
IOP Conference Series: Earth and
Environmental Science

     

PAPER • OPEN ACCESS

Fault identification using wavelet transform and
Petri networks
To cite this article: Liu Fang et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 645 012033

 

View the article online for updates and enhancements.

You may also like
Fault identification using piezoelectric
impedance measurement and model-
based intelligent inference with pre-
screening
Q Shuai, K Zhou, Shiyu Zhou et al.

-

Impact of microsecond-pulsed plasma-
activated water on papaya seed
germination and seedling growth
Deng-Ke Xi,  , Xian-Hui Zhang et al.

-

Perspective—Micro Photosynthetic Power
Cells
Hemanth Kumar Tanneru, Kiran
Kuruvinashetti, Pragasen Pillay et al.

-

This content was downloaded from IP address 3.129.19.251 on 03/05/2024 at 04:55

https://doi.org/10.1088/1755-1315/645/1/012033
https://iopscience.iop.org/article/10.1088/1361-665X/aa5d41
https://iopscience.iop.org/article/10.1088/1361-665X/aa5d41
https://iopscience.iop.org/article/10.1088/1361-665X/aa5d41
https://iopscience.iop.org/article/10.1088/1361-665X/aa5d41
https://iopscience.iop.org/article/10.1088/1674-1056/ac904e
https://iopscience.iop.org/article/10.1088/1674-1056/ac904e
https://iopscience.iop.org/article/10.1088/1674-1056/ac904e
https://iopscience.iop.org/article/10.1149/2.0031909jes
https://iopscience.iop.org/article/10.1149/2.0031909jes
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuyOofoOwVIwy7D1mnBis-TyiGGPeeOdOdFBUpHCHKsuThxxZNfi5jMgFBmXsvAuqlXUESubUJXN98XidJT9Q4_RrEACKoEGGks_VKgCnCmhblU5rX9dpiRXwqxFi8LhShkuusPism0mWdHO8FhGFRQJPbOeO1OmEVQoeh1PX_rwY7YuPc7NBXAGB2rjeor7rqkRQLFGvwOayIZJ-HJVeP8Bb005oAZEvcY7IJaNYVx71eanKuKjDyGKFzhWhwQSZxLa0gzM7R2YM6MBsD0Q0ZQTSeyhCQ6Eylb7kqF0fvT_m7N7syrGtB_vnB0kmqY2spQYaR2kDjZniQaCdj-vV7oCxBwUA&sig=Cg0ArKJSzOi70DxWE3yK&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

2020 International Conference on Smart Grid and Energy Engineering
IOP Conf. Series: Earth and Environmental Science 645 (2021) 012033

IOP Publishing
doi:10.1088/1755-1315/645/1/012033

1

Fault identification using wavelet transform and Petri 
networks 

Liu Fang1, Jian Hangli2*, Sun Qian2, Wang Zhi1，Chen Fan1, Liu kai1, Yuan 
Shanshan1, Jia Mengqing1, Li Jiang2* 

1 State Grid Luoyang Electric Power Supply Company, Luoyang, Henan, 471000, 
China 
2 School of Electrical Engineering, Northeast Electric Power University, Jilin City, 
Jilin Province, 132012, China 

Corresponding author’s e-mail: 2202000261@neepu.edu.cn 

Abstract. This paper proposes the fault identification methods by using fuzzy Petri networks 
for the advanced application of the micro phasor measurement unit (µPMU) in the distribution 
network. Firstly, µPMUs are placed at multi buses of the radial distribution network, and the 
measured impedance is obtained by µPMU. Then, the transient characteristics of the three-
phase fault current are extracted by the wavelet transform and Petri networks. Finally, the 
simulation verifies the effectiveness of the proposed method in 10kV distribution networks. 

1. Introduction 
In recent years, advanced applications based on micro phasor measurement units (µPMU) are studied 
by researchers. Based on synchronous monitoring and characteristics of electrical parameters, the 
µPMU measurement data can improve the accuracy of fault identification and location. 

The electrical parameters will change suddenly when a failure occurs in the distribution network. 
Reference [1,2] proposed a method for deep-learning to identify the fault type. Reference [3-6] 
proposed a method of applying deep neural networks to get the precise fault type in the distribution 
network. The results demonstrated that the proposed identification method based on the deep network 
architecture had higher identification accuracy and reliability.  

Reference[7] proposed a new fault location algorithm based on decision-tree topology; reference 
[8] proposed fault traveling wave-based fault location method. Reference [9] presents a new method 
for locating a fault in distribution systems using synchronous measurement, which was provided by 
phasor measurement units (PMUs) with high accuracy and a timestamp. Reference [10,11] delineated 
the traveling-wave-based fault-location technique for transmission grids via wide-area synchronized 
voltage measurements. This paper presents a novel method of fault identification combined with 
µPMU measurement data. 

Firstly, the fundamental idea of impedance-based fault identification is introduced in Section 1. Then, 
the proposed fault identification algorithm by using wavelet transform and Petri networks is illustrated 
in Section 2 and Section 3. Finally, the effectiveness of the proposed identification algorithm is 
demonstrated in Section 4. 

 
 



2020 International Conference on Smart Grid and Energy Engineering
IOP Conf. Series: Earth and Environmental Science 645 (2021) 012033

IOP Publishing
doi:10.1088/1755-1315/645/1/012033

2

2. Impedance-based fault identification 
The µPMU can measure voltage and current phasors in real-time [12-15], and the impedance curve 
from B to E for the single-phase short-circuit is shown in Figure.1. 

 

Figure1. Single-phase short-circuit impedance curve from B to E 
 

The μPMUs distributed in the whole network can divide the grid into multiple sub-regions, which 
can measure the voltage phasors at the boundary μPMU installation and the current phasor flowing 
into the sub-region in real-time. Figure.2 shows the partial grid topology of an individual distribution 
network. 

iU
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jU kU
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njI

 
Figure2.The partial topology of a specific distribution network 

 
When a fault occurs in a distribution network, the equivalent impedance amplitude will be 

significantly reduced. The impedance curve from the voltage and current phasors at that moment can 
be used to identify the fault type and fault section. To analyze the impedance relationship between the 
normal and fault conditions, a ratio variable s is defined, taking the single-phase impedance as an 
example, as follows： 

 , ,,

r rr
Aent nml Aent nmlAent nmlr

A r r r
Aent Aent Aent

U IZ
s

Z U I
 

 

 
 (1) 

Where ,
rZ Aent nml is the measurement impedance amplitude of phase A at the monitoring node r 

under the normal operation condition; r
AentZ  is the measurement impedance amplitude of phase A at the 

monitoring node r under the abnormal operation condition; ,
r
Aent nmlU  and ,

r
Aent nmlI  respectively represent 

the voltage and current phasors of phase A at the monitoring node r under normal operation condition.  
Similarly, the ratio variables of phase B and C are shown in (2) and (3) 
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Set the ratio threshold r
sets . The fault maybe occur at node r when r r

sets s . Firstly, the impedance 

ratio coefficients at a monitoring node are calculated by using (1)-(3). If one of the given three 
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conditions ,
r r
A A sets s  , ,

r r
B B sets s  , and ,

r r
C C sets s   is met, the fault identification algorithm is started to 

identify which type is suit for measurement impedance. When the impedance characteristics meet the 
threshold within the given section under the fault conditions, it can be judged that a fault occurs in 
the given section. 

3. Fault identification by μPMU measurement data 
In recent years, scholars at domestic and abroad have proposed a large number of fault identification 
methods based on the transient signals [16,17]. This section presents a fault identification method based 
on hybrid fuzzy Petri nets (HFPN), whose framework is shown in Figure 3 [18,19]. 

Fuzzy logic

Fuzzy logicFeature 
extraction by 
wavelet packet 

transform

Fuzzy logicFeature 
extraction by 
wavelet packet 

transform

Fuzzy logicFeature 
extraction by 
wavelet packet 

transform

Fuzzy Petri Net
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transform

Output 
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Figure 3. Fault identification framework 

 
The fault characteristics extracted from three-phase and zero sequence currents are taken as the 

input value of the Fuzzy Petri networks. The energy by using wavelet transform for measurement data 
is taken as the characteristic value in the Fuzzy Petri networks. The function of the fuzzy logic module 
is to get the fuzzy value suitable for the input of the fuzzy Petri networks and identify the fault type 
through the given sample set and comparison process. 

3.1Wavelet transform in fault identification 

3.1.1Principle of Wavelet Transform 
Wavelet transform uses the variable-scale functions to decompose various time-varying signals into the 
identification indexes [20, 21]. The wavelet packet based on wavelet transform can map any signal to a 
set of basis functions, which can be composed of a wavelet expansion, which can get the decomposition 
sequence in the different frequency domains. 

The wavelet transforms for time-varying signals  f t  is mainly to find a set of coefficients that 

can measure the similarity relationship   ,W f q p   between time-varying signals  f t  and the 

function family  , tq p . A selected energy finite function (t) can be obtained through translation 

transformation, as follows: 

 
1

2
, ( )p q

t q
t p

p
   

   
 

 (4) 

Where p is the expansion factor, q is the translation factor. 

 
 

2ˆ

R
C d







    (5) 

Where  ˆ  is the Fourier transform of  t ;  is called the admissible wavelet or basis wavelet. 
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Where ,p q R , 0p ,  t  and  t are conjugated with each other. 

Wavelet transform is affected by the frequency and time characteristic of the signal. If the wavelet 
transform is applied to actual engineering, it is necessary to discretize the wavelet transform. Let

0
mp p and 0 0

mq nq p , the form of wavelet expansion is shown, as follows: 

   2 0 0
0

0

m
m

mn m

t nq p
t p

p
  

   
 

 (7) 

Where 0 0,p q R , ,m n Z , 0 1p  , 0 0q  . 

Therefore, the discrete wavelet transform is expressed as follows: 

       , mn
R

DWT f m n f t t dt    (8) 

By selecting p0  and q0  , the signal can be decomposed into a group of signals without 

information redundancy between them. The signal can be decomposed to obtain the characteristics of 
the signal on the time and frequency scales in the different frequency ranges. 

3.1.2 Fault characteristic extraction 
The zero-sequence currents in the distribution network can be extracted from the three-phase currents 
IA, IB, and IC when a fault occurs. The electrical parameters are decomposed by wavelet packet 
transform using a db4 wavelet basis, 8-layer wavelet decomposition waveform with high-frequency 
signal coefficient    1 8k kd d , and low-frequency signal coefficient  a k8  are shown in Figure 4.The 
8-layer wavelet decomposition waveforms of the zero-sequence current under the A-phase grounding 
fault (AG) are also obtained in Figure 4. 

The high-frequency energy values EA, EB, EC, ED corresponding to the four currents IA, IB, IC, 
and I0 can be obtained by (9) as follows: 

 

2100

1 1

2100

0 0
1 1

( )

( )

S

j
j k

S

j
j k

E d k

E d k

 
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 








 (9) 

Then apply (10) to obtain the normalized values of high-frequency energy eA, eB, eC, e0, as 
follows: 

 0

0 0 0

/ max( , , , )

/ max( , , , )
A B C

A B C

e E E E E E

e E E E E E
 


 (10) 

Where:   means A, B, C three-phases, The high-frequency energy value E  in formula (9) is 

unified and standardized to obtain e  

The four eigenvalues will reflect their different characteristics when the different faults occur. We 
can distinguish the various types of faults by using fuzzy Petri networks in this section. 
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Figure 4. 8-layer wavelet decomposition waveforms of zero sequence current under AG 

3.2Fuzzy processing 
The concept of fuzzy logic is proposed by simulating the thinking mode of the human brain's uncertainty 
concept judgment and reasoning. The respective members in the fuzzy set form a fuzzy group based on 
the corresponding relationship between each element. A mapping relationship (11) can be used to 
describe the fuzzy function and the fuzzy set  : 0,1x  , as follows: 

    ,A x x x XA   (11) 

Where X is the domain of discourse; x is the element in domain X;  A x  is the functional function 
of the fuzzy set, describing the degree between x in the set A. 

In Fuzzy processes, a fault occurs, zero-sequence current will appear, and zero-sequence wavelet 
energy increases.  "high" in the fuzzy language can be used to indicate the increase of wavelet energy; 
on the contrary, "low" is used to indicate that the wavelet energy does not change much. 

The linear performance functions of the three-phase current characteristic and the zero-sequence 
current characteristic are analyzed in Figure 5. 
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Figure 5. performance for Fuzzy function 
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3.3 Fuzzy reasoning Petri networks 

3.3.1 Definition 
Fuzzy reasoning Petri net (FRPN) can be defined as follows: 

  0, , , , ,FRPN P T I O U  (12) 

Where  1 2, , , nP p p p  is the collection of places;  1 2, , , mT t t t   is the set of changes; I is the 

input matrix, ijI      ; ij   is the logical quantity,  0,1ij   ; if ip   is not the input of jt  , 0ij   , 

1, 2, ,i n  , 1, 2, ,j m  ; if ip  is the input of jt , the value of ij  is the weight of this directed arc; O 

is the output matrix, ijO      . ij   is the logical quantity,  0,1ij   ; if ip  is not the output of jt  ,

0ij  , 1, 2, ,i n  , 1, 2, ,j m  ; if ip is the output of jt , the value ij is the credibility of the rule; 
0
Pi  represents the confidence that the state iP  is the initial logical state of the proposition  0 0,1Pi  , 

0 0 0
1, ,

T

P Pn      , 1, 2, ,i n  ;  U is the rule confidence matrix,  1, , mU diag    , and j  is the 

confidence degree of the rule jT . 

3.3.2 Process 
Two operators  and   are respectively defined as: 

 :X Y=Z，X, Y, and Z are all m×n matrices,  max ,ij ij ijZ X Y ； 

 :X Y=W，X, Y, W are m×q, q×n, m×n matrices,  
1
maxij ik kj

k q
W X Y

 
  ; 

The reasoning factor kneg  is used in the reasoning process as follows: 

 1k k k
mneg      (13) 

Where: 1m is an m-dimensional vector with all unit elements; k is an inference step; kneg is an 

m-dimensional vector. The intermediate variable kv can be obtained as follows: 

  k T k T kv I neg I      (14) 

Where: jT  is a false confidence， 1, 2, ,j n  . Thus, confidence k is obtained 

   k k T k T knegv neg I neg I        (15) 

Where: k is an m-dimensional vector. 

Finally, the next state is obtained by the following iterative steps 

  1k k T kO U I          
 (16) 

In summary, the inference algorithm can be obtained: 
Algorithm 1 
①Input data 1, 2, ,j n  ; 
②Let reasoning step 0k  ;  
③Obtain the operators and intermediate variables of formula (13) ~ formula (15); 

④Calculate 1k   according to formula (16); 

⑤If 1k k   , 1k k  , return to step ③ to recalculate 1k  ; otherwise 1k k   ,  terminate 

the algorithm. 
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3.3.3 Model 
The wavelet energy of the three-phase current and zero-sequence current is the input of FRPN, the 
extracted wavelet energy of the three-phase current and zero-sequence current is used as the input of 
HFPN, and the data is further processed through the fuzzy Petri net. The model of FRPN is obtained in 
Figure 6. 
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Figure 6. Model of FRPN 

4. Simulation analysis 
The 10kV 50Hz distribution networks are established in PSCAD in Figure 7 to generate transient 
waveforms under different faults, such as single-phase grounding fault (AG), AB two-phase grounding 
fault (ABG), phase A to phase B (AB), and three-phase fault (ABC). Two μPMUs are placed at nodes 

1, and 4. The main parameters in Figure 8 include line positive sequence resistance 1 0.124r km  , zero 

sequence resistance 0 0.124r km  , positive sequence inductance 1 0.2292l mH km , zero-sequence 

inductance 0=0.6875l mH km , positive sequence capacitance 1 250c nF km , and zero sequence 

capacitance 0 375c nF km . 

 
Figure7. 10kV distribution network 

 
The faults occur at 0.35s between nodes 2 and 3 in Figure 7, in which the transition resistance is 

set to 10Ω. The transient waveforms from the μPMU installed at node 1 are imported into MATLAB, 
and the fault eigenvalue is calculated by 8-layer wavelet decomposition. The high-frequency energy 
EA, EB, EC, E0 for the currents are obtained by (2), and the characteristic fault values are calculated 
by (3), which are shown in Table 1. 
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Tab.1 Fault eigenvalues under different faults 

Fault type Ae  Be  Ce  0e  

AG 1 0.1347 0.1272 0.0634 
ABG 1 0.4078 0.0041 0.0538 
AB 1 0.9283 0.0020 0 

ABC 1 0.4475 0.6382 0 

The eigenvalues in Table 1 are processed by Fuzzy logic, and the initial states of the FRPN are 
obtained in Table 2. 

Tab.2 Initial state of FPN 
Fault type FPN Initial state 

AG 0 [10 010110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T 
 

ABG 0 [10 0.7546 0.2454 0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T 
 

AB 0 [1010 01010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T 
 

ABC 0 [10 0.82410.175910 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]T 
 

The output status and the probability of FRPN are shown in Table 3. It can be seen from Table 3 
that Algorithm 1 can accurately identify the fault types and obtain the probability of occurrence under 
the different faults. 

Tab.3 Output of FRPN 
Fault type output state probability 

AG 3 [10 01011010 0 0 0 0 010 0 0 0 0 0 0 0 0]T 
 AG/1 

ABG 

3 [10 0.7546 0.2454 0110 0.2454 0 0 0.7546

0 0 0 0.2454 0 0 0 0 0 0.7546 0 0 0]T

 

 
ABG/0.7546 

AB 3 [1010 01010 0 010 0 0 0 0 010 0 0 0 0 0]T 
 AB/1 

ABC 

3 [10 0.82410.175910 010 0 0 0 0 0.1759

0.82410 0 0 0 0 0.1759 0 0 0 0.8241]T

 

 
ABC/0.8241 

The fault eigenvalue and identification results by using Algorithm 1 are analyzed in Tables 4 and 5 
under different positions and transition resistances.  

Tab.4 Fault identification results under different locations 

Fault location Ae
 Be

 Ce  0e
 

Outcome and 
probability 

2km 1 0.1109 0.1326 0.0738 AG/1 
4km 1 0.1224 0.9403 0.0672 AG/1 
6km 1 0.1347 0.1272 0.0634 AG/1 
8km 1 0.0864 0.1158 0.0815 AG/1 

Tab.5 Fault identification results under different transition resistances 

Transition resistance Ae
 Be

 Ce  0e
 

Outcome and probability 

0Ω 1 0.8824 0.0017 0 AB/1 
10Ω 0.9283 1 0.0020 0 AB/1 
30Ω 1 0.7037 0.0013 0 AB/1 
50Ω 1 0.4538 0.0022 0 AB/0.8452 

The simulation results show that the proposed method is adaptive for identifying the fault type 
under different conditions, and gives the probability of occurrence. 

5. Conclusion 
This article proposes a fault identification method by using the impedance-based fault starting index, 
wavelet transform, and Petri networks. The eigenvalue of fault current is extracted by wavelet transform, 
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and the eigenvalue is fuzzified, which improves the accuracy of fault identification from energy 
viewpoints. In the FRPN algorithm, I0 is introduced into the input to identify the grounding fault. It can 
be seen from the simulation results that the proposed Algorithm 1 is more accurate than that of other 
methods.  
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