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Abstract. Solar systems are widely used to mitigate the environmental impact of the energy 

sector and their importance has constantly increased due to the recent EU’s strategy to lower 

the CO2 emissions. Moreover, the newest Energy of Buildings Directive empathises the 

importance of producing energy from renewable sources to decrease the overall impact of 

buildings over the total end-use energy consumption. Generally, the systems’ performances 

are highly correlated with the incident solar radiation and outdoor air temperature. Thus, 

being able to accurately forecast these two parameters represents a vital step in dimensioning 

and maximizing the overall energy production. This Paper presents the results obtained by 

implementing a deep recurrent artificial neural network (ANN) trained with on year solar 

radiation data harvested from the UPB campus. The time series data was modelled using a 

special ANN architecture – the LSTM (Long Short-Term Memory) – due to its special 

designed internal ‘memory’ which increases its capabilities of predicting temporal sequence 

data. The model uses sequences of 24 hours and the resulted mean squared error (mse) for 

both training and validation data is under 30%.       

1. Introduction 

The importance of increasing the portion of renewable energy usage to mitigate the energy intensity of 

buildings is highlighted in the newest EU’s energy strategies (Energy Performances of Buildings 

Directive – Directive 2018/844 and Renewable Energy Directive – Directive 2018/2001/EU) [1, 2]. As 

generally defined in [3] achieving nZEB (nearly Zero Energy Building) standards cannot be done 

without solar systems, as they have great building integrability and the solar industry is mature enough 

to provide efficient systems [2].  

The solar systems’ performances are highly influenced by the incident solar radiation characterised 

by great volatility due to weather conditions’ randomness. Even though local or national meteorological 

organization provide estimations of some weather data, mostly in form of next day forecasts of outside’s 

air temperature and humidity, sky’s clearness, wind speed, etc, they provide little or no suggestive 

information of solar irradiance. Being able to accurately predict and forecast the solar radiation leads to 

properly designed solar (PV and thermal) systems to assure quality power to the electrical grid. 

Moreover, this has a direct impact over smart-grids’ efficiency as it allows the stakeholders to efficient 

develop demand-supply energy strategies. Moreover, an accurate forecast model is a prerequisite for 

optimizing the functioning of solar panels and design control tools.  

Due to these implications, models for estimating the solar radiation have been widely developed in 

the literature and can be classified in pure physical, statistical, and artificial intelligence methods [4]. 

The latter category implies machine learning or, even better, deep learning techniques which requires 

labelled data from which the algorithm can ‘learn’ and develop generalization capabilities. Deep 

learning techniques comprise Artificial Neural Networks (ANN) among other techniques and are widely 

used in classification, objects and face recognition and general regression problems [5] When the 

predicted feature is a real value, as in the case of solar radiation, the problem becomes a regression 

problem, and can be tackled using various ANN’s architectures. For this paper, a relatively new recurrent 

ANN (LSTM – Long Short-Term Memory) was used, mainly due to its internal ‘memory’ which makes 

it appropriate for tackling long time dependency timeseries data. The LSTM architecture is described in 

Chapter 3. 

mailto:carutasiu@gmail.com
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2 Data description and preparation 

For this paper data collected by a pyranometer mounted on the roof of UPB’s passive house was used. 

Details about the construction, data acquisition system and results can be found in [6, 7]. The data was 

harvested for one year, with hourly timestep. After analysing the data, it could be found that the 

pyranometer had a small drawback and during the night it transmitted a small signal which translates 

into negative solar radiation values (Figure 1). Thus, the negative values recorded during those periods 

were shifted to 0 W/m2. 

 
Figure 1. Solar Radiation for the first 96 hours before and after manipulation 

 

The device was not operational for several hours; thus, no data was recorded, resulting in just 8524 

datapoints instead of 8760. A brief statistical description of the used data can be found in Table 1, where: 

count – total non-null values, mean – mean value, std – standard deviation, min/max – minimum and 

maximum values, 25%, 50% and 75% - percentiles (a theoretical raw score which corresponds to a given 

percentile rank in a specified distribution [8]).  

Table 1. Solar radiation descriptive statistics 

count 8524.000 

mean  151.838 

std  255.350 

min 0.000 

25% 0.000 

50%  2.608 

75%  186.251 

max 1086.397 
 

Descriptive statistics include those that summarize the central tendency, dispersion, and shape of a 

dataset’s distribution. As can be observed, the value presents high variation (from 0 to 1086 W/m2) 

implying high dispersion. To use them in deep learning algorithms and forecasting problems, the data 

must be rescaled, usually normalized or standardised. This is very useful when computing the gradient 

descent algorithm, which, in fact, is used as optimizer in machine learning field and minimizes the error 

between model’s output and real data; thus, the forecasting capabilities of the neural net is, first, 

impacted by the scale of the data.  

Given the fact that there should be no negative values, the data was scaled using the min-max scaler 

algorithm [9, 10] and the new values were computed as follows:  

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
∙ (max − min ) + min                                          (1) 

where, in this case, min = 0 and max = 1 and the fraction is the standard deviation of the data. Scaled 

data variation is represented in Figure 2: 



The 7th Conference of the Sustainable Solutions for Energy and Environment
IOP Conf. Series: Earth and Environmental Science 664 (2021) 012043

IOP Publishing
doi:10.1088/1755-1315/664/1/012043

3

 

 
Figure 2. Scaled data 

After scaling, we split the data in two: a part to be fed to the ANN in the training period and a part 

to be used to test the model’s accuracy. Given the fact that the time dependency is crucial in this type of 

problem, the data has not been shuffled. Therefore, the model can learn the hourly, daily and seasons 

variations. Thus, data was divided as follows: training data – 80% (from which 10% represents the 

testing data) and validation data – 20%.  

3. Model development  

Any data observed sequentially over time is called time series data [11]. Moreover, if only one value is 

used to forecast itself, the series is called univariate time. To model and forecast this type of data, 

numerous algorithms are presented in the literature, ranging from simple (average, naïve, seasonal naïve, 

drift) to complex (linear regression, smoothing, ARIMA, vector autoregression – VAR), and extremely 

complex models based on artificial intelligence (through deep neural networks) [11].  

Recurrent neural networks (RNNs) are designed with a memory cell which allows them to keep track 

of short time memory by updating this cell at each considered time step [12]. These features allow RNNs 

to model sequential data by predicting the next real value or to classifying categorical data. However, 

these architectures of ANNs have a problem in ‘remembering’ long time dependencies in sequential 

data due to decaying error gradients (gradient vanishing issue); these usually implies getting stuck 

around local minima instead of global minimal error, decreasing the model’s efficiency [13]. 

These drawbacks were limited once a new architecture of RNN – long short-term memory (LSTM) 

– was presented in 1997 by S. Hochreiter and J. Schmidhuber [14]. The LSTM structure presents an 

extra cell, called ‘memory cell’ or ‘cell state’ which adds an extra weight to the passing-through data, 

giving the model the capability to ‘forget’ irrelevant data. The functionality of the LSTM neuron is 

assured by its multistep process: first, the data flow through the forget gate, where a logistic sigmoid 

activation function decides what information is kept; secondly, the input gate’s tanh activation function 

assures that relevant data is stored in the memory cell; last, the output is produced by passing the pre-

processed information through a last activation function and the output is produced [15]. An example 

on an LSTM neuron in present in Figure 3.  
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Figure 3. LSTM internal architecture  

[from https://commons.wikimedia.org/wiki/File:Long_Short_Term_Memory.png] 

These complex continuous computations result in very high dimension matrices (or tensors) which 

can be manipulated using the TensorFlow library [16] developed by Google and used for creating deep 

ANNs. Even more, an extreme useful API was developed by François Chollet [5] and named Keras 

(κέρας), after the Greek horn of abundance [17]. There tools were used in conjunction with Python to 

develop the Sequential model used to forecast the solar radiation data.  

When implementing the LSTM architecture in TensorFlow and Keras, the data used as inputs must 

be reshaped as an 3D tensor in the following shape: batch x timesteps x features [17]. The batch size is 

treated automatically by Keras in the training period and is not a required hyperparameter when first 

creating the model. However, the batch size was considered equal to 64 hours; the timestep of 24 hours 

(as the data has a 24-hour period; there is only one feature (the solar radiation value at a given timestep). 

Moreover, we intent to forecast the value of the 25th hour by using the previous 24 hours and so one, 

generating a dynamic sliding window of values. The first 4 sliding windows are depicted in Figure 4, 

where the red boxes represent the forecasts; the forecasted value from first window represents the 24th 

known value for the second window and so on. 

 
Figure 4. Sequential data forecast for 4 windows 

Considering all these facts, we built a deep network with the following configuration:  

Table 2. LSTM network’s configuration 

Type of layer Number of neurons Activation function  
LSTM 132 ‘relu’  

Dropout 0.2 -  

LSTM 64 ‘relu’  

Dropout 0.2 -  

LSTM 13 ‘relu’  
Dense 1 'relu'  

 
The input data flows through the first LSTM layer consisting in 132 neurons and after being 

processed here, it serves as input for the second layer: Dropout layer; this is a very useful tool when 
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training a neural network with large datasets because it prevents the network to overfit. Dropping out a 

randomly number of a layer’s output features in the training process is considered the most effective 

regularization techniques [5]. The data flow is then processed through two LSTM layers (64 and 13 

neurons), two 20% Dropout layer) and a Dense layer which provides the output.  

After establishing the configuration, the model is compiled and trained. Compiling the model means 

choosing the right optimization technique; it used to minimize the error between the model’s output and 

the real data. For this type of model, Adam optimizer with 0.0013 learn was chosen to find the global 

mean squared error (mse). 

The training process uses the 80% from the data, 20 epochs (an epoch means that all the data is 

process by the network) and a batch size of 168 samples to find the best weights that satisfies the global 

minimal error. Tuning all the hyperparameters described in this section was made through several tries-

and-error analysis.  

4. Results  

The first thig plotted after the optimization and training processes was the loss values for both training 

and testing data. The model is trained on 6881samples and validated on 765 samples; the loss values 

were computed after each epoch and are presented in Figure 5.  

 
Figure 5. Loss values for both training and testing data for each of the 20 epochs considered 

As observed, both losses have a descendent trend and over or underfitting did not occurred. As 

expected, the highest loss value is at the first epoch, when the computed value was 0.335; the lowest 

loss value occurred for the testing dataset at the last epoch (0.038). As the graph suggests, after the tenth 

epoch, there are no remarkable decrease in the loss value, therefore the model would have the same 

accuracy even if trained less. Matter of fact, the optimum number of epochs is 13. It is worth mentioning 

that the simulation time improvement is out of the scope of this Paper.  

After analysing the training and testing errors, we plotted the next hour forecast (hour number 6882); 

this value was not seen by the ANN, because it is the first value from the validation dataset. We also 

compared it with the real value and the difference is presented in Figure 6. The absolute error between 

the forecasted value and the real value is 13 W/m2, equivalent to 32% relative error.  
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 Figure 6. Forecasted vs. real value for the 6882nd hour 

The forecast for 72 hours period is depicted in Figure 7, while the values for a 144-hour period are 
presented in Figure 8. 

 
Figure 7. Comparison between forecasted and real data for the first 72 hours form the validation 

dataset 

 
Figure 8. Comparison between forecasted and real data for the next 1442 hours form the validation 

dataset 

In figure 9 it is presented the last values of the training set, considered to be the history data and all 

the forecasted values – on unseen data; in the lower part is presented the comparison between real and 

forecasted data. As can be seen, the model proposed algorithm shows very good accuracy and captures 

well daily and seasonal solar radiation. 



The 7th Conference of the Sustainable Solutions for Energy and Environment
IOP Conf. Series: Earth and Environmental Science 664 (2021) 012043

IOP Publishing
doi:10.1088/1755-1315/664/1/012043

7

 

 
Figure 9. Comparison between the validation dataset and forecasted solar radiation values.  

For the entire data set, the train and validation errors ware: 

• Train Mean Absolute Error: 40.70 % 

• Train Root Mean Squared Error: 79.34 % 

• Test Mean Absolute Error: 16.40 % 

• Test Root Mean Squared Error: 37.89 %  

5 Conclusions and future work 

This paper presents an end-to-end project on timeseries forecast using a special designed type of 

artificial neuronal network – long short-term memory (LSTM). Even if there are several related Papers 

in the literature, no one presents the full algorithm on how to prepare the data and how to set the 

network’s hyperparameters; these are the most important factors in the research’s reproducibility. 

The LSTM network was used to forecast the solar radiation using a data harvested on the University 

POLITEHNNICA of Bucharest Campus. The proposed model showed very good accuracy if data was 

pre-processed by eliminating the nonvalues and scaling it to values between 0 and 1; this was achieved 

using a min-max scaler algorithm. Using Python programming language and TensorFlow and Keras 

APIs, we built a deep neural network with one input layer, three LSTM hidden layers (each one with a 

Dropout layer) and one output layer. This model forecasted every 25th value from a 24-value sliding 

window and the loss accuracy for both training and testing data was under 0.3; in addition, the loss for 

the test dataset was lower than the training dataset, meaning that the model accurately learnt the daily 

solar radiation path. The plots of validation data set vs. forecasts highlights the model’s efficiency. 

Next, we will extend the model to forecast the outdoor air temperature and the soil temperature using 
data collected from the same site. This can improve even mode the forecast of the solar radiation, as 
there is a tight connection between these tree weather parameters. Moreover, if the future model will 
provide good accuracy for the soil temperature, it will be used in analysing the energy production of 
different heat pumps or air-to-ground heat exchangers (for example Canadian wells). 
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