
IOP Conference Series: Earth and
Environmental Science

     

PAPER • OPEN ACCESS

Effects of alloying elements on the dissolution and
diffusion of Bi in Sn: A first-principles study
To cite this article: Lu Sun et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 657 012018

 

View the article online for updates and enhancements.

You may also like
Strengthening effect of molybdenum (Mo)
addition in Sn-58Bi alloy during isothermal
aging
Linmei Yang, Ting Li, Cong Liu et al.

-

The Solid Solubility of Bi in GaP
A. S. Jordan, F. A. Trumbore, D. L. Nash
et al.

-

Influence of Bi on the temperature
dependent fundamental band gap
parameters of GaSb1xBix
Akant Sagar Sharma and S Dhar

-

This content was downloaded from IP address 18.216.230.107 on 04/05/2024 at 20:28

https://doi.org/10.1088/1755-1315/657/1/012018
/article/10.1088/2053-1591/ab484e
/article/10.1088/2053-1591/ab484e
/article/10.1088/2053-1591/ab484e
/article/10.1149/1.2133001
/article/10.1088/2053-1591/aafeee
/article/10.1088/2053-1591/aafeee
/article/10.1088/2053-1591/aafeee
/article/10.1088/2053-1591/aafeee
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstUYiLwKF1GYpcUJqBR52NDtMOBAHxIkyMKV9BGhNaZjbTfandpVaBSqcxI7wTeAVCXfWIAvKkYmHCoD3W2IMxFTS2UajFYTeKEOjxhmzbP33t6vx-TljICVes1ihJxt88jibW6WMevK5WqW-pX2yvVpfJ_Mas4e4ZQBLSTvUnk6t3iAfCC8dkepBsbGcpIoBDUnPjK5sfVKT446-cH2KvDGTLxzcpGr5J3bohTWc4El4HQx0lgiue85jWYyYEmLUl4Lo7ACEIMHGsMW7HGW4EuWHl-Kzf8VIfDnhvZTyEb922n05TCgieI5nkCzlyYOYPwJu5E-IwmbxoDXjmf6Zzl-UOXhA&sig=Cg0ArKJSzJxM7aPFAvpD&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

2020 International Symposium on Energy Environment and Green Development
IOP Conf. Series: Earth and Environmental Science 657 (2021) 012018

IOP Publishing
doi:10.1088/1755-1315/657/1/012018

1

 
 
 
 
 
 

Effects of alloying elements on the dissolution and diffusion of 
Bi in Sn: A first-principles study 

Lu Sun1,2,3 *, Jiasi Yan1,2,3, Limin Wang1,2,3, Wei Xiao1,2,3 

1State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd., 
Beijing 100088, PR China  
2 GRIMAT Engineering Institute Co., Ltd., Beijing 100088, PR China 
3 General Research Institute for Nonferrous Metals, Beijing 100088, PR China 
*Corresponding author e-mail: sunlu@grinm.com 

Abstract. Interfacial Bi segregation in Sn-based solders is a critical issue that affects the 
reliability of solder joints. Doping alloying elements into Sn-Bi solders is considered as a 
potential way to improve the Bi precipitation. We provided insights into the mechanism of Bi 
segregation at the atomic scale, by calculating the dissolution and diffusion energies of Bi in the 
Sn bulk. Importantly, we investigated the effects of alloying elements on the Bi dissolution and 
diffusion, which varies much with element species. The addition of elements such as Pt, Pd, and 
Au could enhance the dissolution and weaken the diffusion of Bi in the Sn bulk, thus suppressing 
the interfacial Bi segregation to some extent. However, other elements such as In, Ag, Sb, and 
Ga have slight impacts on the dissolution and diffusion of Bi. The bonding characters between 
the third elements, Bi, and Sn atoms explain different influences of alloying elements on Bi 
segregation in Sn-based solders. 

1.  Introduction 
Sn-Pb solders were widely employed as micro-nano interconnect materials in electronic packaging, due 
to low production cost, suitable operating temperature and good mechanical properties [1]. However, 
the long-term use of toxic lead elements will endanger human health and pollute the environment [2,3]. 
Hence, numerous research efforts have been devoted to achieve lead-free in solders by fabricating 
various types of Sn-X alloys [4]. Sn-Bi solders are one of the most promising candidates for replacing 
traditional Sn-Pb solders, because they have good wettability, high tensile strength, and low melting 
point particularly [5].  

Since Bi is brittle in nature, the formation of Bi-rich phases at the interface will have an adverse 
effect on the mechanical properties of Sn-Bi solders [6,7], reducing the tensile strength and plasticity. 
In order to improve the interfacial Bi precipitation, alloying elements with minor amounts were added 
into Sn-Bi solders to refine the microstructure and the mechanical property [8]. It was reported that the 
addition of In [4], Ag [9], Sb [10], Ni [6], Al [6], Zn [11], and Cu [11] could increase the tensile strength 
of Sn-Bi solders. However, the impacts of alloying elements vary with element species and doping 
concentrations [5,12]. It is thus desirable to unravel the explicit effects of the third elements on Bi 
coarsening in Sn-based solders.  

Atomic calculations based on density functional theory (DFT) are widely applied in predicting the 
properties of materials and revealing the underlying microscopic mechanism. In this paper, we employed 
first-principles methods in the framework of DFT to study the influence of alloying elements M (Pt, Pd, 
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Au, In, Ag, Sb, Ga, Al, Cu) on the dissolution and diffusion behavior of Bi in Sn, which is related with 
the interfacial Bi segregation at the atomic scale. We computed the dissolution energies and diffusion 
energy barriers of Bi with the presence of the third elements M. Then, we discussed the bonding 
interactions between M, Bi and Sn atoms to reveal the essential reason for different impacts of M on the 
Bi segregation. Based on the results, we screen out several alloying elements that show positive effects 
to suppress the Bi segregation from the Sn bulk towards the surface. 

2.  Computational details 
We employed the projector-augmented wave (PAW) [13] method with spin-polarization as implemented 
in the Vienna ab initio simulation package (VASP) code [14,15]. The electron exchange and correlation 
was treated using the generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) 
form [16]. The energy cutoff for the plane wave basis was set to 420 eV. β-Sn adopts a body-centered-
tetragonal (b.c.t) structure (see Fig. 1a), and is experimentally stable at temperatures above 286 K [17].  
The calculated lattice constants are a = 5.93 Å and c = 3.22 Å, which are in agreement with experimental 
values [18] and previous first-principles calculations [19]. We constructed a (2×2×4) supercell of β-Sn 
with 64 atoms to simulate the interactions between M atom and Bi. A (3×3×3) k-point mesh generated 
by the Monkhorst-Pack method was used to sample the Brillouin zone. The atom positions were fully 
relaxed until the force on each atom was less than 0.01 eV/Å. 

The dissolution energy of the doped atom M in the Sn bulk is defined as 

Esol M Etot Snbluk M Etot Snbluk ∑i ni 𝜇i,                                  (1) 

where Etot Snbluk M  is the total energy of Sn supercell with a doped atom M, and Etot Snbluk  is the 
total energy of the same Sn supercell.  μi is the chemical potential of the doped atom which is referenced 
to the energy of Mi bulk per atom.  ni is the number of Mi that have been added to ( ni 0) or removed 
from ( ni 0) the supercell.  

3.  Results and discussions 

3.1.  Influence of M atom on Bi dissolution 
When Bi dissolving in the Sn bulk, it prefers to substitute one Sn atom in the bulk. The dissolution 
energy of Bi is calculated using Eq. (1), which is 0.16 eV. The positive value suggests that the Bi 
dissolution in Sn is an endothermic process. The alloying elements M doped in the Sn bulk also favour 
the substitutional sites. The calculated dissolution energies of M atoms (Ag, Au, Pt, Pd, In, Sb, Al, Cu, 
Ga) are shown in Table 1. We find that the dissolution energies vary much with element species. For 
Pd, Pt, and Au, the dissolution energies are negative which are in the range of 0.86 ~ 0.43 eV, 
indicating that they can very easily be added into Sn as solute atoms. Elements such as Ag, In, Sb, and 
Ga have dissolution energies around 0 eV. This suggests that these alloying elements can be doped in 
Sn without much energy gain or energy loss. While, the dissolution energies of Cu and Al are more 
positive compared with other elements.   
 



2020 International Symposium on Energy Environment and Green Development
IOP Conf. Series: Earth and Environmental Science 657 (2021) 012018

IOP Publishing
doi:10.1088/1755-1315/657/1/012018

3

 
 
 
 
 
 

 
Figure 1. (a) Atomic structure of β-Sn with the addition of Bi and M atom. (b) Diffusion paths of Bi 

from one Sn lattice site to the neighbouring vacant site. The purple sphere represents the Bi atom, the 
yellow sphere shows the M atom, and the other spheres represent the bulk Sn atoms. 

Table 1. Dissolution energies [Esol M ] of M atoms in the Sn bulk. 
Add element Pt Pd Au In Sb Ag Ga Al Cu 
Esol M  (eV) 0.86 0.72 0.43 0.05 0.07 0.02 0.01 0.19 0.48 

We then place the alloying elements at the nearest-neighbouring site of Bi in the Sn bulk to explore 
their impacts on the Bi dissolution, as shown in Fig. 1(a). We computed the dissolution energies of Bi 
with the presence of M atom and displayed the results in Fig. 2. The changes in Bi dissolution energies 
are different with different elements. The addition of Pt, Pd, and Au leads to a great decrease of Bi 
dissolution energy which changes from 0.16 eV to 0.86 eV, 0.72 eV, 0.43 eV, respectively. The 
results show that the dissolution of Bi in the Sn bulk becomes more energetically favourable when Pt, 
Pd, and Au is doped. The enhanced dissolution of Bi in the Sn bulk may reduce the tendency of Bi 
segregation towards the surface. On the other hand, the Bi dissolution energies remain nearly unchanged 
with the addition of Ag, In, Sb, and Ga. When Cu and Al is doped in Sn, however, the dissolution of Bi 
becomes more unstable with a dissolution energy of 0.45 eV and 0.34 eV, respectively. 

 
Figure 2. Formation energies of Bi in the Sn bulk with the presence of M atoms. 

3.2.  Influence of M on Bi diffusion 
Kinetically, the segregation of Bi would be affected by the diffusion of Bi. We thus computed the 
diffusion barriers of Bi in the Sn bulk for the diffusion paths shown in Fig. 1(b), using the climbing-
image nudge elastic band (CI-NEB) method [20]. Since Bi prefers the substitutional site in Sn, the 
diffusion of Bi follows the vacancy mechanism. Bi would jump from one Sn lattice site (e.g., C1 site in 
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Fig. 1b) to another neighbouring vacant site (e.g., C2 site), leaving C1 site as a vacancy. The diffusion 
energies as a function of reaction coordinate of Bi along the diffusion paths of C1–C2, C1–C3, and C3–
C4 are shown in Fig. 3. We find that the diffusion energy barrier of Bi is related with the distance 
between initial and final states and the motion trajectory. The Bi diffusion along the C1–C3 path has the 
highest energy barrier of 0.44 eV with a maximum distance of 4.50 Å. For diffusion paths of C1–C2 
and C3–C4, the energy barriers of Bi diffusion are 0.10 eV and 0.17 eV, respectively. It is noted that the 
C1–C2 diffusion path with a distance of 3.83 Å has a lower energy barrier than that of the C3–C4 path, 
of which the distance is 3.07 Å. This should be ascribed to different jumping trajectory of Bi along the 
diffusion path. Namely, the Bi diffusion along the C1–C2 path is a linear way, while the C3–C4 diffusion 
path is zigzag, as shown in the left insets in Fig. 3(a) and (c).   

 
Figure 3. Migration profiles and energy barriers for Bi diffusion along routes C1–C2, C1–C3, and C3–

C4 in the Sn bulk. The atomic configurations of Sn bulk are shown in the insets on the left, and the 
small purple spheres represent each positions of Bi atom along the diffusion path. 

Next, we evaluate the influence of alloying elements on the diffusion behavior of Bi. We choose the 
C1–C2 diffusion path with the lowest energy barrier as the research object, and place the M atom at the 
neighboring site of C1 and C2 (see Fig. 1a). Since the Bi diffusion follows the vacancy mechanism, the 
activation energy for Bi diffusion is the sum of the energy barrier and the vacancy formation energy. 
Considering the vacancy formation energy as 0.62 eV in Sn, the activation energy for Bi diffusion along 
the C1–C2 path is 0.72 eV. With the presence of Pt, Pd, Au, In, Sb, Ag, and Cu, the activation energies 
of Bi are changed to 1.02 eV, 0.93 eV, 0.80 eV, 0.78 eV, 0.75 eV, 0.73 eV, and 0.90 eV, respectively. 
The increase of energy barrier suggests that the Bi diffusion would be limited with the presence of M 
atoms. Therefore, according to our calculations, the addition of Au, Pd, Pt, and Cu could restrict the Bi 
diffusion process in the Sn bulk. 
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3.3.  Interactions between M and Bi 
We have revealed the influences of alloying elements on the dissolution and diffusion behaviors of Bi 
in the Sn bulk in above discussions. Different M atoms play different roles in changing the solution 
energy and diffusion energy barrier of Bi. In this section, we analyzed the bonding characters between 
M, Bi, and Sn atoms to reveal the essential reasons for different impacts of alloying elements on the Bi 
segregation. We employed the density derived electrostatic and chemical (DDEC6) method 
implemented in the CHARGEMOL program [21,22] to calculate the bonding strengths between Bi-M, 
Sn-M, and Sn-Bi bonds, as marked in Fig. 1(a). The results of calculated bond orders are listed in Table 
2. Compared with the Sn-Bi bond order of 0.09 without the M atom, the bond strength is obviously 
increased with the addition of Pt, Pd, and Au. Moreover, the bond orders of Bi-M and Sn-M bonds are 
increased for the cases of Pt, Pd, and Au. This indicates that the bonding interaction between Bi, Sn, and 
M atoms in the system is enhanced when doping elements such as Pt, Pd, and Au. This should also 
explain the decrease of dissolution energy and the increase of diffusion energy barrier of Bi in Sn with 
the presence of Pt, Pd, Au in the above sections. Therefore, we could conclude that the interfacial Bi 
segregation in Sn solders would be suppressed to some extent when doping with Pt, Pd, Au. For elements 
such as In, Ag, Sb, etc., which shows tiny effects on the Bi dissolution and diffusion in Sn, the bond 
orders of Sn-Bi, Bi-M, and Sn-M bonds are also sightly been changed. According to our calculations, 
the addition of Cu makes the Bi dissolution in Sn more difficult with an increased dissolution energy, 
but shows a positive effect in holding back the diffusion of Bi. The bond order analysis shows that the 
Sn-Bi bond is apparently increased with the presence of Cu. However, the bond orders of Sn-Cu and Bi-
Cu are decreased compared with the corresponding Sn-Bi bonds, leading to the unchanged sum of bond 
orders. Hence, the exact impact of Cu on the Bi segregation needs further exploration.    

Table 2. Bond orders of different bonds between Sn-Bi, Bi-M, and Sn-M.  
Element  Sn Pt Pd Au In Sb Ag Ga Al Cu 

Bond 
order 

Sn-Bi 0.09 0.17 0.17 0.15 0.11 0.10 0.14 0.12 0.12 0.19 
Bi-M 0.46 0.61 0.49 0.45 0.42 0.44 0.39 0.43 0.49 0.42 
Sn-M 0.35 0.56 0.43 0.39 0.29 0.33 0.32 0.26 0.28 0.32 

4.  Conclusions 
We have performed first-principles calculations on the effects of alloying elements M (Pt, Pd, Au, In, 
Sb, Ag, Ga, Al, and Cu) on the dissolution and diffusion of Bi in the Sn bulk. By calculating the 
dissolution energy and diffusion energy barrier of Bi in Sn with the presence of M atoms, we find that 
different M atoms play different roles in changing the energetics. When adding Pt, Pd, and Au into the 
Sn bulk, both the dissolution energy and diffusion energy barrier of Bi were increased. This indicates 
that these elements would have positive effects in suppressing the interfacial Bi segregation in Sn. Our 
bond order analysis shows that the enhanced bond strength between M, Bi, and Sn atoms is the essential 
reason for this result. While, the dissolution and diffusion behavior of Bi in Sn has been only slightly 
changed in the presence of In, Sb, Ag, Ga, and Al. Our studies would provide a theoretical reference for 
the design of Sn-Bi solders with minor addition of alloying elements to improve the Bi-rich phase 
coarsening. 

Acknowledgments 
This work was supported by the National Natural Science Foundation of China (Grant No. 11804293). 

References 
[1] Suganuma, K. (2001) Advances in lead-free electronics soldering. Current Opinion in Solid State 

and Materials Science, 5(1): 55–64. 
[2] Kotadia, H. R., Howes, P. D., & Mannan, S. H. (2014) A review: On the development of low 

melting temperature Pb-free solders. Microelectronics Reliability, 54(6-7): 1253–1273. 
[3] Talas, S., Gökçe, B., & Çakmakkaya, M. (2016) Sn-Pb and lead free solders containing active 

carbon particles. IOP Conference Series: Materials Science and Engineering, 146: 012043. 



2020 International Symposium on Energy Environment and Green Development
IOP Conf. Series: Earth and Environmental Science 657 (2021) 012018

IOP Publishing
doi:10.1088/1755-1315/657/1/012018

6

 
 
 
 
 
 

[4] Chen, X., Xue, F., Zhou, J., & Yao, Y. (2015). Effect of In on microstructure, thermodynamic 
characteristic and mechanical properties of Sn–Bi based lead-free solder. Journal of Alloys 
and Compounds, 633: 377–383. 

[5] Osterman, M., & Dasgupta, A. (2007) Life expectancies of Pb-free SAC solder interconnects in 
electronic hardware. Journal of Materials Science: Materials in Electronics, 18(1-3): 229–236. 

[6] Yang, F., Zhang, L., Liu, Z., Zhong, S., Ma, J., & Bao, L. (2016) Properties and Microstructures 
of Sn-Bi-X Lead-Free Solders. Advances in Materials Science and Engineering, 2016: 1–15. 

[7] Sandnes, E., Williams, M. E., Vaudin, M. D., & Stafford, G. R. (2008) Equi-Axed Grain 
Formation in Electrodeposited Sn-Bi. Journal of Electronic Materials, 37(4): 490–497. 

[8] Wang, F., Chen, H., Huang, Y., Liu, L., & Zhang, Z. (2019) Recent progress on the development 
of Sn–Bi based low-temperature Pb-free solders. Journal of Materials Science: Materials in 
Electronics. 

[9] Dong, W., Shi, Y., Xia, Z., Lei, Y., & Guo, F. (2008). Effects of Trace Amounts of Rare Earth 
Additions on Microstructure and Properties of Sn-Bi-Based Solder Alloy. Journal of 
Electronic Materials, 37(7), 982–991. 

[10] Huang, Y.C., Gierlotka, W., & Chen, S. (2010) Sn–Bi–Fe thermodynamic modeling and Sn–
Bi/Fe interfacial reactions. Intermetallics, 18: 984–991. 

[11] Shen, J., Pu, Y., Yin, H., Luo, D., & Chen, J. (2014) Effects of minor Cu and Zn additions on the 
thermal, microstructure and tensile properties of Sn–Bi-based solder alloys. Journal of Alloys 
and Compounds, 614: 63–70. 

[12] Sakuyama, S., Akamatsu, T., Uenishi, K., & Sato, T. (2009) Effects of a Third Element on 
Microstructure and Mechanical Properties of Eutectic Sn-Bi Solder. Transactions of The Japan 
Institute of Electronics Packaging, 2(1): 98–103. 

[13] Blöchl, P. E. (1994) Projector augmented-wave method. Physical Review B, 50(24): 17953–
17979. 

[14] Kresse, G., & Hafner, J. (1993) Ab initiomolecular dynamics for liquid metals. Physical Review 
B, 47(1): 558–561. 

[15] Kresse, G., & Furthmüller, J. (1996) Efficiency of ab-initio total energy calculations for metals 
and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1): 15–
50. 

[16] Kohn, W. (1996) Density Functional and Density Matrix Method Scaling Linearly with the 
Number of Atoms. Physical Review Letters, 76(17): 3168–3171. 

[17] Hong, L. B., Ahn, C. C., & Fultz, B. (1995) The Debye temperature of nanocrystalline β–Sn 
measured by x-ray diffraction. Journal of Materials Research, 10(10): 2408–2410. 

[18] Nagasaki, S. (1966). Structure of metals. Chemical Education, Beijing. 
[19] Yu, C., & Lu, H. (2007) First-principles calculations of the effects of Cu and Ag additions on the 

electromigration of Sn-based solder. Journal of Applied Physics, 102(5): 55. 
[20] Román-Pérez, G., & Soler, J. M. (2009) Efficient Implementation of a van der Waals Density 

Functional: Application to Double-Wall Carbon Nanotubes. Physical Review Letters, 103: 
096102. 

[21] Manz, T. A., & Limas, N. G. (2016) Introducing DDEC6 atomic population analysis: part 1. 
Charge partitioning theory and methodology. RSC Advances, 6(53): 47771–47801. 

[22] Manz, T. A. (2017) Introducing DDEC6 atomic population analysis: part 3. Comprehensive 
method to compute bond orders. RSC Adv., 7(72): 45552–45581. 


