superposition to produce the final results. 
The results show that the EEMD-Pearson-LSTM has a large improvement in prediction results 
compared with the conventional LSTM and EEMD-LSTM. 

(2) To further test the superiority of EEMD-Pearson-LSTM, it is compared with 
EEMD-Pearson-BP network, which has better fit with the original sequence, smaller prediction 
error and more accurate curve fitting compared with EEMD-Pearson-BP model. 

(3) For the prediction of dissolved oxygen content in 30-day time period, 60-day time period and 
90-day time period, EEMD-Pearson-LSTM has the best performance in prediction error index and 
R2, and has higher prediction accuracy for different time periods compared with other models. The 
advantages of EEMD-Pearson-LSTM in dissolved oxygen prediction were demonstrated. 

In addition to the dissolved oxygen content, the effects of other factors (such as temperature, 
ammonia nitrogen, rainfall, etc.) on the dissolved oxygen content were not considered, and the 
inclusion of index data of other factors will be considered in further studies to improve the 
prediction accuracy of Cdo in the future. 
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