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Abstract. This paper presents the influence of the thermal bridges effect on heating demand in 

residential buildings using numerical simulation. Quantitative evaluation on temperature field is 

performed by means of linear heat transfer coefficient. Specific details of existing thermal 

bridges within the building envelope have been identified and selected for analysis. The model 

simulation was performed using COMSOL Multiphysics software. Thermo-physical properties 

of the building envelope elements were selected from the software database and the boundary 

conditions have been setup. Meshing was done by dividing the virtual domain into an optimum 

number of finite elements. Model validation was done by comparative analysis between the 

values of the linear thermal transmittance obtained through numerical simulation and the 

reference values stipulated in C107-3-2005 technical regulation (catalogue of building thermal 

bridges). Specific solutions for correcting the thermal coupling between different building 

envelope elements were adopted in order to reduce the linear thermal transmittance up to 23% 

and the heat flow rate up to 71%. The evaluation of space heating demand shows the impact of 

correct treatment of thermal bridges on the reduction of energy consumption. 

1.  Introduction 

According to the theory of heat transfer through single-phase materials in direct contact, the combination 

of several physical environments with different thermo-physical properties generates the appearance of 

structural geometric perturbations, generating intensification effects of dissipated thermal flows. At the 

level of the building envelope, these disturbances are called thermal bridges, characterized by a linear 

thermal transmittance, having direct implications on the stability of their construction and their energy 

balance [1]. 

Studies have shown that by disturbing the temperature field and modifying the path of the thermal 

flux lines, the main negative effect that occurs by concentrating the dissipation of the unit thermal flux 

in these ''thermo-sensitive'' areas is the generation of thermal losses through transmission between 8-

20% [2]. 

Another major effect with implications on the hydro-stability of the building and the occupants' 

health, generated by the lowering of the temperature of the interior boundary surfaces, is the penetration 

and condensation through the component elements of the construction of water vapour from the interior 

environment. This phenomenon is responsible for the occurrence and development of dampness and 

mould with negative effects on the health of the occupants [3], [4]. 

According to the principles of the "Passive House" standard and the concept of "free design of 

thermal bridges" developed by PHI (Passive House Institute), to eliminate the negative effects due to 
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thermal bridges, it is necessary to eliminate or limit the linear thermal transmittance (Ψ) of thermal 

bridges to the value of 0.01W/m·K by a "careful treatment" during the design and execution phases of 

the thermal coupling details between the elements of the building envelope [4]. 

This paper presents the results obtained from a mathematical modelling and numerical simulation 

assisted by the specialized software COMSOL MULTIPHYSICS concerning the influence of thermal 

bridge effect on the transmission heat losses through the façade elements of multifamily residential 

buildings [5]. 

2.  Materials and methods 

2.1.  Building description and solutions 

The studied building was designed for the purpose of analysing the influence of the effects of the 

presence of thermal bridges on the thermal coupling between the component elements of the envelope 

placed on the main façade of the building. The building has a strength structure consisting of reinforced 

concrete frames and perimeter elements for exterior closure and interior partitioning of brick masonry 

with thickness of 15 cm. The main façade is shown in figure 1. The calculation surface (Sop) of the 

opaque part (40 elements) of the building façade is 385 m2. 

 

Figure 1. Main façade - 2D general view. 

 

To highlight the behavior of the façade of the building, two solutions were fitted with PVC joinery 

forty windows. The first adopted case involves equipping with ordinary windows, currently used for the 

execution of the facades of new or refurbished buildings. The second constructive solution adopted 

involves equipping the façade with passive energy windows selected from the catalogue of PHI certified 

components. The total area of calculation (Svit), related to the forty windows of the façade, is 57,6 m2. 

The geometrical characteristics in plan of the glass elements can be observed in figure 2. 

 

Figure 2. Distribution of the thermal bridges analysed. 
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In order to increase the energy performance of the analyzed facade, solutions for treating thermal 

couplings have been adopted in order to reduce thermal losses through the thermal protection of opaque 

elements with thermal insulation elements of expanded polystyrene and energy efficient montage 

solutions of the glass component elements of the façade. 

For the conformity of the determinations in accordance with the provisions of normative C 107 / 3-

2005, the materials' thermo-physical properties of the analysed structure envelope are presented 

synthetically in table 1 [6]. 

Table 1. Thermo-physical properties of the building materials. 

Material δ  (cm) cp  (J kg-1·K-1) ρ  (kg m-3) λ  (W m-1·K-1) 

Cement mortar 2, 3 840 1800 0.93 
Brick masonry 

GVP 25 870 1250 0.5 

Window 
(glaze+frame) 7 1460 1004 0.049 

Pasive window 
(glaze+frame) 9 1460 1004 0.045 

Cellular 
polystyrene 

10 
20 1460 20 0.044 

2.2.  Domain of simulation 

The determination of the calculation / work domain was achieved by choosing a characteristic area of 

calculation, representing the most vulnerable in terms of energy. This area contains all the elements of 

the simulation domain, figure 2, located on the corner at the upper level of the building, having the 

particularity that each surface comes into thermal contact with two physical environments with various 

thermo-physical properties that are in direct contact with the external environment. 

For the purpose of quantitative and qualitative evaluation of the influence of the thermal bridges on 

the thermal losses through transmission at the facade level, seven characteristic details corresponding to 

the coupling points between the components of its envelope were considered, resolving seven cases that 

will be analysed as well [3, 6, 7]: 

- Case 1: thermal bridge exterior wall intersection ordinary/passive window - horizontal section, ψ1; 

- Case 2: thermal bridge exterior wall intersection ordinary/passive window top vertical section, ψ2; 

- Case 3: thermal bridge exterior wall intersection ordinary/passive window bottom vertical section, ψ3; 

- Case 4: thermal bridge exterior wall intersection with current floor, ψ4; 

- Case 5: thermal bridge exterior wall intersection with interior wall, ψ5; 

- Case 6: thermal bridge corner out intersection external wall, ψ6; 

- Case 7: thermal bridge attic, ψ7. 

For the opaque envelope elements, three different situations were considered: without thermal 

protection, and with thermal protection with two insulation thickness of 10 cm and 20 cm, for wall and 

jamb. 

In the case of the glazed elements, two types of windows were considered, a first type of window 

frequently used to equip new residential buildings but also in the case of the rehabilitation of existing 

ones, and a second type of passive window, mandatory used in passive energy buildings. At the same 

time, two montage positions were adopted: at the wall thickness, commonly encountered in the case of 

ordinary windows, and at the middle of the thermal insulation in the case of the mandatory mounting of 

the passive windows. 

2.3.  Conditions of uniqueness 

The following boundary conditions were defined: 

- for temperature: - indoor air temperature, ti  = 20˚C; 

 - outdoor air temperature, te  = -15˚C; 
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- for heat transfer coefficient: - indoor heat transfer coefficient, αi =8 W/m2·K; 

 - outdoor heat transfer coefficient αe =24 W/m2·K. 

2.4.  Conditions of uniqueness 

In accordance with the provisions of normative C107 / 3-2005, preliminary geometrical configurations 

for the constructive elements that make up the details of thermal coupling between facade components 

were made, for each analysed case [6]. 

For the construction of the component elements from the case 1, for the coupling detail between the 

outer wall and the ordinary passive window respectively, the following geometrical features were 

chosen: 

- for the opaque component, a wall with a structure made of brick masonry with dimensions of 

25x30cm was considered as reference, having applied a layer of plaster in cement mortar, inside / 

outside with a thickness of 2 cm, respectively 3 cm, with a total length of 1.2 m, as in figure 3a; 

- for the transparent component, it was considered as reference a window with PVC joinery type 

Brilliant 70, with five rooms, without treatment and insertion of gas with thermo-protective role, with 

thermal transmittance (Uwin) of 1.42 W/m2·K, with the length of 0.6 m as in figure 3a. 

 

 
 a) 

 

    
 b) c) d) 

    
 e) f) g) 

 

 

 

Figure 3. Simulation models, Case 1- 

(thermal bridge exterior wall intersection 

with ordinary/passive window - horizontal 

section). 

a) reference model, (middle montage, 

without thermal protection)  

b) middle montage, with only wall 

thermal protection, (δwi = 10 cm) 

c) middle montage, wall and jamb with 

thermal protection, (δwi = 10cm, δji = 

2 cm ) 

d) montage in insulation, (δwi = 10 cm) 

e) montage in insulation, (δwi= 20 cm) 

f) passive window, montage in 

insulation, (δwi = 10 cm) 

g) passive window, montage in 

insulation, (δwi = 20 cm) 

Starting from the reference structure, various thermo-protection measures of the opaque element of 

different dimensions were applied and two montage variants were adopted for the windows: in the 

middle of the gap intended for it, as well as next to the insulation, in horizontal section, as presented in 

figure 3b, c, d and e. 

Also, to highlight the energy efficiency of passive certified energy components, the basic window 

was replaced with a window for passive houses, type Geneo HST, with three sheets of glass, thermal 

treatment of glass, selected from the passive component catalog of the PHI, with thermal transmittance 

(Uwin) of 0.79 W/m2·K and montage next to the insulation, as in figure 3f and g. 

Similarly, the other cases of thermal bridges representing the top and bottom vertical sections of the 

coupling details between the external wall and the standard or passive window were analysed and the 

obtained results were interpreted. 
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Also, for the cases that highlight the thermal bridges, simulation of the direct coupling between the 

opaque components of the building envelope were made, adopting appropriate correction solutions in 

order to reduce their influence on the heat losses through transmission [8]. 

2.5.  Nodal network generation 

In order to evaluate the behaviour of the analysed structures, modelling and numerical simulation of the 

heat transfer through the specific simulation field for each detail of coupling between the component 

elements of the facade was realized with the COMSOL MULTYPHISICS commercial software. 

This virtual environment, organized on interconnected working modules, provides tools for 

modelling physical environments and simulating physical processes, easy-to-use interfaces, algorithms 

for efficiency, and offers the possibility to control the simulation process based on the links between 

partial differential equations, in order to assess and quantify the analysed process parameters, allowing 

after the data processing the quantification of the parameters and establishing the suitable solution [9]. 

In order to analysis the steady-state regime of the processes of heat transfer, from the available 

module package, the General Heat Transfer module was chosen to work with. 

For the modelling and simulation of the heat transfer through the simulation domain, the conduction 

heat transfer module has been selected which uses the well-known Fourier’s law of heat conduction for 

heat flux calculation (equation 1): 

 q = - k·A·dT/dx (1) 

where q is the heat-transfer rate in W, A the cross-sectional area in m2, k the thermal conductivity of the 

material in W/(m·K) and dT/dx the temperature gradient in K/m. 

After the simulation geometry is loaded from AutoCAD, the first preliminary steps for launching 

the computer simulation consists of its conversion into a solid environment, setting the data specific to 

the sub-domains represented by the component layers of the analysed structure and the boundary 

conditions for the delimiting boundaries of the simulation domain [1]. 

For the simulation domain discrepancy, the finite element method was adopted, characterized by the 

fact that a certain virtual domain is subdivided into a number of finite elements, sub-domains with 

variable dimensions and shapes, which are interconnected by discrete number of nodes [8]. 

 

 
a) 

 

 

    
 b) c) d) 

 

    
 e) f) g) 

Figure 4. Nodal network  Case 1- (thermal 

bridge exterior wall intersection with 

ordinary/passive window -horizontal 

section). 

a) reference model, (middle montage, 

without thermal protection, 3280 

elements); 

b) middle montage, with only wall thermal 

protection, (δwi = 10cm, 2924 elements); 

c) middle montage, wall and jamb with 

thermal protection, (δwi = 10cm, δji=2cm, 

2840 elements); 

d) montage in insulation, , (δwi = 10cm, 2964 

elements); 

e) montage in insulation, , (δwi = 20cm, 3020 

elements); 

f) passive window, (δwi = 10cm, 3616 

elements); 

g) passive window, montage in insulation, 

(δwi = 20cm, 3448 elements). 
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Then, the following simplifying working hypotheses were established: stationary regime, constant 

boundary temperature, no heat transfer through radiation, no internal heat sources. 

The method of dividing the simulation domain consists in the unequal distribution of the finite 

elements of the nodal network with linear tetrahedral form, with higher density of elements near the 

delimiting borders of the simulation domain. 

Figure 4 shows the profiles of the nodal networks of the simulation domains for Case 1. 

2.6.  Heat losses transmission 

For the quantitative evaluation of the heat losses by transmission through the envelope element of the 

building, the linear thermal transmission specific to the details of linear thermal bridges, based on the 

transferred thermal flux, quantified and provided by the Comsol Multiphysics application, was 

determined in advance. 

In order to determine the linear thermal transmittance, characterizing the linear thermal bridge the 

calculation relation (2) was used, between the thermal flux estimated following the simulation process 

and the thermal flux dissipated through the current field area of the contraction elements of the building 

between which the thermal bridge is established [7, 10, 11]. 

After the value estimation of the total thermal fluxes transferred through the analysed simulation 

domain, a correction of these values was made for the length unit of the domain boundaries. For the 

determination of the physical quantities that take into account the heat losses through transmission, the 

average value was used. 

 Ψ= (Φ2D,med, Comsol - Φ1D,calc)/∆t (2) 

in which Φ1D,calc = Ʃ(Ui·li)∆t 

 Ψ= (Φ2D,med,Comsol/∆t) - Ʃ(Ui·li) (3) 

where Ψ is the linear thermal transmittance in W/m·K, Φ 2D,med,Comsol the average adjusted thermal flow 

evaluated by the Comsol Multiphysics application in W/m, Ui the thermal transmittance of component 

i of the building envelope in W/m2·K, li the characteristic length of the element "i" in m and ∆t the 

temperature difference between indoor and outdoor in K. 

For the validation of the working study, the values obtained for the linear thermal transmittance, 

based on the data obtained from the simulation and the calculation relationships, were compared with 

the reference ones from the catalogue with standard thermal bridges specific to the buildings, annex K 

of the order 1950. In all cases, the relative error was found below 5%. 

The determination of heat losses by transmission, specific for a characteristic element of the building 

facade, analysed for cases 1, was made using the following equation: 

 Qtr =[Uwall·(Awall-Awin)+Ufr·Afr+Ugl·Agl+2Ψ1·lwin]·∆t (4) 

where Qtr  is heat losses by transmission in W, Ψ linear thermal transmittance in W/m·K, Uwall thermal 

transmittance of wall in W/m2·K, Ufr thermal transmittance of frame in W/m2, Ugl thermal transmittance 

of glass in W/m2·K, Awall length of wall in m, Afr length of frame in m, Agl width of the glass, m, lwin 

length of the window in m and ∆t temperature difference between indoor and outdoor in K. 

3.  Results and discussions 

Through computer simulation of heat transfer for the simulation of coupling details, the following 

aspects were analysed: 

- the quantitative distribution of the temperatures field; 

- the quantitative distribution of the unitary heat flux transferred through the surface unit. 

The qualitative distribution of the temperature field through the surface unit, for the case of the 

coupling between the external wall and the standard window, in a horizontal section, is shown in figure 

5a, b, c, d, e. For the coupling details in which the passive window was used, the qualitative distribution 

of the temperature field is shown in figure 5f, g. 
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a) 

           
 b) c) d) e) f) g) 

Figure 5. Temperature field distribution, Case 1- (thermal bridge exterior 

wall intersection with ordinary/passive window- horizontal section). 

 

In the case of the details coupling in the case 1a, b, c, d, which uses the standard window as can be 

seen in the reference case, when the wall unprotected field distribution of the temperature is very varied, 

by applying the measures of thermal protection the coupling, a thermal stability of the component 

elements is obtained. 

A thermally efficient correction measure proves to be in the situation where the window is mounted 

in the field of insulation of the outer wall. 

0       20      40      60      80     100      120   140   160   180   200 

 
 W/m2 

 
a) 

       
 b) c) d) e) f) g) 

Figura 6. Total thermal flow Case 1- (thermal bridge exterior wall 

intersection with ordinary/passive window- horizontal section): 

a) - reference model (middle montage, Φu=233W/m2); b) - middle montage (δwi=10cm, Φt=326W/m2); 

c) - middle montage (δwi=10cm, δji=2cm, Φt=154W/m2); d) - montage in insulation (δwi=10cm, 

Φt=101W/m2); e) - montage in insulation , (δwi=20cm, Φt=96W/m2); f) - passive window (δwi=10cm, 

Φt=50W/m2); g) - passive window (δwi=20cm, Φt=47W/m2). 
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The best technical solution design and execution efficient thermal coupling, which can be adopted 

and offers very good thermal stability is when using a passive energy efficient window mounted 

exclusively in the passive field of external wall thermal protection. 

The second aspect of the qualitative evaluation of the heat transfer through the components of the 

building envelope is materialized by the distribution of the heat flow transferred through the surface 

unit, specific to the details of case 1, presented in figure 6a, b, c, d, e, f, g. 

From the analysis of the distribution of the total thermal flux through the simulation domains 

corresponding to case 1, it appears that, in the reference variant, the thermal flux transferred through the 

building elements of the building undergoes changes of intensity in the area where the thermal bridge 

manifests up to the reference value of 233 W/m2. 

Applying the thermal protection measures to the opaque element, the dissipation of the thermal flux 

through the thermal bridge is intensified, increasing by 40% from the reference value to 326 W/m2. If 

corrective measures are adopted by insulating the thermal bridge the dissipated thermal flux is reduced 

by 34% (up to 154 W/m2) compared to the reference situation, and by changing the position of the 

window in the field of wall insulation up to 59% (96 W/m2). If the specific conditions for passive houses 

are imposed by using the energy efficient windows installed in the insulation field, the unit thermal flux 

dissipated through the thermal bridge is reduced up to 80%, reaching the value of 47 W/m2. 

The results of the determinations of the physical parameters based on the calculation formulas 

presented above, which characterize the behaviour of the investigated details, applying certain strategies 

for limiting the effects of the thermal bridges with exterior wall intersection for ordinary and passive 

window, as well as the relative errors, ε, are summarized in table 2. 

Table 2. Physical parameters determination Case 1 

Case Φ2D,med  (W m-1) εΦ1  (%) Ψ1  (W m-1) εΨ1  (%) Qtr  (W) εQtr  (%) 

1a 92,49 0 0,279 0 481,9 0 

1b 50,88 -45,0 0,350 25,7 187,0 -61,2 

1c 46,31 -49,9 0,219 -21,3 176,0 -63,5 

1d 42,40 -54,2 0,108 -61,3 166,6 -65,4 

1e 35,51 -61,6 0,087 -68,8 122,9 -74,5 

1f 27,96 -69,8 0,056 -80,0 131,5 -72,7 

1g 20,69 -77,6 0,024 -91,3 86,8 -82,0 

Analysing the parameters summarized in Table 2 the following observations may be made: 

- the value of the thermal flux in the two dimensional field transferred through the simulation 

domain estimated by the Comsol software decreases by 77% from the reference value; 

- the linear thermal conductivity that characterizes the thermal bridge that generates the flow 

of heat through it increases with the thermal corrections brought to the opaque element, as 

in case b. With the adoption of strategies to reduce the dissipative effect of the thermal flux, 

there is a gradual decrease in the value of linear thermal conductivity by 91% compared to 

the reference case, very close to the upper limit of the passive domain of 0.01W/m·K. 

- the heat losses through transmission through an envelope element of the building generated 

by the presence of the thermal bridges specific to the analyzed case 1 are substantially 

reduced compared to the reference case by up to 82%, which leads to a considerable 

reduction of the heat requirement to cover these losses. 

4.  Conclusions 

Following the modelling and simulation of the heat transfer through the specific simulation domains of 

the analysed case, the following conclusions are drawn: 
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- the temperature distribution in the structure of the construction elements is directly influenced by 

the presence of linear thermal bridges due to the structural perturbations that occur at the contact 

between the construction materials with different thermal properties; 

- the technical solutions for the correction of the thermal couplings between the construction 

elements through thermo-protection measures and the use of energy efficient components for 

limiting the dissipative effects of the transferred thermal flow lead to substantial reductions in the 

heat loss through transmission at the building envelope level; 

- in addition to the energy efficiency of the building by reducing or eliminating the effects of thermal 

bridges, the risk of degradation of the structural elements or perimeter of the building is eliminated, 

and a healthy environment and a high inside thermal comfort for the occupants are achieved. 

Acknowledgments 

This work was partially supported by the internal grant GID-2018 of the Doctoral School of the 

Technical University of Civil Engineering of Bucharest. 

References 

[1] Constantinescu D 2008 Thermal Engineering Handbook Heat Engineering in Buildings 

[2] Blumberga A, Kamenders A and Pells M 2010 Thermal Bridge Impact on the Heating Demand 

in a Low-Energy, Sci. J. of Riga Technical Univ. Environmental and Climate Technologies 4 

[3] West C 2015 Thermal bridge analysis: An Introduction for Passive House Consultants 

ecohousesofvt.com  

[4] *** 2019 The Passive House Resource passipedia.org 

[5] Van Schijndel A W M and Schellen H L 2009 Teaching heat and moisture transport modeling for 

building physics engineering with COMSOL Int. J. Enging. 25 1145-57  

[6] *** 2005 Standard for heat engineering calculation of construction elements of buildings C107-

2005 Third Part: Calculation of the thermo-energetic performances of the construction 

elements of buildings 

[7] European Committee for Standardization 2008 Building components and building elements - 

Thermal resistance and thermal transmittance - Calculation method, LVS EN ISO 6946:2008A 

[8] Kotti S, Teli D and James P A B 2017 Quantifying Thermal Bridge Effects and Assessing Retrofit 

Solutions in a Greek Residential Building, Int. Conf. on Sustainable Synergies from Buildings 

to the Urban Scale, Procedia Environmental Sciences 38 306-13 

[9] COMSOL Multiphysics 2019 comsol.com/comsol-multiphysics 

[10] European Committee for Standardization 2008 Thermal bridges in building construction - Heat 

flows and surface temperatures – Detailed calculations, LVS EN ISO 10211:2008 

[11] European Committee for Standardization 2008 Thermal bridges in building construction - Linear 

thermal transmittance - Simplified methods and default values, LVS EN ISO 14683:2008. 


