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Abstract: Phase unwrapping is one of the most critical steps in InSAR data processing. 

Filter-based phase unwrapping methods can perform phase unwrapping and noise removal 

simultaneously, and show a clear advantage in dealing with high noise and density fringe 

interferograms. Based on the precision estimation theory of nonlinear functions in Extended 

Kalman Filter (EKF) and Cubature Kalman Filter (CKF) algorithms, we derive and analyze in 

detail the estimated precision of the EKF and the CKF on nonlinear observation equations in 

the phase unwrapping model. Results show that both EKF and CKF algorithms have similar 

precision in areas with better phase quality. However, in poorer quality areas, the precision of 

the two shows a certain difference and there is no consistent superiority for each algorithm. 

Experiments using simulated and measurement data confirm the validity of our theoretical 

analysis. 

1. Introduction 

Phase unwrapping is one of the most critical steps in InSAR data processing and its precision directly 

affects the precision of elevation measurements. Filter-based unwrapping methods transform phase 

unwrapping into state estimation, and have become the latest approach, attracting many scholars’ 

attention. This method is not affected by phase residual points, and avoids the phase loss and distortion 

caused by traditional methods by filtering the noisy interferograms before phase unwrapping is carried 

out, which results in simultaneous noise filtering and phase unwrapping. 

Krämer and Loffeld proposed an InSAR phase unwrapping method based on Kalman filters for the 

first time in 1996 [1]. Then, they put forward a method combining Extended Kalman Filters (EKFs) 

with local slope estimation [2] in 1997. Since then, the filter-based phase unwrapping algorithms have 

been gradually paid more attention. In 1999, Kim and Griffiths came up with the idea of using EKF to 

achieve multi-baseline phase unwrapping, focusing on the advantages of the EKF in phase unwrapping 

and the high precision potential provided by the powerful information fusion capabilities of the EKF 

algorithm [3]. In 2008, specific state and observation models were presented and the EKF algorithm 

was elaborated by Loffeld et al. [4]. The algorithm transformed phase unwrapping into state estimation, 

integrating state and observation models, and achieving the purpose of phase unwrapping and noise 

elimination simultaneously. In 2009, Osmanoglu proposed an improved EKFPU algorithm, in which a 

simple linear operation was applied to the gradient estimation, and error detection and correction were 

added into it [5]. A 3-D phase unwrapping method based on EKF was also then investigated to 

mailto:liuliucumt@126.com
mailto:zlyue2006@126.com
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calculate the Digital elevation model (DEM) by Osmanoğlu [6]. Chirico et al also applied EKF to 

Multichannel interferometric phase unwrapping [7]. 

Guolin Liu proposed Kalman filter phase unwrapping algorithms considering terrain factors by 

introducing related control variables to the state space model of the Kalman filter [8]. The model error 

and topographical factors were considered in this algorithm and the experimental results indicated that 

the algorithm can deal with steep terrain and slope situations effectively. An EKF multi-baseline phase 

unwrapping algorithm was proposed by Xie and Pi in 2011 [9]. In all these EKF-based phase 

unwrapping algorithms, a non-linear observation model performs the linearization approximation for 

the EKF, which always leads to a loss of high-order phase information. To address this, Xie and Pi 

presented a new phase unwrapping algorithm based on an Unscented Kalman Filter (UKFPU) and 

they improved and applied it to other algorithms [10-12]. Then, a Cubature Kalman Filtering-based 

phase unwrapping method (CKFPU) was studied by Liu [13]. In practical terms, noisy interferograms 

are usually complex and their statistic model is not easy to establish. For this, Gao et al. proposed an 

adaptive unscented Kalman filter phase unwrapping method which is shown to yield the greatest 

precision and the greatest robustness to noise [14]. In 2019, Gao et al. applied UKFPU to 

multi-baseline SAR interferograms combining a refined Two-stage Programming Approach [15]. All 

of these algorithms were founded on the assumption that the noise affecting both the evolution and 

measurement stages is Gaussian. Martinez-Espla et al. presented a particle-filter phase-unwrapping 

algorithm which was not subject to this constraint [16]. Then, Xie et al. made improvements on this 

algorithm [17, 18]. Because of the complexity of the measured noise data, the determination of the 

statistical model is a difficult problem. Although some models have been presented [4, 7, 10, 16, 18], 

they are either approximate or subjective, or mainly emphasize the theoretical nature of the algorithm. 

So far, the theoretical and applied research of filter-based phase unwrapping algorithms has mainly 

focused on EKFPU, CKFPU and UKFPU, with a Gaussian model hypothesis for noise, and good 

results have been achieved [4, 7, 10, 11, 13, 14]. 

It has been demonstrated that UKFs, or CKFs, are effective and efficient tools in many nonlinear 

fields [19-24]. Compared to EKFs, they improve the estimation precision when the system model has 

severe nonlinearities. Nevertheless, for different practical problems (system models), the degree of 

improvement in precision is different. If the improvement is small or even negligible, the EKF 

algorithm may be preferred since it strikes a balance between computational complexity and precision; 

otherwise, a UKF or a CKF will be selected. From [24], it is known that when  is 0, the nonlinear 

estimation mean and estimation precision of the UKF and CKF methods are the same. However, the 

CKF has the advantages of fewer parameters, fewer sampling particles, stricter theory, and simpler 

calculations. Therefore, in this paper we compare the precision of EKF and CKF methods in phase 

unwrapping applications. Some instructive conclusions are drawn to develop the theory and 

application of filter-based phase unwrapping methods. 

This paper is organized as follows: first, a phase unwrapping system model, EKFPU and CKFPU 

are introduced in Section 2. Section 3 elaborates on EKF and CKF error analysis and analyzes the 

errors of the nonlinear function in the phase unwrapping model. Tests and analysis are given in 

Sections 4 and 5. The discussion and conclusion are given in Sections 6 and 7, respectively. 

2. Phase Unwrapping Model 

2.1. Phase Unwrapping System Model 

A simple and effective phase unwrapping system model can be expressed as [13]: 

( 1) ( ) ( ) ( ),x k x k k w k                                    (1) 

   
1

2

( 1 )c o s ( ( 1 ) )
( 1 ) [ ( 1 ) ] ( 1 )

s i n ( ( 1 ) ) ( 1 )

v kx k
y k h x k v k

x k v k

   
         

    
                 (2) 
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where k  denotes the pixel position; ( )kδ  is an estimated value of the true phase gradient of k ; 

and ( )kw  represents the estimation error of the phase gradient, which is generally Gaussian white 

noise.  and  are the observation errors of the real and imaginary parts of the plural 

observation, respectively, and are considered to be zero-mean Gaussian white noise [13]. 

2.2. EKFPU Algorithm 

From equations (1) and (2), the calculation steps of the one-dimensional EKFPU algorithm are as 

follows [4, 13]: 

First, we calculate the predicted values of the state vector and its variance matrix: 

1, , ,
ˆ ˆ ˆ

k k k k k k  x Ax u                                   (3) 

1, , ,k k k k k k  P P Q                                   (4) 

where 
,

ˆ
k kx  is the phase estimate of the current pixel and 

,k kP is an estimated variance matrix, 

whose initial value can be selected based on empirical values. 
1,

ˆ
k kx  is the one-step prediction phase 

value of the pixel to be unwrapped, whose state covariance matrix is 
1,k kP ; 

,
ˆ

k ku  is the estimated 

phase gradient and 
,k kQ  is the covariance matrix of the estimated phase gradient. 

Second, according to the predicted value 
1,

ˆ
k kx  and the variance matrix 

1,k kP  obtained 

previously, the state estimate of the pixel to be unwrapped 
1, 1

ˆ
k k x  and the corresponding covariance 

matrix 
1, 1k k P  are obtained by: 

1, 1 1, 1 1, 1
ˆ ˆ

k k k k k k k      x x K r                             (5) 

                
1, 1 1 1, 1,( )k k k k k k k     P I K H P                           (6) 

where 1kK  is filter gain matrix; 
1, 1k k r  is the innovation sequence matrix; 

1,k kH  is the 

linearized observation matrix and I  is the unit matrix. The calculation is as follows: 

         
T T 1

1 1, 1, 1, 1, 1, 1, 1( )k k k k k k k k k k k k k



        K P H H P H R                  (7) 

                       
1, 1 1, 1 1,

ˆ( )r y xk k k k k kh                       (8) 

1,

T

ˆ1, 1, 1,
ˆ ˆ( ) sin( ) cos( )

k kk k k k k k

d

d       xH h x x x
x

                (9) 

where 
1, 1k k R  is the observed noise variance matrix; 

1, 1k k y  is the measured value, and ( )h x  

is a phase wrapped nonlinear measurement function. 

2.3. CKFPU Algorithm 

The calculation steps of the one-dimensional CKFPU algorithm are [13]: 

(1) First, we calculate the initial cubature sampling points and corresponding weights based on 

the spherical-radial cubature rule: 

                    
1

[1] ,
2

i i i

m

m
                                (10) 

1( )v k 2( )v k
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(2) Time Update: The cubature points are obtained as: 

                                              (11) 

where 1kS  can be obtained through Cholesky decomposition or singular value decomposition. 

Then, we calculate the propagated cubature points through the nonlinear state equation: 

, , 1( , )i k i k kf

X X w                               (12) 

to obtain the prediction state and prediction variance: 

,

1

/ 1 , , 1

1

m

i i k

i

m
T T

k k i i k i k k k k

i









 

 












  





x X

P X X x x Q

                (13) 

(3) Measurement update 

First, we perform factorization: 

/ 1 / 1( )k k k kchol S P                         (14) 

and then obtain the cubature points 

                         , / 1i k k k i k X S x
                     

(15) 

We then calculate the propagated cubature points through nonlinear measurement equations 

          
, ,( )i k i khZ X                                  (16) 

Measurement Prediction, Innovation Variance and Covariance Estimation are obtained through: 

,

1

, , ,

1

, , ,

1

m

k i i k

i

m
T T

zz k i i k i k k k k

i

m
T T

xz k i i k i k k k

i



















  



 








z Z

P Z Z z z R

P X Z x z

                   (17) 

The gain matrix, updated state and covariance are: 

, ,

/ 1 ,

/

ˆ ( )

k xz k zz k

k k k k k

T

k k k k zz k k

 


  


 

K P P

x x K z z

P P K P K

                              (18) 

Since the state prediction equation is linear in our phase unwrapping model, it can be simplified 

along with the covariance calculation in the CKFPU algorithm, which is consistent with the state 

prediction method of EKF (Equations. (3) and (4)). 

For two-dimensional phase unwrapping, the unwrapping path of EKFPU and CKFPU algorithms 

can be found in [13]. This paper mainly studies the precision comparison of the EKFPU and CKFPU 

algorithms. Except 2.2 and 2.3, the other pre-treatment process is identical. 

, 1 1 1
ˆ

i k k i k   X S x
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3. Numerical Stability Analysis of Nonlinear Functions in Phase Unwrapping Models 

Here, we analyze the numerical stability of the EKF and the CKF from the point of Taylor expansion 

of nonlinear functions [24]. 

We assume an N-dimensional vector ~ ( , ),x N x P , where 

               

11 1

2 2 2
, ,

x

x

x

n n xn

x x

x x
x x

x x








    
    
      
    
    

     

                         (19) 

Then, the Taylor expansion of the nonlinear function ( )g x  near the mean is: 

2 3 4

( ) ( ) ( )
1! 2! 3! 4!

x x x xD g D g D g D g
g x g x x g x                    (20) 

with 
1

1
( ) |

! !

x

ii n

i x x

i i

D g
x g x

i i x

  



 
  

 
 . 

The true mean of ( )g x is 

4 2

( ) ( ) ( )
2! 4! (2 )!

x x

kT D g D gP
g x g x g x E

k

 
   

      
    

              (21) 

where 2,3,k  , and  represents the partial conductance of . 

The true estimation precision of ( )g x  is 

2 2

2 2 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

4

1
( )( ) ( )( )

(2 )!(2 )!x x x x

T
T T T

gg real

i j T i j T

i j i j

P G x PG x P g x P g x

E D g D g E D g D g
i j

   

   

   

             

 
  

 
 

  (22) 

where ( ) |x xT

g
G x

x






. 

For the phase unwrapping model in this paper, the nonlinear functions are the sine and cosine 

functions and the state vector is one-dimensional. In the following, estimation precision was analyzed 

for the sine and cosine functions in the EKFPU and CKFPU algorithms. 

3.1. Estimation Precision of The Sine Function 

The Taylor expansion of the sine function sin( )y x  near the mean  is: 

2 ( )1 1
sin( ) sin( ) cos( ) ( sin( )) sin ( )

2! !

n n

x x xy x x x x x
n

              (23) 

The mean is: 

     

2

sin

2

sin( )
sin( ) sin( ) ( ( 1) )

2! (2 )!

k
k x

k

x
y x P x E

k






                 (24) 

~ (0, )x N P

x

( )g x

x
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For the EKF method, the mean sin EKFy ，  of the sine function is 

sin,EKF sin( )y x                              (25) 

The mean error 
sin,EKFE  is: 

             

2

sin,EKF

2

sin( )
E sin( ) ( ( 1) )

2! (2 )!

k
k x

k

x
P x E

k






      (26) 

For the CKF method, the mean sin KFy ，C  of the sine function is 

2 2

1 2
sin,CKF

2 2

sin( ) 1
sin( ) sin( ) ( 1) ( 1)

2! 2 (2 )! (2 )!

k k
k k

k k

x
y x P x

k k

  

 

 
       

 
      (27) 

The mean error 
sin,CKFE  is: 

   
2 2 2

k kk 1 2
sin,CKF

2 2 2

1
E sin( ) ( - ) sin( ) -1 -1

(2 )! 2 (2 )! (2 )!

k k k

x

k k k

x E x
k k k

    

  

 
     

 
  （1）  (28) 

Then, taking 
sin,EKFE −

sin,CKFE , we have: 

     

 

2 2
k k k1 2

2 2 2

k

1

1 sin( )
sin( ) -1 -1 sin( ) -1

2 (2 )! (2 )! 2! (2 )! 2

                                                                                      sin( ) -1
(2 )!

k k k

k k k

k

k

x P P
x P x

k k k

P
x

k

   

  



   
        

  

 

  





         

 (29) 

Let  
k

1

-1
(2 )!

k

k

P
W

k





 
  
 
 . Based on the MacLaurin expansion of the cosine function, it can be 

inferred that when 1P  , 0.46W  . Since sin( ) 1x  , the difference between the two is no 

more than 0.46. When 0P  , 0W  , so the difference between them approaches zero. 

3.2. Estimation Precision of Cosine Function 

The Taylor expansion of cos( )y x  near the mean  is: 

 
2 ( )1 1

cos( ) cos( ) sin( ) cos( ) cos ( )
2! !

n n

x x xy x x x x x
n

            (30) 

and the mean is: 

             

2

cos

2

cos( )
cos( ) cos( ) ( )

2! (2 )!

k

x

k

x
y x P x E

k





       (31) 

For the EKF method, the mean cos EKFy ，  of the cosine function is 

cos,EKF cos( )y x                                (32) 

x
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and the mean error 
cos,EKFE  is: 

2

cos,EKF

2

cos( )
E cos( ) ( )

2! (2 )!

k

x

k

x
P x E

k






                    (33) 

For the CKF method, the mean 
cos,CKFy  of the cosine function is 

2 2

1 2
cos,CKF

2 2

cos( ) 1
cos( ) cos( )

2! 2 (2 )! (2 )!

k k

k k

x
y x P x

k k

  

 

 
     

 
             (34) 

and its mean error 
cos,CKFE  is: 

2 2 2

1 2
cos,CKF

2 2 2

1
E cos( ) ( ) cos( )

(2 )! 2 (2 )! (2 )!

k k k

x

k k k

x E x
k k k

    

  

 
      

 
         (35) 

 

Then, 
sin,EKFE −

sin,CKFE  gives: 

2 2

1 2

2 2 2

1

1 cos( )
cos( ) cos( )

2 (2 )! (2 )! 2 (2 )! 2

                                                                     cos( )
(2 )!

k k k

k k k

k

k

x P P
x P x

k k k

P
x

k

   

  





   
        

  

 

  



           (36) 

Let
1 (2 )!

k

k

P
V

k





 
  
 
 . Based on the MacLaurin expansion of 

xe
0

,  ( ,+ )
!

n
x

k

x
e x

n





 
    

 
 , it is 

known that when 1P  , 0.54V  . Since cos( ) 1x  , the difference between the two is no more 

than 0.54. When 0P  , 0V  , so the error between them approaches zero. 

As can be seen from the above, the advantage of CKF over EKF is mainly reflected in the second 

order terms: 
sin( )

2!

x
P  and 

cos( )

2!

x
P . Since the nonlinearity of the sine and cosine functions is 

weak and periodic, CKF appears to be superior to EKF when this part plays a major role in the overall 

error term. When this part tends to zero (even if P is large, the absolute value of this part may be close 

to zero due to the periodicity of the sine and cosine function), the superiority of CKF is diminished. 

Therefore, the smaller the state variance P is, the more similar the estimation precision of the two 

algorithms. As P increases, two phenomena appear gradually: on the one hand, when the second-order 

term plays a major role, the CKF is superior to EKF. On the other hand, due to the periodicity of the 

sine and cosine function, this superiority is not consistent. 

4. Simulated Experiments  

This experiment aims to compare the unwrapping precision of CKFPU and EKFPU for 

two-dimensional simulated data. To ensure a fair comparison, a coherence coefficient was selected to 

guide the unwrapping path and the maximum likelihood method was used to estimate the phase 

gradient. The statistical characteristics of the process noise and observation noise can be found in [15]. 

The same setting will be applied on the following real data experiment. 

The steep mountainous terrain scene shown in Figure 1 (a) was generated by the peaks function in 

Matlab, and has large terrain fluctuation and high steepness. The simulation parameters are shown in 

Table 1. The true phase, interferogram with noise and coherence map for the scene are shown in 
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Figure 1(b)-(d) (the parameters are same as the previous except the vertical baseline). The noise was 

generated by software provided by the Delft University of Technology in the Netherlands, reflecting 

the degree of geometrical incoherence; that is to say, the more serious the geometric incoherence, the 

greater the noise. It is clear that the data is characterized by complex and dense stripes. 

 

Table 1. Simulation parameters of the cone-shaped terrain.  

orbit 

altitude 
sight angle wavelength 

baseline 

orientation 

Ground 

resolution 

perpendicular 

baseline 

785 km 19o 0.05666m 10o 
80m×80

m 
50m  

 

 
(a) Scene topographic map           (b) True phase 

 

 
(c) interferogram with noise    (d) Coherence map 

Figure 1. Simulated data of complex terrain area.  

 

The unwrapped phase maps of the EKFPU and CKFPU for the simulated data are shown in Figures 

2 (a) and (b), respectively. Figure 2 (c) and (d) show the corresponding rewrapped phases. In order to 

further explain the unwrapping performance of the EKFPU and CKFPU, Figure 2 (e) and (f) show the 

corresponding error maps (the difference between the unwrapped phase and the simulated true-phase). 

In addition, the phase difference between the EKFPU and UKFPU (named EKF-CKF unwrapped 

difference) maps and their statistical histograms are shown in Figure 2 (g) and (h). It can be seen from 

Figures 2 that the unwrapped results are mostly continuous and the errors are small in most areas. The 

number of pixels with large errors is very small and these pixels are distributed in areas with dense 

fringe and high noise. Compared to the original interferograms, the fringe details of the rewrapped 

maps are preserved well and a lot of the noise has been removed. From Figures 2 (e)-(h), we know that 

in areas where the stripes are sparse and the noise is low (in sparse stripe areas), the unwrapping 

precision of both methods is about the same. In areas where the fringes change quickly and the noise is 

large (in dense stripe areas), the precision of both methods has a relatively larger deviation. This is 

consistent with the previous theoretical analysis. For the simulated data, the larger the phase gradient 

is, the higher the noise is, and the larger the variance of the state parameters is, thus a greater 

difference between the EKFPU and CKFPU is obtained. Moreover, although the difference of the two 

methods in the dense stripe areas is relatively larger, it is not significant compared to the magnitude of 

the real phase. 
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(a)                  (b)                  (c)                (d)  

       
(e)                (f)                   (g)                 (h) 

Figure 2. Comparison between EKFPU and CKFPU for steep mountainous data. (a) EKFPU 

unwrapped phase; (b) CKFPU unwrapped phase; (c) EKFPU rewrapped phase; (d) CKFPU rewrapped 

phase; (e) EKFPU error map; (f) CKFPU error map; (g) EKF-CKF phase difference; (h) EKF-CKF 

phase difference histogram. 

5. TerraSAR-X Data Experiment 

5.1. TerraSAR-X Data 
Two TerraSAR-X images covering the Taiyuan Gujiao Mining Area, acquired on January 4, 2013 and 

January 15, 2013, were selected as the measurement data. The parameters of the TerraSAR-X are 

listed in Table 2. 

 

Table 2. Parameters of TerraSAR-X acquistion. 

mode parameter 

Imaging mode Stripmap 

Frequency 9.6 GHZ 

Wavelength 3.1 cm 

Polarization  HH 

Swath width 50 km 

Incidence angle ~26° 

Range pixel spacing 0.9 m 

Azimuth pixel spacing 1.9 m 

Orbit repeat cycle 11 days 

Precise orbit accuracy ~10 cm 

Imaging range 30km*50km 

5.2. Experiment Area 

The target area was located in a coal mining working face. It was active during 4 January 2013 and 15 

January 2013 by collecting and analyzing the corresponding coal mining archive and GPS 

measurement data. There was about 20–30 cm (80–100 radians in the line of sight direction) of 

subsidence during this repeated cycle. Additionally, most study area was covered with vegetative, 

which could lead to serious speckle noise. Therefore, the interferogram to test the performance of the 

EKFPU and CKFPU in this paper is 2×2 looks (Figure 3(a)), and its coherence map is shown in Figure 

3(b). It is clear that there is severe decorrelation in the center of the working face and there is still a 
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strong presence of noise.  

 

 
(a)                        (b)  

Figure 3. Real data. (a) 2×2 interferogram; (b) coherence map. 

5.3. Results 

Figure 4 (a)-(d) show the unwrapped and rewrapped phase maps of the two methods. The EKF-CKF 

phase difference map and its statistical histogram are also shown in Figure 4(e) and (f). As can be seen 

from Figure 4(a)-(d), the two methods perform very similarly in terms of both unwrapping ability (the 

unwrapped phase range) and the shape of unwrapped maps. They were similar to the actual subsidence 

of the working face, although there is a large difference between the unwrapped phase of the two 

methods and the actual subsidence in the center of the working face. This is mainly due to the 

decorrelation caused by overly fast subsidence. As can be seen from Figures 4 (e) and (f) (the 

EKF-CKF unwrapped difference and its histogram), the results of the two methods are basically 

similar except for a few pixels, while most error areas are distributed within 0.5. From the coherence 

map, we see that the pixels with large unwrapped difference based on the two methods are all 

distributed in the regions with poor coherence. This is because the variance of the state parameter is 

large in the region with poor coherence. According to the theoretical analysis, the greater the variance, 

the greater the difference between the two methods and greater instability will occur. 

 

       
(a)                     (b)                 (c)                (d)  

  
(e)                       (f) 

Figure 4. Unwrapped results of EKFPU and CKFPU for real data. (a) EKFPU unwrapped phase; (b) 

CKFPU unwrapped phase; (c) EKFPU rewrapped phase; (d) CKFPU rewrapped phase; (e) EKF-CKF 

unwrapped phase difference; (f) Statistical histogram of EKF-CKF unwrapped phase difference.  

6. Conclusion 

In both the simulated and the real data experiments, both methods show about the same precision in 
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regions with good phase quality. Additionally, the precision of the two methods shows a certain 

difference in the area where the phase quality is poor. It should be pointed out that the severe 

decorrelation area is generally full of aliased and distorted stripes. So, a satisfying unwrapped result 

will not be obtained regardless of the method (this situation requires additional research). Therefore, in 

practical applications an appropriate method can be selected according to the actual situation of the 

interferogram. An adaptive unwrapping model can also be designed for an interferogram with a large 

change in phase quality, selecting different methods based on the noise level. It should also be noted 

that this paper compares the nonlinear unwrapping precision problem caused by the sine and cosine 

functions. If there are other nonlinear functions in the system equations, additional analysis will be 

required.  
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