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Abstract. In the process of lightweight design of structures, the topology optimization 
method does not depend on the experience of designers, so it can design the optimal 
products more flexibly and creatively, which has become a hot issue in structural 
design. However, the current topological optimization results usually have problems 
such as difficult processing and high cost, which limit their wide application in 
engineering design. Therefore, this paper is based on the two-way progressive 
structure optimization method (BESO), considering the existence of jagged edges in 
the optimization results. In the finite element analysis of the fixed grid method, the 
boundary element is judged by the sensitivity of the element node, and the boundary 
element is localized divide and realize the partial deletion of the unit, so as to achieve 
a smooth boundary of the optimization result. The sensitivity of element nodes during 
structural flexibility optimization is deduced in detail, its basic principles and specific 
steps are explained, and finally the feasibility of this method is verified by an example. 

1.  Introduction 
In the 1990s, Yimin Xie [1], [2] first introduced Evolutionary Structural Optimization (ESO). ESO is 
based on the idea that by gradually removing inefficient elements from a structure, the resulting 
structure will evolve towards an optimum. With the study of ESO theory, Querin et al. [3] proposed 
the Bidirectional Structural Optimization (BESO), which improves the global optimality of the ESO 
method by deleting the elements with low stresses and adding the elements in the locations with high 
stresses. Garcia et al. [4] introduced the fixed grid method into the ESO method to avoid re-meshing 
and thus improving the efficiency of optimization. In view of the shortcomings of the traditional ESO 
method that the boundary of the optimized structure shall be sawtooth in shape, Chunjiang Du et al. [1] 
put forward the reverse engineering method, which can effectively solve the manufacturing and 
processing problem of the optimization results without increasing the calculation. With regard to the 
study on the sawtooth boundary of a structure, this paper [6] proposes a CAD model reconstruction 
method from topological optimization results based on feature and constraint so as to make the 
boundary of topological optimization results smooth. By doing so, the optimization results can be 
accurately used in the subsequent design and manufacture as quickly as possible. At present, 
improving the manufacturability and machinability of optimized structures is a hot topic in structure 
optimization. 

In order to improve the smoothness of optimized structures, Kim et al. [7] proposed to introduce 
the fixed gird method into the ESO method. On this basis, this paper introduces fixed grid method into 
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BESO method for finite element analysis so as to realize the smoothness of optimized structures. Also, 
the sensitivity formula of element nodes is deduced. The boundary element is judged by the node 
sensitivity, for which the local mesh division is applied. As such, the boundary smoothness is realized. 
In the end, this paper lists out some examples by which the rationality and effectiveness of the 
proposed method are verified. 

2.   BESO element sensitivity 
In the optimization of a structure, the principle of deleting materials in BESO method is based on the 
contribution rate of materials to the structure. That is, the materials with low contribution rate shall be 
gradually deleted in the optimization process so that the remaining materials can be optimized. 
Therefore, the element sensitivity shall be derived in the optimization of structural flexibility. 

In the structural rigidity model, the objective function is the structural flexibility: 
 

TC f u                                                                            (1) 

 
In the finite element analysis, the structural equilibrium equation is: 

 
Ku f                                                                               (2) 

 
Where, K is the stiffness matrix of the structure; f and u are the structural force load vector and the 

nodal displacement vector respectively. 
According to the interpolation model of the material in the variable density method [8] and in the 

BESO method, the elastic modulus of the material and the stiffness matrix of the structure are 
respectively defined as: 
 

0

0

( ) p
i i

p
i i

E x E x

K x K




                                                                        (3) 

 
Where, E0 is the elastic modulus of the solid material; p is the penalty factor; Ki

0 is the stiffness 
matrix of the solid element i in the structure. 

Introduce the Lagrange parameter vector λ and add the addition term λT(f-Ku) to the formula (1), 
and then the derivative of objective function to the design variable can be expressed as: 
 

( ) ( )
T T

T T

i i i i i i i

dC df du d df dK du
u f f Ku u K

dx dx dx dx dx dx dx

                            (4) 

 
Considering that deleting elements has no effect on the load f, and 0idf dx  , the above equation 

can be simplified as: 
 

 T T T

i i i

dC du dK
f K u

dx dx dx
                                                          (5) 

 
For (f-Ku)=0, the parameter λ can be selected freely. It is proposed in the reference [9] that in order 

to eliminate the unknown term du/dxi, the selection of λ is based on the following expression: 
 

0T Tf K                                                                              (6) 

 
Based on the static equilibrium equation, the Lagrangian vector   can be obtained as: 
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u                                                                                       (7) 
 

By substituting the equation (7) into the equation (5), the following can be obtained: 
 

T

i i

dC dK
u u

dx dx
                                                                             (8) 

 
By substituting the equation (3) into the equation (8), the derivative of the design variable xi of the 

element i can be obtained as: 
 

1 0p T
i i i i

i

C
px u K u

x


 


                                                                       (9) 

 
The element sensitivity represents the degree to which the element affects the objective function 

and is defined as: 
 

1
min min

11 T
i i i i

i p T
i i i i i

u k u xC

p x x u k u x x
 

      
                                                         (10) 

 
For “inefficient or non-efficient” elements, the sensitivity depends on the size of the penalty factor 

p. When p approaches infinity, the equation (10) can be simplified as: 
 

min

1

0

T
i i i i

i
i

u k u x

x x


  
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                                                                    (11) 

 
It can be seen from the above formula that the sensitivity of solid elements and empty elements is 

equal to the strain energy and zero value of the elements respectively. The design variable of empty 
elements is xmin. The corresponding element stiffness and elastic modulus are also minimum, thereby 
realizing the deletion of the elements. 

3.   BESO method based on fixed grid 
Applying fixed grid method into finite element analysis in the ESO method can improve the 
optimization efficiency. As shown in Figure 1, according to the location of elements in the design 
domain, the elements can be divided into three types. That is, inner element (I), outer element (O), 
boundary element (NIO). As we can see from Figure 1, NIO element affects the smoothness of the 
structure. Therefore, this paper considers inserting a new material model into the NIO element and 
allowing part of the materials in the elements to be deleted. 
 

O

I

NIO
 

Figure 1. Fixed grid model 
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3.1.  Design model and finite element model 
As shown in Figure 2, when the design model (yellow area) is projected to a fixed grid, the design 
model can be divided into three types of elements. That is, empty element (element 2, Vf=0), solid 
element (element 1, Vf=1) and boundary element (element 3, 0<Vf<1). 
 

Ele 1

Ele 2

Ele 3

 

Figure 2. Projection relationship between design model and fixed grid 
 

In the finite element analysis, the density and elastic modulus of elements can be expressed as: 
 

min 0

min 0

( ) (1 )

( ) (1 )

f f f
i i i i

f f f
i i i i

V V V

E V V E V E

    

  
                                                        (12) 

 
Where, Vi

f is the volume fraction of the element i ; ρi is the density of the element i; Ei is the 
Young’s modulus of the element i; ρmin and ρ0 are the density of the empty element and solid element 
respectively; Emin and E0 are the Young’s modulus of the empty element and solid element 
respectively. 

3.2.  Volume constrained topology optimization model 

3.2.1.  Stiffness optimization model. The structural optimization is to find the optimal distribution of 
the material under certain constraints, such as the maximum stiffness. In this paper, the problem of 
flexibility minimization under the constraint of volume is considered, and the corresponding 
mathematical model is as follows: 
 

1 2=[ , ,..., ]

min

.

{0,1}

n

T

i

find x x x x

C F U

s t V V

x








                                                                       (13) 

 
Where, C is the flexibility of the structure; V is the volume after optimization; V* is the volume 

constraint of the structure; F and U are the displacement vector and the load array of the structure 
respectively; xi is the design variable of any node i in the design domain. 
The volume of the structure can be expressed as: 
 

1
0 1

N f f
i i ii

V V V V


                                                                    (14) 

 
Where, Vi is the volume of the element i; N is the total number of elements in the finite element 

model. 
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3.2.2.  Element and node sensitivity. As we can see from the equation (10), the sensitivity of the 
element can be expressed as: 
 

0

1 0
min min

1T
i i i i

i p T
i i i i

u k u x

x u k u x x
 

  


                                                                (15) 

 
By substituting the density of the element in the equation (12) to the equation (15), the sensitivity 

of the element i can be expressed as: 
 

 1 0
min 1p f f T

i i i i i ix V V u k u                                                                 (16) 

 
As for the sensitivity of nodes, the method proposed in the reference [9] is adopted. Take the 

sensitivity of the elements around the nodes as the sensitivity of the nodes. 
 

1

1

M

i in i
j M

ii

V

V


 



 


                                                                               (17) 

 
Where, n

j is the sensitivity of the node j; M is the number of elements related to the node j. 

3.2.3.  Update and convergence criterion of design variable. When the design model is projected onto 
the finite element model, there will be three different types of elements, as shown in Figure 3, namely 
solid element, empty element, and boundary element. Therefore, the volume fraction f

iV of each 

element in the finite element model is expressed as: 
 

 

Figure 3. Types of elements 
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0

1





                                                             (18) 

 
Where, 1,2,3,4)j

ia j （  is the sensitivity of node j of the element i. If the node sensitivity of the 

element is greater than 0, the element shall be considered as a solid element. If the node sensitivity of 
the element is less than 0, the element shall be considered as an empty element. Otherwise, it shall be 
considered as a boundary element. For the boundary element ( 0 1f

iV  ), the local grid shall be 
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differentiated. Nap is the total number of nodes in the local grid, and Nlp is the number of nodes whose 
sensitivity is greater than 0. 

In the structural optimization, when the design volume Vl-1 of the step l-1 is provided, the iteration 
volume Vl of the next step can be expressed as follows： 
 

1 1

1 1

max( (1 ), )

min( (1 ), )
l l

l
l l

V ER V V V
V

V ER V V V

 
 

 
 

   
 

                                                         (19) 

 
Where, ER is the evolutionary rate of volume. 
In the finite element analysis, the convergence criterion of BESO method shall be adopted until the 

volume constraints and convergence conditions are satisfied. Therefore, the convergence criterion can 
be expressed as: 
 

 1 11

11

N

k i k N ii

N

k ii

C C

C


    

 







                                                                  (20) 

 
Where, C is the flexibility of the structure, k is the current number of iterations, τ is the allowable 

convergence error, and N is a positive integer (usually take N=5). 

3.3.  Algorithm steps  
The optimization steps of the updated BESO method can be summarized as follows: 

(1) Specify the design domain, define the load and boundary conditions, use the finite element grid 
to discretize the design domain, and initialize the elements in the design domain; 

(2) Through finite element analysis, calculate the sensitivity of the element, and calculate the node 
sensitivity by the equation (18).  

(3) Confirm the volume fraction f
iV of the element in the design domain through the equation (18) 

and then confirm the current volume of the structure through the equation (14). 
(4) Repeatedly execute the step (2)-(3) until the volume constraint (19) and convergence criterion 

(20) are satisfied. 

4.  Numerical examples 
The following two classical examples are used to calculate the minimum flexibility of the structure 
with the aim of verifying the feasibility and efficiency of the algorithm.  

Example 1: The traditional optimal Michell structure is shown in Figure 4. Figure 5 is the initial 
design domain of the structure. Load F=1000N. Elastic modulus of the material is 3GPa. Poisson's 
ratio is 0.3, and volume constraint is 0.4. 
 

               

Figure 4. Michell structure                  Figure 5. Initial design domain of the structure 
 



2020 Asia Conference on Geological Research and Environmental Technology
IOP Conf. Series: Earth and Environmental Science 632 (2021) 042032

IOP Publishing
doi:10.1088/1755-1315/632/4/042032

7

 
 
 
 
 
 

                 

Figure 6. Optimization result of modified BESO   Figure 7. Optimization result of traditional BESO 
 

As we can see from Figure 6 and Figure 7, by using the modified BESO method, the boundary of 
the structure does not have the sawtooth compared with that by using the traditional BESO method, 
and the structure is highly smooth. The structure is similar to the "Michell" type structure with a close 
to 45 degrees of support similar to the umbrella structure. 

Example 2: As shown in Figure 8, the cantilever structure is subjected to concentrated load F=1kN 
at the midpoint of the right end. Elastic modulus E=100GPa. The Poisson's ratio is υ=0.3. The left side 
is the fixed end. A 80*50 four-node rectangular discrete design domain is adopted. The optimization 
objective is to minimize the flexibility of the structure with a volume fraction of 0.5.  
 

 

Figure 8. Cantilever structure 
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(a)10 Iterations            (b)  25 Iterations 

 

          
(C)40 Iterations            (d) 55 Iterations 

 

         
(e) 60 Iterations          (f) 75 Iterations 

Figure 9. Structural optimization process diagram 
 

As we can see from Figure 9, during the optimization process of the cantilever, with the removal of 
materials in the structure, the structure boundary always has a good smoothness, and the structure is 
optimized after 75 iterations. 

5.  Conclusion 
Based on the problem of sawtooth boundary appeared in structural optimization through the traditional 
BESO method, this paper proposes to introduce the fixed grid method into the BESO method and 
derive the node sensitivity of elements. Through the node sensitivity of elements, the boundary 
elements in the structure can be determined. Then, the local grid division can be used for boundary 
elements to ensure the smoothness of optimized results. As such, the feasibility is verified. 
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