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Abstract: This paper proposes a fault identification method based on BP neural network and 
wavelet packet, which extracts the fault transient eigenvalues of the three-phase current and 
zero-sequence current from measurement data under the fault conditions. Firstly, the 
eigenvalues of three-phasors are sampled under the typical faults, such as single-phase ground 
fault, two-phase short-circuit fault, two-phase ground short-circuits fault, and three-phase 
short-circuit fault. Secondly, the three-phase current and the zero-sequence current are 
subjected to wavelet packet transform to extract the eigenvalues, which are viewed as the input 
of the neural network to determine the fault type. Finally, simulation results show that the 
proposed method can give reliable identification results under different fault conditions. 

1. Introduction 
Fault identification is a vital function of the advanced applications in distribution networks. At present, 
a large number of works have begun to focus on the phasor measurement unit (PMU) in fault 
identification. Reference [1-5] proposed many fault diagnosis methods using synchronous 
measurement data. Reference [6] established a reference failure mode containing timing stamps based 
on the typical failure types. When a fault occurs, the phasors under a fault condition is different from 
that under normal operation condition. Reference [7] proposed an online fault identification method 
based on PMU measurement data. Firstly, the grid was divided into multiple monitoring areas. Then, 
the abrupt characteristic of the positive sequence, negative sequence, and zero sequence current at 
boundary nodes are used to identify the fault types. Reference [8] proposed a method of fault 
identification and location for a smart grid based on the Petri net (PN). Reference [9-11] uses the PMU 
measurement data and the bus node impedance matrix to determine the fault section, diagnose the 
specific fault line, and identify the fault types. In [12], a fault identification method based on positive, 
negative, and zero sequence components and probabilistic neural network (PNN) is proposed. 
Reference [13-15] uses voltage phasor and switching information post-failure to identify faulty type 
through the PMU and the direction relay status. In [16-20], the fault diagnosis methods of active 
distribution networks based on D-PMU information and Petri net are proposed, where fault diagnosis 
is carried out by using Petri net technology through fault element library and fault diagnosis model. 

In this paper, the three-phase current and the zero-sequence current are subjected to wavelet packet 
transform to extract the eigenvalues viewed as the input of the neural network. Firstly, this paper 
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analyzes the transient fault characteristics of various faults in Section 2. Then, the fault feature values 
extracted by the wavelet packet transform for measurement data are viewed as the input of the BP 
neural network in Section 3. Finally, the proposed method can be verified by using PSCAD under 
various faults types in Section 4. Conclusions are drawn in Section 5. 

2. Wavelet packet transform 
The overall framework of the proposed identification algorithm is shown in Figure 1. According to the 
three-phase current and zero-sequence current, the eigenvalues demonstrate the difference under 
different conditions. The extracted eigenvalues are normalized to get eA、eB、eC and e0 . Then the 
processed data are input into the trained BP neural network to identify the fault type, which has been 
classified into two steps: fault feature extraction and data training [21-24]. 
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to eC

Wavelet packet 
transform to 

extract features

Normalized 
to e0

Wavelet packet 
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extract features
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Fig1. Block diagram  for fault type identification algorithm 

 
In this paper, the proposed identification method can identify 10 different fault types, such as 

single-phase grounding fault (AG, BG, CG), two-phase phase short-circuits fault (AB, BC, CA), 
two-phase grounding short-circuits fault (ABG, BCG, CAG), three-phase short-circuit fault 
(ABC)[25,26]. 

The traditional identification method is based on Fourier transform (FT) or the corresponding 
improved methods [27,28]. In non-stationary cases, FT displays special frequencies due to some 
power quality indices errors [29,30]. Different from FT, wavelet analysis can represent signals in any 
frequency domain by using Wavelet Packet Transform (WPT), which provides more accurate results 
than FT especially for non-stationary voltage or current waveform under the sinusoidal or 

non-sinusoidal situations[31,32]. To obtain the high-frequency detail signal coefficient 1( ) 8( )d k d k  

and low-frequency signal coefficient 8( )a k  ( )d j k  are used to represent the wavelet packet 
coefficients of the kth node in the jth layer. The energy values of three-phase current and zero 
sequence current calculated by wavelet packet are used as fault features to identify fault types. From 
formula (1), the high-frequency energy values EA, EB, EC, and E0 of the IA、IB、IC、I0 wavelet 
packet can be obtained. 
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 (1) 

Where   represents A, B, C, and zero sequence components. 

If the calculated value E  is too large, it will make it difficult for researchers to understand the 
effective information. Thus, it is necessary to normalize energy eigenvector. The normalized value of 
eA、eB、eC、eD can be obtained simply by equation (2). 

  max , , , 0e E E E E EA B C   (2) 

When a fault occurs, the energy eδ will increase rapidly, which is significantly greater than that 
under normal operating conditions [33]. For the grounding faults, the zero-sequence current 
eigenvalue under a ground fault will be significantly greater than that under the non-ground-fault 
conditions [34].  According to the above analysis, whether the fault occurs or not can be completed 
by the energy normalizing processes, which are shown in Figure 2 under 10 different fault types. 

 
Fig.2 Energies under 10 different fault types 

It can be obtained from Fig. 2 that the eigenvalues of three phases are also significantly larger than 
that of the zero-sequence current under the non-ground fault. Similarly, when other types of faults 
occur, these eigenvalues will also show different characteristics. 

3. Back propagation neural network 

3.1 Model  
Compared with traditional methods, Back Propagation (BP) neural network has excellent advantages 
in adaptability, calculation efficiency, learning ability, and prediction accuracy, which can effectively 
solve the non-linearity problems with arbitrary variables. In the proposed BP neural network, the 
calculation direction is unidirectional, and the neurons have no correlation process [35]. Figure 3 shows 
the basic structure of the BP neural network, where both the connection weight between the two layers 
of the network and the calculation threshold of each neuron can make the output of the BP neural 
network tend to reach the forecasting value yn. 

In Figure 3, x1, x2,…, xn are the input values of the neural network, y1, y2,..., yn are the 
forecasting values of the neural network, ωij and ωjk are the connection weights between the different 
layers. 

 
Fig.3 BP neural network 
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Before training based on BP neural network, it is necessary to input a certain number of fault 
samples in advance. The training steps are shown in Figure 4. 

Start

Network initialization

Provide learning samples

The output and input values of each unit in 
hidden layer and output layer are calcuated

 Calculate the deviation between the target 
output and the actual output

 Find the maximum absolute value of deviation

Is the training error satisfied？

 The predicted value is given

End

 Adjust the weight and threshold between the 
layer

  The general errors of each element in the 
output layer and the hidden layer are calculated

N

Y

 
Fig.4 training steps in BP neural network 

3.2 Algorithm 
The BP neural network is mainly composed of forwarding propagation and back-propagation. In the 
first stage, the algorithm transmits the input data to the input layer, and then to obtain the output layer 
after calculating the hidden layer [36]. The state of the next layer is only affected by the state of the 
upper layer. If the output value in the first stage does not reach the expected value, the 
back-propagation will be transferred to the second stage, where the weight of each layer will be 
adjusted in real-time according to the difference of each layer. After adjusting the weights of each 
layer in propagation, the proposed algorithm is terminated until the output layer meets the expected 
value [37].  

(1) Using forward propagation to calculate the output value of each layer 

The output ly  of l-th layer can be expressed as: 

 1 ll l lu w x b    (3) 

  l ly f u  (4) 

Where lw  is the weight, xl 1  is the input of layer l-1, ly is the output of layer l, and lb is the offset. 

( )f   is the activation function. 

(2) Calculate cost function  

In the learning phase, the given data consists of N training samples. The square error function is 
described as 
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  2 21 1
1 22 2

n nnN c ny yt tE k k k   
 (5) 

Where n
ky  and n

kt are the k-th output and input respectively in the training sample, c is the number of 

fault types. Equation (5) represents the sum of the errors for the training samples, where the error of 
the n-th sample can be expressed by equation (6). 

  2 21 1
1 22 2

e n nnN ny yt tE k k k
    

 (6) 

(3) Calculate the error of output layer 

The sensitivity of output layer neurons can be expressed as follows 

    nL L nyf u t    (7) 

Where ny  and nt  represent the real output value and label value of the n-th sample respectively, and l is the 

l-th output layer. 

(4) Calculate the error of the layers  

The sensitivity of the neuron can be expressed by the derivative of the backpropagation error, its 
definition is as follows: 

 u
b u b
E E    
  

 (8) 

Where δ is the sensitivity of each neuron and u b 1   can be obtained from formula (8), so 

/ /E b E u        . 

The sensitivity L  of the first layer can be expressed as: 

    11 TL ll lfw u      (9) 

Where: " "  is the multiplication of all elements in the above formula, 1l  is the sensitivity of 

neurons in the l+1 layer. 
(5) Update the weight 
 The weight of each neuron is updated by using the following equations. 

  1 TE llxlw


 


 (10) 

 Elw lw
  


 (11) 

Where   is the learning rate. The number of neurons in the input layer is the same as that of 
three-phase current and zero sequence current extracted by the wavelet packet transform. The number 
of hidden layers can be obtained by the following formula: 

  
1

k m n a2    (12) 

Where m is the number of output layers, k is the number of hidden layers, n is the number of input 
layers, a is the given constant, and the output layer is [A B C G]. When a fault occurs, the energy in the 
fault phase is 1 and that in the non-fault phase is 0[38]. 
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(6) Algorithm 
The BP neural network[39] based Algorithm  is proposed as follows: 
Algorithm 1 
a.Set the small initial value; 
b.Train the continuous input samples X0, X1,…,XN-1 and output samples d0,d1,…,dM-1; 
c.Calculate the actual output value 0Y , 1 ~ 1Y YM  ; 

d.Adjust the weights according to the following formula, and do the next step： 

    1t TW W xij ij j j     (13) 

Where Wij is the weight from the hidden layer node i to the next layer node j, x j  is the output of 

node j. 
e.If the output does not meet the threshold, return to the second step and update it as follows： 

  1tW Wxij ijj j       (14) 

In Algorithm 1, the result is usually not equal to the ideal value {0, 1}. To identify the fault types, 
the line can be regarded as the fault flag when the output is greater than 0.8 [40]. 

4.Case study 
The simulation model of 500kV transmission network in Fig. 5 is constructed by PSCAD, which is 
used to simulate various short-circuit faults of transmission lines. In Fig. 5, the length of the 
transmission line is L = 300km, and the main parameters include the frequency 50 Hz, the positive 
sequence impedance. ZG1=9.19+j52.10Ω , ZH1 = 8.19 + j42.11Ω, the zero-sequence impedance ZG0 = 
6.69 + j37.92 Ω, ZH0=6.52+j34.16Ω at terminal G and H respectively, the line positive-component 
impedance per unit Z1=0.035+j0.43Ω/km,. the line zero-component impedance per unit 
Z0=0.30+j1.15Ω/km, the line positive-component admittance Y1=(0.1+j2.73)×10-6S/km, the line 
zero-component admittance Y0=(0.1+j1.95)×10-6S/km. 

In this section, A-phase grounding fault (AG), AB two-phase grounding short-circuit (ABG), AB 
phase to phase short-circuit (AB) and ABC three-phase short-circuit (ABC) are simulated in PSCAD, 
and the transient waveform is recorded by PMU. The fault distance is 60km, and the transition 
resistance is set to 50Ω.  

  

Fig.5 Simulation Diagram of 500kV Transmission Network 
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4.1 Single-phase grounding fault 
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Fig.6 Current waveforms under a single-phase grounding fault 
Taking single-phase grounding fault as an example, the waveforms of three-phase fault current and zero 

sequence currents are shown in Figure 6. It can be seen from Figure 6 that the A-phase current has an 
obvious distortion during the fault, and the zero-sequence current also increases suddenly. Due to the 
existence of the zero-sequence current path, a large zero-sequence current will also be generated, and 
its decomposition is shown in Figure 7. 

 

Fig.7 8-layer wavelet packet decomposition for a single-phase grounding fault signals  

4.2 Two-phase fault 
The current waveforms under two-phase fault are shown in Figure 8. It can be seen that only the AB 
phase produces abrupt short-circuit current, while there is no significant change for C-phase current. 
There is no grounding point to form a path for the zero-sequence current, so the zero-sequence current 
under a two-phase short circuit will not change obviously.  

The current waveforms are shown in Figure 9. It is known that the two-phase grounding fault 
(ABG) gives the path for the flow of zero sequence current, which is different from the two-phase 
fault (AB). Therefore, it can be seen from Fig 8 and 9 that the zero-sequence current has also changed 
significantly under two-phase grounding fault. 
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Fig.8 Current waveforms under two-phase fault (AB) 

 

Fig.9 Current waveforms under two-phase grounding fault (ABG) 
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Fig.10 8-layer wavelet packet decomposition for two-phase fault 
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Fig.11 8-layer wavelet packet decomposition for two-phase grounding fault 

4.3 Three-phase fault 
The waveform of three-phase fault current and zero sequence current of three-phase short-circuit fault 
is shown in Figure 12 below: 

 

Fig.12 Three-phase current and zero-sequence current waveform during ABC fault 
Compared with the short-circuit current generated by any other fault, the value of three-phase 

short-circuit fault current is the largest, so it is also obvious to the power grid impact. It can be seen 
from the above figure that the ABC three-phase fault current has changed significantly. At the same 
time, because there is no channel to make the zero-sequence current flow, the ABC three-phase fault 
will not produce the phenomenon of zero sequence current mutation. 

The transient data of three-phase short-circuit fault current and zero-sequence current waveform 
obtained from the above four kinds of the simulation are imported into Matlab for 8-level wavelet 
packet decomposition, and the fault eigenvalues are calculated. The waveforms of various transient 
signal data decomposed by an 8-layer wavelet packet transform can be obtained, as shown in Fig. 
10-13. Only d1 and d8 of the above four fault types are shown here. 
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Fig.13 ABC 8-layer wavelet packet decomposition 

4.4 Fault identification results 
The energy eigenvalues EA, EB, EC, and E0 of current IA, IB, IC, and I0 are respectively calculated 
according to Algorithm 1. The corresponding fault characteristic values eA, eB, eC, and e0 are 
calculated according to formula (2), which are shown in Table 1. 

Tab.1 Normalized energy value 

fault type 
energy value normalized value 

EA EB EC E0 eA eB eC e0 

AG 164.8263 1.6048 3.8984 25.2213 1.0000 0.0097 0.0237 0.1530 

AB 745.0309 804.7186 2.2204 0.0000 0.9258 1.0000 0.0028 0.0000 

ABG 376.3266 474.7951 2.5684 2.7712 0.7926 1.0000 0.0054 0.0058 

ABC 297.2286 615.9241 150.7408 0.0000 0.4826 1.0000 0.2447 0.0000 

For the three-phase fault current, the fault characteristic value of the fault phase is larger than that 
of the non-fault phase. For the zero-sequence current, the extracted fault eigenvalue is very small when 
the fault is ungrounded. When the fault is grounded, the zero-sequence eigenvalue will increase due to 
the existence of the zero-sequence current path. The fault eigenvalues extracted by the wavelet packet 
can be used as the input of the BP neural network.  

A, B, C, and zero-sequence current are selected as the index of the output, and a matrix is formed 
by a BP neural network to represent the fault situation of transmission lines. If the binary variable is 1, 
it means that a fault occurs at a certain phase in Table 2. 

Tab.2 Binary outputs of the current 
fault type A B C G 

AG 1 0 0 1 
BG 0 1 0 1 
CG 0 0 1 1 
AB 1 1 0 0 
AC 1 0 1 0 
BC 0 1 1 0 

ABG 1 1 0 1 
ACG 1 0 1 1 
BCG 0 1 1 1 
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ABC 1 1 1 0 
The fault eigenvalue calculated by the wavelet packet and BP neural networks is listed in Table 3 

by using the training sample set. Table 4 gives the output of test samples based on training samples. If 
the data in Table 4 is greater than 0.8, it is regarded as 1; otherwise, it is regarded as 0. After testing, it 
is proved that Algorithm 1 can be used to identify the fault types. 

Tab.3 Training sample set 

fault type 
Fault characteristic Neural network actual value

EA EB EC E0 eA eB eC e0 
AG 1 0.0340 0.0181 0.0963 1 0 0 1 
AB 1 0.9761 0.0173 0 1 1 0 0 

ABG 1 0.5374 0.006 0.0881 1 1 0 1 
ABC 1 0.9282 0.9025 0 1 1 1 0 

Tab.4 test samples by using BP neural network 

fault type Actual output 
Target 
output 

R/E 

AG 
0.9747 0.0613 -0.0422 1.0432 

[1001] 
Right 

0.9139 0.0625 -0.0124 0.9736 Right 
0.9731 -0.0156 0.0274 0.9524 Right 

AB 
0.9311 0.9887 -0.0041 0.0298 

[1100] 
Right 

1.0031 1.0122 0.0207 0.0093 Right 
0.9944 1.0165 0.0326 0.0218 Right 

ABG 
0.9824 1.0100 0.0206 0.9764 

[1101] 
Right 

0.8794 0.9403 -0.0724 0.9654 Right 
0.9204 0.9813 -0.0142 0.8765 Right 

ABC 
0.9986 1.0011 0.9671 0.0078 

[1110] 
Right 

1.0227 0.9798 1.0213 0.0153 Right 
1.0155 0.9376 1.0746 0.0145 Right 

Furthermore, the different transition resistance and fault location are proposed to verify the 
effectiveness of the proposed fault identification method. Firstly, the two-phase fault occurs at the 
distance 60km from the left bus. The fault identification results with 0Ω and 50Ω are shown in Table 5 
and Table 6 respectively. 

In Table 5 and Table 6, the energy eigenvalues of phase A and B are significantly greater than that 
of phase C. When two-phase grounding fault occurs at different positions with the same transition 
resistance, the energy eigenvalues of phases A and B are significantly greater than those of phase C, 
and the zero sequence energy eigenvalues are higher. To sum up, the proposed Algorithm 1 can 
accurately identify the fault type under different conditions [42]. 

 
Tab.5 Fault identification results with different transition resistances 

Transitional Resistance eA eB eC e0 result 
R=0Ω 0.9415 1.0000 0.0021 0.0000 AB 
R=50Ω 0.9258 1.0000 0.0028 0.0000 AB 

R=100Ω 0.8994 1.0000 0.0050 0.0000 AB 
R=150Ω 0.8715 1.0000 0.0085 0.0000 AB 
R=200Ω 0.8440 1.0000 0.0130 0.0000 AB 

 
Tab.6 Fault identification results at different fault locations 

Fault location eA eB eC e0 result 
L=0km 0.7252 1.0000 0.0089 0.0081 ABG 



2020 International Conference on Smart Grid and Energy Engineering
IOP Conf. Series: Earth and Environmental Science 645 (2021) 012057

IOP Publishing
doi:10.1088/1755-1315/645/1/012057

12

L=60km 0.7926 1.0000 0.0054 0.0058 ABG 
L=120km 0.8527 1.0000 0.0009 0.0046 ABG 
L=180km 0.9152 1.0000 0.0013 0.0040 ABG 
L=240km 0.9899 1.0000 0.0171 0.0040 ABG 
L=300km 1.0000 0.9374 0.0526 0.0043 ABG 

5. CONCLUSION 
This paper proposes a fault identification method based on BP neural and wavelet packet in 
power systems. The BP neural network is proposed to compare the characteristic under 
different fault types by using a sample set from synchronous measurement data. The wavelet 
packet is used to extract the fault characteristic. Simulation results show the effectiveness of 
the proposed method. This method can be applied to the fault identification of complex power 
grid and improves the accuracy. 
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