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Abstract. Existing research mainly focuses on the single forecasting target and algorithm 
optimization, rarely mentions how to extract features for forecasting. For the source and 
load data of the customer-side multi-energy system, the influencing factors are complex 
and coupled. So, the quality of features gradually becomes the bottleneck that limits its 
forecasting accuracy. In this regard, based on EDA technology, this paper proposes a 
source and load forecasting method of customer-side multi-energy system based on 
feature engineering. First, combined with domain knowledge, perform a more 
systematic and complete feature analysis for the original observation data. Through this 
process, we can extract time features, statistical features and combined features. 
Subsequently, according to the characteristics of the data, the corresponding algorithm 
is selected to build a forecasting model. Finally, conduct two experiments based on 
source-side data and load-side data respectively, which proved that this approach can 
significantly improve the forecasting accuracy. 

1.  Introduction 
In recent years, with the increasing shortage of energy supply and the promotion of policies related to 
energy conservation and emission reduction, the proportion of renewable energy, mainly wind power 
and photovoltaic, in the customer-side power supply structure has continued to increase. Through 
accurate source and load forecasting, it can provide support for the economic dispatch of multi-energy 
systems on the customer-side, coordinate and control resources, and realize the mutual complementarity 
of multiple energy sources.  Because the load and source of the multi-energy system on the customer-
side are affected by weather, environment, and energy-using behavior, it has strong randomness and 
volatility. Therefore, accurate and reliable customer-side multi-energy system source and load 
forecasting is of great significance to ensure the intelligent use of energy [1]. 

Research on source and load forecasting is currently focused on the prediction of a single target. 
Such as photovoltaic [2], wind power [3] and other equipment, energy storage charge state forecasting 
[4], enterprise electrical load forecasting [5], etc. For the forecasting of the source and load of the multi-
energy system on the customer-side, we need to feature extraction and model construction separately, 
and there is no universal method. In fact, the data characteristics of different energy types and load types 
are mostly similar. Based on a universal method, it can reduce unnecessary repetitive operations and 
ensure the prediction accuracy to a certain extent. 
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In addition, with regard to the extraction of source and load data features, most of the existing studies 
have only performed simple operations such as correction, clustering and standardization. With the 
access of distributed energy, energy storage equipment and various forms of loads such as photovoltaic 
and wind power, the source and load data characteristics of multiple energy systems on the customer-
side are becoming more and more complicated. Only simple processing of the data will obviously bring 
greater predictions error. 

In summary, there are two main problems in the study of customer-side multi-energy system source 
and load forecasting: on the one hand, there is a lack of a general modeling method, and each 
independent forecasting target needs to be analyzed and model constructed one by one; on the other 
hand, less attention is paid to feature extraction, which is not conducive to improving the accuracy of 
source and load forecasting in the comprehensive energy field. 

For this purpose, the paper proposes a customer-side multi-energy system source and load forecasting 
method based on feature engineering. Through systematic feature engineering, construct time features 
that reflect time series and change trends, statistical features that reflect data distribution characteristics, 
and combined features that reflect multivariate coupling relationships, and so on. Then, considering the 
characteristics of prediction targets and feature items, select suitable algorithm to predict. Experiments 
show that the method can significantly improve the accuracy. 

2.  Related Work 
For the source and load forecasting of customer-side, multi-energy system, the optimization of the 
forecasting algorithm and the extraction of source and load features are the two main research contents. 

For the source and load forecasting algorithms, existing researches have both predictions based on a 
single algorithm and combined method based on multiple forecasting algorithms. Paper [6] proposed a 
load forecasting method based on similar days and SVM. Considering the chaotic characteristics of load 
time series, paper [7] proposed a short-term load forecasting method based on chaos theory and support 
vector machines; paper [8] applied data mining, clustering and other algorithms to the forecasting 
method, and proposed a short-term load forecasting model based on data mining and fuzzy neural 
network. However, these forecasting models are built for a specific business scene and may not be 
suitable for other requirements. This paper analyzes the experimental data, summarize the extracted 
features, using different forecasting methods to build models based on the characteristics of different 
features, to ensure the accuracy and efficiency of the source and load forecasting. 

For the extraction of source and load data features, most of the existing studies only performed simple 
correction, clustering, standardization and other operations. Paper [9] considers the continuity of 
photovoltaic power generation data and introduces the daily maximum photovoltaic output power and 
the daily average photovoltaic output power as the new characteristics of the previous day. Considering 
that the statistical values of meteorological data can reflect the characteristics of data distribution to a 
certain extent. The paper [10] introduced intra-day temperature difference and daily maximum 
temperature as new features. On this basis, paper [11] also considered the continuity of meteorological 
data and introduced daily average temperature and average solar irradiance on the current day and the 
previous 5 days as new features. Paper [12] uses the Pearson Coefficient method to obtain solar 
irradiance, atmospheric turbidity, and relative humidity as features, and then uses clustering to find 
similar days to be measured, using historical data of similar days to forecast the daily PV output power. 
Despite the simple processing of the data, considering the challenges and complexity of feature 
engineering, it is clear that these operations cannot guarantee the quality of the features. In view of the 
decisive role of feature quality in the forecasting model, the feature extraction process must be optimized. 

In order to solve the above problem, paper proposes a source and load forecasting method of 
customer-side, multi-energy system based on feature engineering. Through systematic feature 
engineering, accurate feature modeling for the forecast target, and adopted the most suitable forecasting 
algorithm according to its energy using characteristics, which is more efficient and accurate, and has 
practical significance. 
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3.  Approach 

3.1.  Overall Workflow 
The overall workflow of this approach is shown in Figure 1. First, based on the exploratory data analysis 
(EDA) methods, perform feature engineering on the original data. Specifically: (1) Pre-process the 
original data. (2) Perform feature analysis, feature design, construction, and extraction based on EDA 
technology to obtain the data feature set. (3) Filter features with high correlation to form feature subsets 
as the final feature. Second, according to the data characteristics of final features, use a suitable 
algorithm to forecast. For example, for the targets with strong regularity of feature items, a simple 
algorithm can be used. For the target with high volatility of feature items, a more complex algorithm 
needs to be used to ensure accuracy. 
 

 

Figure 1. The overall workflow of approach. 

3.2.  Feature Expression 
Combined with the domain knowledge, we designed and constructed three types of features: statistical 
feature, time feature, and combination feature, which respectively reflect the overall distribution 
characteristics of data, timing and change trend of data, and coupling relations among multiple variables. 

3.2.1.  Statistical Feature. Make statistics and description of quantitative data by using the statistical 
indicators in traditional statistics. As shown in Figure 2, the scatter plot can be used to find the 
distribution characteristics of the data, including the central trend, the off-center trend, the distribution 
pattern, and so on. 
 

 

Figure 2. The data scatter diagram. 
 
The statistical indicators are mainly divided into three categories. (1) The average index is used to 

reflect the general level or distribution trends. Commonly used are arithmetic mean, mode, median, etc. 
(2) the mutation index is used to reflect the mutations of overall distribution or the degree of dispersion. 
Commonly used are quartile, standard deviation, discrete coefficient, etc. (3) Moments, skewness and 
kurtosis, to reflect the overall distribution. 

3.2.2.  Time Feature. Although, it is known that there has a probability of mutation in the source and 
load data of customer-side, multi-energy system. It still has strong regularity. Therefore, the idea of time 
series model can be used for reference to carry out feature construction. On the one hand, parse the time 
item. We can get year, month, day, time, season and other information. On the other hand, calculate the 
rate of change. Although the source and load data of the customer-side and multi-energy system is prone 
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to random fluctuations, there is no mutations between adjacent moments. Therefore, the rate of change 
can be considered as a new feature. 

3.2.3.  Combination Feature. There is often a certain correlation between multiple features. By 
combining a single feature to form a combined feature, the features can be connected and interacted 
with each other, thereby expressing the non-linear characteristics that the single feature does not have, 
and enhancing the ability to express features. Using historical data to draw contour maps, the horizontal 
axis and vertical axis are the feature items to be combined. If there is a monotonous trend in the contour 
plot, it is basically a good combination. As shown in Figure 3, temperature and humidity can form a 
better second-order combination feature. 
 

 

Figure 3. The temperature-humidity contour map. 

4.  Experiment 
In order to verify the effectiveness for source and load forecasting in customer-side and multi-energy 
system, we perform two experiments, respectively: (1) Do the photovoltaic output forecasting 
experiment. (2) Do the electric load forecasting experiment. 

4.1.  Data Sources 
The experimental data of the paper comes from Open Power System Data Platform [13]. This dataset 
contains measured time series data for several small businesses and residential households relevant for 
household or low-voltage-level power system modeling. The data includes solar power generation as 
well as electricity consumption (load) in a resolution up to single device consumption. The experiment 
chooses the dataset of “industrial_building_institute” to predict the electric load and photovoltaic output 
of the institute. The sum of data items “grid_import” and “pv” is regarded as the electrical load for this 
institute. The data item “pv” is regarded as the photovoltaic output. 

The time range of the dataset is from February 2016 to February 2017. This experiment uses 2016 
historical data for training, and uses January and February 2017 data to verify the accuracy of model. 

4.2.  Evaluation Indicators 
In order to evaluate the performance of the prediction, paper sets root mean square error (RMSE) as the 
indicators. RMSE is more sensitive to the maximum and minimum values in the data, and can better 
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reflect the degree of error dispersion of the prediction model and reflect the accuracy of the fitting. The 
closer the value is to 0, the better the model fit. The specific formula is as follows: 

 

RMSE=ට∑ ቀ𝑋𝑎𝑐𝑡 ሺ𝑖ሻ െ 𝑋𝑝𝑟𝑒𝑑 ሺ𝑖ሻቁ
2

𝑛
𝑖ൌ1 nൗ                                             (1) 

 
Where n is total count, Xact(i) and Xpred(i) are real and predictive value at time i, respectively. 

4.3.  Experimental results 
Through analysis, the feature items extracted from two experimental datasets have a high mutation rate, 
so both experiments use LSTM algorithm for feature learning and model building. Experiments use the 
method without feature engineering as a comparison. Finally, experiments show that the approach we 
proposed can significantly improve the forecasting accuracy. 

4.3.1.  Electrical load forecasting experiment. The RMSE of approach paper proposed is 0.21, while the 
comparative approach without feature engineering is 0.73. The results of a certain day are shown in 
Figure 4(a), where curve Paper Approach is the method based on feature engineering proposed in this 
paper, curve Comparison Approach is the method without using feature engineering, and curve Actual 
Value is the actual measured electric load. 

4.3.2.  PV output forecasting experiment. The RMSE of approach paper proposed is 0.13, while the 
comparative approach without feature engineering is 0.54. The results of a certain day are shown in 
Figure 4(b), where curve Paper Approach is the method based on feature engineering proposed in this 
paper, curve Comparison Approach is the method without using feature engineering, and curve Actual 
Value is the actual measured PV output. 
 

 
(a) Comparison of electric load forecast results 

 
(b) Comparison of PV output forecast results 

Figure 4. The experimental results. 
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5.  Conclusions 
The existing research on source and load forecasting methods mainly focus on the single forecasting 
target, and focus on the improvement of algorithms. Most of the data used are processed data, rarely 
involving the feature engineering of the original data. However, feature engineering is the basis of 
building forecasting models, which determines the upper limit of prediction accuracy. 

Based on the above, this paper proposes the source and load forecasting of customer-side multi-
energy system based on feature engineering. With the classical DEA technology, combined with the 
domain knowledge to understand and express the data, paper summarizes three kinds of features: the 
time characteristics reflecting the timing sequence and change trend, the statistical characteristics 
reflecting the data distribution characteristics, and the combined characteristics reflecting the 
multivariable coupling relationship. Finally, combined with its energy characteristics, choose 
appropriate algorithm to build the prediction model. 

Experimental results show that the approach proposed in this paper can significantly improve the 
accuracy of other methods. 
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