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Abstract. Salinity is an important ocean parameter that greatly influences physical, chemical, 
and biological ocean properties and processes. Salinity combines with sea temperature and 
chlorophyll-a (Chl-a) that mostly sourced from remote sensing-based measurements can reveal 
ocean quality and supports fisheries. However, the satellite-derived Sea Surface Salinity (SSS) 
dataset (~ 9 years) is not as temporally adequate as SST and Chl-a datasets (~3 decades) and 
thus, preventing a comprehensively spatio-temporal analysis of this water quality aspect. Since 
(SSS) can be approximated using satellite-derived ocean color products having the similar 
temporal length of datasets to the available SST and Chl-a datasets, predicted SSS can be 
produced from these ocean color products to fill the gap of the existing SSS dataset. This study 
aims to estimate the SSS from ocean color products of Aqua-MODIS satellite with a spatial 
and temporal resolution of 4 km and 8-daily by developing an empirical model. The ocean 
color data used were remote sensing reflectance (Rrs) of blue, green and red wavelengths (412, 
433, 469, 488, 531, 547, 555, 645, 667 and 678 nm). The absorption coefficients due to detritus 
material non-algae, Gelbstof and CDOM (ADG) at 443 nm and the absorption coefficient due 
to phytoplankton (APH) at 443 nm data were also used. The Banda Sea was chosen due to its 
large-scale upwelling system (~300 km x 300 km) that providing an important ocean process 
related to fishery and the availability of in-situ salinity measurements (i.e. CTD casts from 
series of Research Vessel (R/V) Baruna Jaya III, VII and VIII cruises and Argo floats), which a 
part of these datasets will be used to validate predicted SSS. Results showed that of all ocean 
color parameters tested, ADG at 443 nm was strongly correlated with in-situ SSS through the 
polynomial order 5 regression equation with a high R2 of 0.94 and a low RMES value of 0.101 
PSU. Although this empirical model has high accuracy, but based on RMSE analysis results 
from various locations within and outside the Banda Sea that influenced by the Pacific and the 
Indian ocean water masses indicates that this model actually good to predict in-situ SSS only 
for a narrow range SSS of 33.4-34.5 PSU. Nevertheless, this model has a limitation, it is still 
can be used for predicting and mapping the SSS for Banda Sea as well as for most of the 
Indonesian waters. The long-term meteorological SSS map (2003-2017) derived by this model 
together with the SST and Chl-a maps can show clearly the upwelling phenomena of the Banda 
Sea, which occurred during the southeast monsoon (June-July-August, JJA). This study proves 
that ocean color data from Aqua-MODIS satellite can be applied to estimate and to map the 
SSS for most of the Indonesian waters, but validations for this model is still needed 
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1. Introduction  
Salinity is one of the important parameters in the ocean that is the most often measured in every single 
ocean research activity. Salinity affects many physical, chemical, and biological properties of the 
ocean, so that it can affect the ocean processes [1]. For example, the ocean currents/circulation that 
move from one place to another were influenced by the changes of horizontal pressure gradients that 
generated by the differences of the density of seawater, salt concentration, sea temperature and 
pressure [2, 3, 1]. Sea surface salinity (SSS) can be used as a tracer of freshwater input from rivers to 
coastal oceans, so it is potential to monitor the river plumes [3, 4, 5, 6]. Salinity can also cause various 
marine organisms such as fish larvae and juveniles to have different distributions based on their 
tolerance to salinity [7, 3]. Recently, sea surface salinity (SSS) has been used intensively for studying 
the global climate variability, the same as using conventional data of SST, such as the ENSO in the 
Pacific [8, 9, 10, 11, 12] and Indian Ocean Dipole (IOD) mode in the tropical Indian Ocean [13, 14]. 
However, although salinity plays an important role, conventional measurement of salinity (SSS) 
carried out by research vessels or using Argo floats are sparse and irregular, so large part of the global 
oceans have not been measured [2]. Furthermore, salinity measurement from space lags far behind the 
SST, Chlorophyll-a (Chl-a) and many other ocean parameters that have been used to study the local 
and global ocean phenomena effectively and efficiently for over 3 decades through remote sensing 
techniques [15].  

The vacuum of salinity measurements from the space platform just can be realized after two 
satellite missions; the first is the Soil Moisture and Ocean Salinity (SMOS) satellite launched on 
November 2, 2009, by the European Space Agency (ESA), which carried a radiometer L-band 
(l.43GHz) named Microwave Image Radiometer using Aperture Synthesis (MIRAS) [2, 16, 17], while 
the second is the Aquarius / SAC-D satellite (Satelite de Aplicaciones Cientificas-D) launched on June 
10, 2011, by a collaborative mission between the space agency of America (NASA) and Argentina 
(Comisión Nacional de Actividades Espaciales/CONAE), which carried combination sensors of 
passive (radiometer) and active (radar) that work also on L-band (https://salinity.oceansciences. 
org/news-more.htm?id=5; [18]. Both satellites were intended to be able to estimate the SSS of the 
global ocean with a precision of root-mean-square error (RSME) of 0.2 practical salinity units (PSU), 
so now they promote the global SSS observation by using remote sensing techniques [2, 18].  

Since then, numerous scientific articles discussing various aspects of ocean research using SSS 
data derived from these satellites have been published in various scientific journals, including master's 
theses and doctoral dissertations. A total of 2,393 publications on ocean salinity consist of 1,910 and 
483 articles that use the SMOS and Aquarius satellite data are currently recorded on ESA’s web 
(http://www.esa.int/esasearch?q=publication+of+SMOS+on+ocean+salinity&start=11) and NASA 
Salinity’s web (https://salinity.Ocean sciences.org/publications.cgi), respectively.  

Although the results of error distribution of SSS retrieval for the global ocean (50ºS-50ºN) were 
relatively small with RMSE ranging from 0.25-0.35 PSU for SMOS and 0 ~ 0.2 PSU for Aquarius 
[19] as well as in the tropical ocean (20ºS-20ºN) of 0.289 and 0.228 PSU for SMOS and Aquarius, 
respectively [20]. and in the range of 0.10 ~ 0.59 PSU for Aquarius in 10 selected areas of the Bay of 
Bengal, tropical Indian Ocean [21]. However, both of SSS retrieval can only be used to study various 
aspects of the ocean at the global scale with a coarse resolution about 150-200 km [2, 3, 17], which 
cannot be applied to monitor and to understand the exchange/mixing SSS between land and marine 
system of the coastal zones [3]. In addition, within 200 km of land, the SMOS and Aquarius sensors 
may be contaminated by man-made radio frequency interferences (RFI) and also the leakage of land 
signals from soil moisture background, which may significantly resulting bias and affect the quality of 
the SSS data. Therefore, SSS data from such areas are often discarded [22, 23, 19]. This drawback 
made the SSS data in the coastal waters of many Indonesian's inner seas were mostly not available.  

http://www.esa.int/esasearch?q=publication+of+SMOS+on+ocean+salinity&start=11
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SSS mapping from space has actually been done more than 3 decades before the launch of the 
SMOS and Aquarius satellites by using ocean colour information through optical remote sensing data 
at visible wavelengths (400-700 nm). SSS does not have direct colour signals [24 , 25] such as 
chlorophyll-a or suspended solids, then it is impossible to generate direct relationship between SSS 
and data obtained from the sensor of ocean colour satellites. However, study pioneered by [26] and 
[27] and later on followed by [28, 29, 30, 31, 32, 3] showed that CDOM in many coastal seas and 
estuaries has often been observed strongly correlated with the inverse of salinity. 

The CDOM or also called gelbstoff, or gelvin or yellow substances are humic and fulvate materials 
that predominantly originate from the land and then transported to the coastal waters through 
freshwater runoff. Close to the river, CDOM with high concentration causes waters to be green, 
yellowish-green or brownish in colour, while the salinity is very low. Inversely, away from the 
continental margin, the influence of the river becomes weak proportional to the decrease in CDOM 
concentration, but the salinity increases [33, 34, 35, 36, 28]. Furthermore, the optical properties of 
CDOM are characterized by strong absorption in the spectrum of ultraviolet (UV) and blue light than 
other visible wavelengths [31, 3]. Therefore, the inverse of high CDOM-low salinity and low CDOM-
high salinity relationship and its optical characteristic can be used as a proxy to estimate SSS and then 
it is easily retrieved from various sensors of ocean colour satellites, such as SeaWiFS [37, 38, 28, 39, 
24, 31, 40, 41, 42, 43] and MODIS [29, 3, 15, 44]. 

Instead of inverse CDOM-salinity relationship approach as mentioned above,[45] stated that SSS 
could also be estimated directly by using water-leaving reflectance from multiple MODIS wavebands, 
because dissolved salts and suspended substances have a major impact on the electromagnetic 
radiation attenuation in the visible spectrum range. Using direct algorithms approach, a number study 
has been assessed the SSS using various sensors in the various waters of the world, such as old work 
of [46] using Multi Spectral Scanner/MSS of Landsat in the San Franciso Bay Delta. Thematic 
Mapper/TM of Landsat in the large estuarine lake of the US Gulf of Mexico coast [47]; MODIS in the 
Hong Kong waters [45], in the South China Sea [48], in the Mid-Atlantic [3], in the Chesapeake Bay, 
USA [49], in the Bohai Sea, China [50, 44]. In the Northern Gulf of Mexico coast [17]. [5] using 
Geostationary Ocean Colour images (GOCI) satellite mapped SSS in the Osaka Bay, Japan.  

NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has been 
developed a Web-based application that provides a simple and intuitive way to visualize, analyze, and 
access vast amounts of remote sensing data without having to download the data called “GIOVANNI” 

(an acronym for the “GES DISc Interactive Online Visualization ANd aNalysis Infrastructure) 

(https://giovanni.gsfc.nasa.gov/giovanni/). Among of huge data in GIOVANNI’s web, there are data 

of absorption coefficient of non-algal material due to gelbstoff, detrital material and CDOM (ADG) 
and due to Phytoplankton (APH) at 433 nm as well as remote sensing reflectance (Rrs) in the visible 
wavelength of Blue bands (412, 443, 469, and 488 nm), Green bands (531, 547 and 555 nm) and Red 
bands (645, 667 and 678 nm). Since CDOM was well proven correlated with SSS as mentioned 
above, and SSS can be retrieved using direct approach as stated by [45] then the retrieval of SSS by 
using the availability of ocean colour data in the GIOVANNI’s web are challenges. Therefore, the 

primary objective of this study are (1). to develop an empirical model for relatively wider areas of the 
Banda Sea to estimate of SSS using of those data; (2). To assess how accurate the developed empirical 
model in estimating the SSS in the Banda Sea itself and from more global Indonesian waters. 

 
2. Methodology 

 
2.1. Study Area  
This study conducted in the Banda Sea (121º to 134º E and -9º to -2º S), one of the inner seas in the 
Indonesian territory. Banda Sea bounded in the east by islands of Watubela, Kai, Tanimbar (Maluku 
Province); in the south by Islands of Wetar, Babar Lembata and Flores islands (Maluku and East Nusa 
Tenggara/NTT Provinces); in the west by islands of Wakatobi and around Kendari waters (Southeast 
Sulawesi Province); and in the north by islands Sulu, Buru and Seram  North Maluku and Maluku 

https://giovanni.gsfc.nasa.gov/giovanni/
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Provinces) [51, 52]. The Banda Sea is an important oceanographic link that connects the warm low 
salinity surface water from the Pacific to the Indian Ocean through several straits known as 
Indonesian throughflow (ITF) and then injected into the global ocean circulation system [53, 54]. 
 
2.2. Collection of SSS data 
 
In this study, we selected only the field measurements of near-surface salinity and temperature from 
several oceanographic cruises that we attended using Research Vessel of Baruna Jaya (R/V BJ) VII 
and VIII and other field surveys, also from other sources (the National Oceanographic Data 
Center/NODC, National Oceanic and Atmospheric Administration/NOAA), such as Instant Cruise of 
RVBJ III, and from three Argo floats (Figure 1). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Map of Banda Sea showing the bathymetry and salinity measurement sites from various cruises, 
Argo floats and field surveys. 
 
All of SSS data were collected from CTD cast using SBE9/11 Plus before 2012 and SBE19 Plus after 
2012, except for field survey in the east Seram Island that used a small portable CTD (Table 1). The 
measured SSS data were not really in the sea surface, but rather in a deeper layer, about 1 to 4 m depth 
for data collected using CTD in all cruises and about 4 to 6 m for SSS data collected by Argo floats. 
Nevertheless, we categorized the near-surface salinity as SSS based on equation 1, which converts the 
salinity of Argos floats at 6 m depth to SSS in the surface layer (1 to 4 m). For example, salinity 
ranges of 33-34 PSU measured by Argo float at a depth of 6 m can be converted to the depth of 1-4 m 
by equation 1 with a result of salinity in the ranges of 32,987 ~ 33,997 PSU or with small differences 
of 0.013 ~ 0.003 PSU. Therefore, we use all directly CTD and Argo float measurement of the depth of 
4 – 6 m as surface salinity (SSS). 
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SSS = 1.0099 x Salinity at depth 6 m – 0.3401 (R2= 0.99); . . . . . . . . . . 1) 
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2.3. Satellite data used  
Ocean color remotely sensed data used in this study were from the GIOVANI’s web (https:// 
giovanni.gsfc.Nasa.Gov/) from 2003 to 2019 with a spatial resolution of 4 km, while the temporal 
resolution of 8-daily. This web consists of 8 discipline fields, which two of them, the marine 
biologyand oceanography is closely related to this research, while each discipline has about 59 and 62 
parameters. Among of those parameters, we selected 14 main parameters, namely remote sensing 
reflectance (Rrs) at 412, 433, 469 and 488 nm (Blue band), 531, 547, and 555 (Green band), and 645, 
667 and 678 nm (Red bands). We also used data of the absorption coefficient of non-algae material 
due to detrital and CDOM material (ADG) at 443 nm; absorption coefficient due to phytoplankton 
(APH) at 443 nm, Chlorophyll-a concentration, and SST. All these data acquired from Aqua-MODIS 
satellite.The last two parameters together with the SSS that estimated from the empirical model 
developed in this study were latterly used for analysing the seasonal upwelling that occurs in the 
Banda Sea. The units of 14 ocean color parameters for Rrs, ADG / APH, Chl-a, and SST are sr-1, m-1, 
mg.m-3, and ºC, respectively. All these downloaded data from the Giovanni web were carried out on 
the same date as the in-situ SSS measurements in the Banda Sea on an 8-daily basis. For example, 
cruise of RV BJ VIII to Kendari waters (Banda Sea) measures oceanographic parameters including 
SSS at 21 stations from 9-16 October 2011 (Table 1). Therefore, those 14 ocean color parameter data 
were taken in the same 8-daily time frame with the SSS field measurements (9 to 16 October 2011). 
Those 14 ocean color data of Rrs, ADG, APH, and SST are downloaded from Giovanni's web, then 
each data from the same position with 21 in-situ SSS measurement were extracted. 
 
Table 1. Detailed SSS data collection used in this study 
 
     

No. Date Cruise or Survey Name Conducted by # Stn 
     

     

1. Aug 8, 2003 Southern surveyor Australia 3 
     

2.   Jun 2-jul 29, 2005 RV/BJ III Instant Cruise 2005 Indonesia-CISRO, Australia 14 
     

3. Apr 16-22, 2006 RV/BJ VII KTI Cruise 2006 to Center for Deep Sea Research – LIPI, Ambon 9 of 
Wakatobi Islands  24*    

     

4. Mar 3-23, 2007 RV/BJ VII Widya Nusantara Center for Deep Sea Research – LIPI, Ambon 6 of 
Cruise 2007 to Misol Islands  30*    

     

5. Mar 27-Apr 5, RV/BJ VII Fish stock assessment Marine Affairs and Fisheries of Indonesia and 16 
2011 Cruise 2011 to Banda Sea Center for Deep Sea Research – LIPI, Ambon  

  
     

6 Oct 9-16, 2011 RV/BJ VIII Cruise 2011 to Research Center for Oceanography - LIPI, 21 
Kendari waters Jakarta  

   
     

7 Nov 22-29, 2013 RV/BJ VII Banda Sea Expedition Center for Deep Sea Research – LIPI, Ambon 23 
Cruise 2013   

    
     

8 Mar 2-4, 2014 RV/BJ VII Cruise 2014 to Aru Center for Deep Sea Research – LIPI, Ambon 8 
Islands   

    
     

9 May 14-17, 2015 RV/BJ VII Cruise 2015 to Seram Center for Deep Sea Research – LIPI, Ambon 6 
Sea   

    
     

10 Nov. 9-19, 2015 RV/BJ VII Banda Sea Expedition Center for Deep Sea Research – LIPI, Ambon 20 
Cruise 2015   

    
     

11 Aug 2017 ~ now Argo Float # 6901746**) Faculty of Fisheries and Marine Sciences (IPB) 248 
and IFREMER, France  

    
     

12. Nov. 27-28, 2018 Survey in the east of Seram Island Center for Deep Sea Research – LIPI, Ambon 5 
     

13 Sep 2018 ~ now Argo Float # 6901747***) Faculty of Fisheries and Marine Sciences,IPB and 84 
IFREMER, France  

    
     

14 Jan-Des, 2018 Argo Float # 5904961****) ??? 37 SSS  TTT  
Remaks : *) 9 of 24 means only 9 stations of SSS measurements in the Banda Sea out of 24 stations. **) Argo float 
deployed 2017-07-14, Active (https://www.jcommops.org/); ***) Deployed in 2018-09-04. Inactive (https:// 
www.jcommops.org/). ****) Deployed in 2016-06-23; Inactive (https://www.jcommops.org/). 
 
 
 

https://www.jcommops.org/
https://www.jcommops.org/
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2.4. SSS algorithm development and validation 
 
In this study, we used simple regression analysis between SSS data collection from various cruises, 
field survey and Argo floats as listed in Table 1, and correlated them with 14 parameters of ocean 
color data extracted from Giovanni’s web. Because data collected from all cruises and field surveys 
are not so many, only 75 datasets, then we used all these data to develop the SSS empirical model 
including SSS data measured by 3 Argo floats, but due to Argo floats data are many (n=177), then 
we selected only odd dates data (dates 1, 3, 5, .. 29, 31). The remaining even dates data (n=192) 
(dates 2, 4, 6, .. 28, 30) are stored for validating purposes (Table 2).  

During the SSS empirical model development, several regression equation types such as 
exponential, linear, logarithmic, polynomial, and power regressions are tested. The initial curve fitting 
shows that the polynomial regression equation order 5 gives the best result with a high coefficient 
determination of R2. Therefore, this type of equation is used. 
 

Table 2.  Three argo floats used for developing and validating the empirical SSS estimation model 

Month and 
Year 

Argo Float No. 6901746 Argo Float No. 6901747 Argo Float No. 5904961 

Odd 
dates 

Even 
dates Total 

Odd 
dates 

Even 
dates 

Total Odd 
dates 

Even 
dates 

Total 

Aug-17 10 16 26  -  - - - - - 
Sep-17 11 13 24  -  - - - - - 
Oct-17 16  - 16  -  - - - - - 
Nov-17   - 11 11  -  - - - - - 
Dec-17   - 11 11  -  - - - - - 
Jan-18 n.a  n.a n.a  -  - - 2 - 2 
Feb-18  - 10 10  -  - - 3 - 3 
Mar-18  - 10 10  -  - - 3 1 4 
Apr-18 13  - 13  -  - - 4 - 4 
May-18 14 - 14  -  - - 4 - 4 
Jun-18  - 15 15  -  - - - 1 1 
Jul-18  - 11 11  -  - - - 4 4 
Aug-18 13  - 13  -  - - 4 - 4 
Sep-18  - 9 9 11  - 11 - 3 3 
Oct-18 -  15 15 15  - 15 - 3 3 
Nov-18 11  - 11  - 15 15 4 - 4 
Dec-18 13  - 13  - 15 15 1 - 1 
Jan-19  - 15 15 14  - 14 - - - 
Feb-19 11  - 11  - 14 14 - - - 
Total 112 136 248 40 44 84 25 12 37 

 
In order to examine the accuracy of our empirical model, the root mean square error (RMSE) 

expressed as Equation 2 is applied: 

 
where n is Number of observation, xi and µ are true measurement and estimated values of SSS, 
respectively. Our empirical algorithm is also validated using multi-temporal SSS data obtained from 
Aquarius satellite at a point roughly in the mid-Banda Sea from 2012 to 2015. We used these data 
assuming that the accuracy in estimating SSS of this satellite is very high in the tropical open sea 
waters with RMSE of 0.2 PSU as expected when this satellite was launched [2, 18] 

In addition, we extended our validation into 3 regions (Figure 2): (1) in the north of the 
Cendrawasih Bay and head of bird of Papua waters using Argo float # 5904515 and in the Halmahera 
and Maluku Seas using Argo Float # 5904508, which apparently influenced by south Pacific water 
masses; (2) In the South of Java to East Nusa Tenggara (NTT) waters using Argo floats # 5905014; 
5905017 and 5904994; and Triumph Cruise of Training/RV of Madidihang II in 2018 that conducted 
by Research Center for Deep Sea (P2LD LIPI) Ambon, Indonesia, First Institute of Oceanography 
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(FIO), China and Maryland University, USA; (3) West of Sumatra Island near to Enggano Island 
using Argo Float # 5904723, Mentawai Islands using Argo Float # 1901441 and Sabang Island, North 
Aceh using Argo float # 1901442. Region 2 and 3 are influenced by the Indian Ocean water masses. 
Thus, the purpose of this validation is to confirm whether the empirical model of SSS developed for 
the Banda Sea can be applied or not for all Indonesian waters. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Validation of SSS empirical model of the Banda Sea (map in the the box) using: A). Argo floats # 
5904515( ) and # 5904508 (  ) of the north Cendrawasih Bay and head of bird of Papua and Halmahera and 
Maluku Seas, respectively that was under influenced by south Pacific water masses; B) Argo floats # 5905014 
( ), # 5905017 ( ), # 5904994 ( ) and Triumph Cruise (    ), which was under influenced by Indian Ocean 
water masses of south Java and NTT; and C). Argo floats # 5904723 (   ), # 1901441 (   ) and # 19014442 (   ), 
which was under influenced by Indian Ocean water masses of west Sumatera. 
.  
3.  Results and Discussion 
 
3.1. In situ SSS data measurements and their distribution  
The overall SSS in situ measurements of various cruise ships, Argo buoys and surveys conducted in 
the Banda Sea from 2003 to 2018 show that the minimum, maximum, mean and standard deviations of 
the SSS are 30.425, 34.532, 33.781, and 0,233 PSU (Table 3). The distribution of SSS from a cruise in 
Kendari waters (inner and outer Lasolo Bay and Kendari Bay) during October 2011 was the most 
varies than other places due to the influence of the freshwater coming from the nearby river around the 
bay. The SSS ranges from 30,425 ~ 34,007 PSU with a mean value of 33,095 PSU and the highest 
standard deviation value of 1.017 PSU. On the other hand, the Banda Sea cruise-2 on Nov. 9-19, 2015 
measured relatively higher SSS in the ranges of 34.263 to 34.532 PSU with a mean value of 34.384 
PSU and low standard deviation of 0.101 PSU. The three Argo floats measured the same high values 
of SSS in the ranges of 33.844 to 34.257 PSU with a mean value of 34.175 PSU and a standard 
deviation of 0.130 PSU from August 2017 to December 2018 (Table 3). From all SSS measurements 
listed in Table 3, the value of SSS not exceed 34.6 PSU, which shows that the Banda Sea is affected 
by warm-low salinity of the upper layer (0-250 m) of Pacific Ocean water masses [53, 54].  

If all in-situ SSS data in Table 3 (left) are classified accordingly to 4 local seasons, namely the 
Northwest monsoon (December-February; DJF), Transition Season-I (March-May; MAM), Southeast 
monsoon (June-August; JJA) and transition-II season (September -November; SON) (Table 4), it can 
be seen that the average SSS value during the DJF was relatively high at 33,985 PSU, but decreased to 
33,471 PSU in MAM due to the influence of rainfall during the DJF until the end of MAM, but 
increased again to 33,929 PSU in JJA, and reaches its peak during SON with SSS value of 34.059.  



MSAT 2019
IOP Conf. Series: Earth and Environmental Science 618 (2020) 012037

IOP Publishing
doi:10.1088/1755-1315/618/1/012037

9

 

 

Table 3. SSS measured from various cruises, Argo floats and field survey in the Banda Sea from 2003 to 2018   
No. Date Cruise or Survey Name N. Min. Max. Mean Std. 

        

1. Aug 8, 2003 Southern surveyor 3 34.246 34.250 34.248 0.002 
        

2. Jun 2-Jul 29, 2005 RV/BJ III Instant Cruise 2005 14 33.776 33.882 33.877 0.038 
3. Apr 16-22, 2006 RV/BJ VII KTI Cruise to Wakatobi Islands 9 32.674 33.360 32.972 0.344 

        

4. Mar 3-23, 2007 RV/BJ VII Widya Nusantara Cruise 2007 6 33.194 34.113 33.618 0.364 
        

5. Mar 27-Apr 5, 2011 RV/BJ VII Fish stock assessment Cruise 16 32.788 33.701 33.208 0.306 
        

6 July 10-19, 2011 RV/BJ VIII Cruise Kendari waters 2011 21 30.425 34.007 33.093 1.017 
        

7 Nov 22-29, 2013 RV/BJ VII Banda Sea Expedition Cruise-1 23 33.628 34.048 33.935 0.113 
        

8 Mar 2-4, 2014 RV/BJ VII Cruise 2014 to Aru Islands 8 33.619 33.987 33.772 0.157 
        

9 May 14-17, 2015 RV/BJ VII Cruise 2015 to Seram Sea 6 33.299 33.816 33.653 0.212 
10 Nov. 9-19, 2015 RV/BJ VII Banda Sea Expedition Cruise-2 20 34.263 34.532 34.387 0.101 

        

11 Aug 2017 ~ now Argo Float # 6901746**) 248 33.844 34.414 34.127 0.176 
12. Nov. 27-28, 2018 Survey in the east of Seram Island 5 33.885 34.055 33.999 0.051 
13 Sep 2018 ~ now Argo Float # 6901747 84 34.107 34.412 34.257 0.074 
14 Jan-Des, 2018 Argo Float # 5904961 37 33.973 34.272 34.140 0.140 

        

 
Table 4. Seasonal mean in-situ SSS of the Banda Sea based on data in the Table 3.and averaged seasonal rainfall rate from 
2003-2018  

Season  SSS (PSU)  Rainfall rate (mm.hour-1) 
Min. Max. Mean Std Min. Max. Mean Std  

Northwest monsoon ( DJF) 33.846 34.130 33.985 0.100 0.114 0.547 0.314 0.063 
Transition season-1 (MAM) 33.138 33.815 33.471 0.256 0.091 0.703 0.290 0.092 
Southeast monsoon (JJA) 33.318 34.230 33.929 0.245 0.011 0.746 0.176 0.117 
Transition season-II (SON) 33.829 34.244 34.059 0.129 0.030 0.371 0.108 0.067 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Mean precipitation rate (mm.hour-1) map of  Banda Sea from 2003-2018.  (A). DFJ, (B) MAM, (C) JJA, (D) SON. 
 

Figure 3 displays the same four seasons (DJF, MAM, JJA, and SON) of mean monthly precipitation 
rate (mm/hour) of the Banda Sea from 2003 to 2018 produced using microwave-infrared satellite by 
the Tropical Rainfall Measuring Mission (TRMM) of NASA and JAXA (Japan Aerospace 
Exploration Agency). It is also shown that the average rainfall rate in the entire Banda Sea from the 
highest to the lowest values are in the DJF, MAM, JJA and SON seasons with values of 0.31, 0.29, 
0.18 and 0.11 mm.hour-1, respectively. The rainfall rate inversely affects the seasonal variability of 
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SSS. For example, high rainfall rate at the DJF-MAM correlates with lower SSS. On the other hand, 
lower rainfall rate at JJA and SON causes the SSS to be higher (Table 4). However, different local 
climate variations between the northern and southern Seram Islands include Ambon Island and Lease 
Islands (126-131 E; 3-4.5 S), especially in the DJF, MAM and JJA seasons (Figures 3a, 3b, and 3c) 
can be affected the local SSS distribution patterns in both locations. For example, the results of the 
study [55] on the SSS of Ambon Bay that was under the influence of the Banda Sea showed different 
results with our study. They found a maximum SSS value of 34.96 PSU in July, which had heavy 
rainfall during that month (Figure 3c), but the same result with us for the minimum SSS value of 
33.50 PSU in April. 
 
3.2. Empirical SSS Model Development and Validation  
The empirical SSS Model was developed by using a simple regression equation between measured  
SSS data from all cruises, Argo floats and field survey and ocean colour data acquired from Aqua-
MODIS satellite in the forms of Remote Sensing Reflectance (Rrs) data of Blue, Green and Red bands 
(sr-1), ADG at 443 nm; (m-1), and APH at 443 nm (m-1) that summarized in Table 5. All of these 
ocean colour data were provide by Giovanni NASA’s web. The data in Table 5 generally shows that 
the range, mean values, and standard deviation values of each Rrs in the blue spectral bands is the 
highest followed by the green spectral band and the spectral red band as the lowest, while the average 
value of all Rss of blue, green and red bands have the same pattern as previous. The mean value for 
APH 443 nm, is higher than the ADG 443 nm. 

 
Table 5 summarizes the ocean color parameter data used in the development of the SSS estimation 

empirical model Blue bands   
 Ocean color parameter Min Max Mean Stdev 
  Rrs-412 0.0014 0.0124 0.0072 0.0028 
 

Blue bands Rrs-443 0.0029 0.1599 0.0142 0.0232 
 Rrs-469 0.0030 0.0085 0.0057 0.0016   

  Rrs-488 0.0028 0.0070 0.0050 0.0012 
  Rrs-531 0.0018 0.0085 0.0028 0.0009 
 Green bands Rrs-547 0.0015 0.0031 0.0020 0.0003 
  Rrs-555 0.0012 0.0085 0.0030 0.0024 
  Rrs-645 0.0005 0.0041 0.0002 0.0005 
 Red bands Rrs-646 0.0004 0.0037 0.0002 0.0005 
  Rrs-647 0.0003 0.0036 0.0002 0.0004 
 Mean Rrs Blue bands  0.0031 0.0438 0.0081 0.0056 
 Mean Rrs Green bands 0.0016 0.0047 0.0026 0.0009 
 Mean Rrs Red bands  0.0004 0.0038 0.0002 0.0005 
 ADG at 443 nm  0.0051 0.1320 0.0175 0.0212 
 APH at 443 nm  0.0097 0.1599 0.0236 0.0221 

 
To develop the empirical model of SSS, we tested several types of regression equations such as 

linear exponential, logarithmic, polynomial and power using curve fitting. The initial results show that 
the polynomial regression order 5 gives good performance with the highest coefficient determination 
(R2). Therefore, this regression type was used as empirical model to estimate the SSS from ocean 
color data.  

Table 6 displays the R2 values of polynomial regression order 5 between SSS and Rrs of Blue band 
(412, 443, 469 and 488 nm), Green band (531, 547 and 555 nm) and Red band (645, 667 and 678 nm) 
including their transformation, such as the mean Rrs of Blue, Green and Red Bands; The mean Rrs of 
Chromaticity Blue (B/(B+G+R)), Green (G/(B+G+R)) and Red (B/(B+G+R)), the mean Rrs of Ratio 
Blue to Green (B/G), Blue to Red (G/R) and Green to Red (G/R). The ADG at 443 nm produces the 
highest R2 (0.94), followed by mean Rrs of blue chromaticity (R2= 0.92), mean Rrs of Ratio B/G 
R2=0.90), mean Rrs of Green chromaticity (R2= 0.84), and APH at 443 nm (R2= 0.84), while R2 of Rrs 
parameters and their other transformation < 0.70. 
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Table 6. Coefficient Determination (R2) resulted from polynomial order 5 regression analysis between SSS and 
Rrs of Blue, Green and Red bands and their transformation.   
   Blue Bands  Green Bands Red Bands 
 Remote Sensing Rrs- Rrs- Rrs- Rrs- Rrs- Rrs- Rrs- Rrs- Rrs- Rrs- 
 Reflectance (Rrs) 412 443 469 488 531 547 555 645 646 647 
  0.60 0.66 0.05 0.03 0.45 0.034 0.05 0.61 0.61 0.62 

 Mean of all  Rss  Blue: 0.58  Green:  0.11  Red:  0.56 

 Mean of Rrs Chromaticity (Chr.)  Chr. Blue: 0.92  Chr. Green: 0.84 Chr. Red: 0.30 

 Mean Rss Ratio Blue/Green : 0.90 Blue/Red: 0.05 Green/Red: 0.37 

 ADG at 443 nm  0.94    -   -  
 APH at 443 nm  0.84    -   -   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4. Plot of ADG at 443 nm versus SSS measured from Cruises, Argo floats and field survey (Left side); 
Performance of this empirical model in retrieving SSS (right side). 

 
Since ADG at 443 nm gives the highest R2 values then we select this parameter for estimating the 

of the Banda Sea. Figure 4 left side show plot between ADG at 443 nn against in-situ SSS 
measurements from the various cruises, Argo float, and field survey data (Table 1), while Figure 4  
right side displays performance of this empirical model in retrieving SSS. The SSS empirical model in 
Figure 4 can be rewritten as expressed in the equation 3 bellow:  
SSS = 3785911.089*X5+953272.767*X4–69540.078*X3+888.056*X2+28.361*X+33.860  . . . … 3) 

 
Where X = absorption coefficient of ADG at 443 nm. Figure 4 (right side) indicates that the SSS 
estimated using ocean color parameter of the ADG 443 follows a 1: 1 line with high accuracy and 
with a small root mean square error (RMSE) of 0.103 PSU as shown in Table 7 within the SSS ranges 
of 30.42-34.53 PSU. However, accuracy assessment using the Argo floats #6901746 and #6901747 
data that measured SSS in the even dates in the eastern part of the Banda sea (Figures 1) show a 
slightly higher RMSE value of 0.369 and 0.234 PSU (Table 7), respectively, but the comparison with 
SSS retrieved from Aquarius satellite data in the mid of the Banda Sea (Figures 1) shows significantly 
low RMSE value of 0.145 PSU (Table 7). This value is smaller than 0.2 PSU, which indicates that the 
accuracy of our empirical models to estimate the SSS is equal the expected accuracy of Aquarius 
satellite in measuring the global SSS as a prerequisite when this satellite launched (RMSE 0.2 PSU) 
[2, 18]. However, the accuracy of this model becomes slightly lower if compared to the above two 
Argo floats. 
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Table 7. Accuracy of the empirical model in term of RMSE for estimating the SSS within and outside the Banda Sea  
       in Situ SSS Predicted SSS  
 No. Observation by Location Dates N  (PSU) (PSU) RMSE 
       Min Max Min Max  
 Within the Banda Sea          
 1 All Cruise + Argo float All Banda Sea Aug 2003 - Feb 2019 141 30.425 34.532 30.427 34.378 0.101 

 2 Argo float #6901746 East Banda Sea Aug 2017 - Feb 2019 196 33.253 34.494 33.779 34.378 0.369 
 3 Argo float #6901747 East Banda Sea Nov 2018 - Feb 2019 40 34.014 34.447 34.069 34.231 0.234 
 4 Aquarius Satellite Mid Banda Sea Sep 2011 - Jan 2012 11 34.001 34.470 34.048 34.346 0.145 
 Outside the Banda Sea          
 5 Argo float #5904515 Cendrawasih Bay Oct 2018 - May 2019 19 33.984 34.661 34.000 34.375 0.297 
 6 Argo float #5904508 Maluku Sea Nov.2017 - Apr 2019 73 32.613 34.393 33.860 34.359 0.501 
 7 Argo float #5905014 Banyuwangi-Bali Jan 2016 - Sep 2018 33 33.721 34.917 33.987 34.364 0.503 
 8 Argo Float #5905017 Nusa Kambangan May 2017 - May 2019 55 32.622 34.515 34.022 34.376 0.555 
 9 Triumph Cruise Sourthern Java Oct 2018 9 34.188 34.514 33.824 34.310 0.343 
 10 Argo float #1901442 Sabang Isl. Sep 2013 - May 2019 55 32.051 34.904 33.993 34.360 0.553 
 11 Argo float #1901441 Mentawai Isl. Sep 2017 - May 2019 57 33.164 34.903 33.892 34.200 0.384 
 12 Argo float #5904723 Enggano Isl. Apr 2016 - May 2019 102 32.963 34.761 33.860 34.264 0.360 
 

Table 7 displays also the RMSE of this empirical model to estimate the SSS outside the Banda sea, 
which under the influenced of the Pacific Ocean water masses and Indian Ocean water masses of the 
southern the Java-Bali Islands and of the western of the Sumatra Island (Figure 2). The accuracy of 
this model is lower when it is used to estimate SSS in waters outside the Banda Sea. For the water 
mass under the influence of the Pacific Ocean, the RMSE produced by this model were 0.277 and 
0.510 for the Cendrawasih Bay and the Maluku Sea, respectively. RMSE For waters under the 
influence of Indian Ocean in the south of Java and Bali Islands were 0.343 (Truimph Cruise 2018), 
0.503 PSU (Banyuwangi-Bali) and 0.555 PSU (around Nusa Kambangan waters), while the RMSE 
for waters under the influence of the same Indian Ocean, but in the western of Sumatra Island was 
0.340 PSU (waters near Enggano Island), 0.384 PSU (waters around the Mentawai islands), and 
0.553 PSU (waters around Sabang Island, Aceh). 

Although this empirical model has high accuracy in estimating SSS (within a range of 30,427 ~ 
34,378 PSU; RMSE 0.101 PSU), but the analysis of SSS estimation accuracy based on RMSE results 
for various locations both within the Banda Sea and outside the Banda Sea (Table 7) shows that this 
model actually can predict in-situ SSS with high accuracy only in a narrow range of 33.5-34.5 PSU, 
such as the comparison result between the SSS of this model and SSS measured by Aquarius satellite 
(SSS: 34.001~34.470 PSU; RMSE: 0.145 PSU, and in around of the Cendrawasih Bay (SSS: 
33.984~34.661 PSU; RMSE: 0.297 PSU). The bias becomes higher when in-situ SSS <33.5 PSU 
(such as in the Maluku Sea, SSS: 32.613~34.393 PSU, RMSE: 0.501 PSU, and Nusa Kambangan 
waters, SSS: 32.622~34.515 PSU, RMSE: 0.555 PSU) or >34.5 PSU (such as in Banyuwangi-Bali 
waters, SSS: 33.721~34.917 PSU, RMSE: 0.503 PSU, and Sabang Island waters, SSS: 
32.051~34.904 PSU; RMSE: 0.553 PSU). Nevertheless, this empirical model has limitations in 
estimating in-situ SSS with high accuracy only in a narrow range, but the model at least showed 
reasonably good performance to retrieve the SSS data and information not only in the Banda Sea, but 
also in the most of Indonesian waters.  

As a comparison with this study, Table 8 presents some SSS estimation using ocean color data 
derived from Aqua-MODIS and GOCI satellites from various study. These results indicate that ocean 
color data with different wavelength bands (both for land [57,58], and sea applications [44,56,57,6] 
or their combination [17] of MODIS sensor) as well as various methods including, neural network 
[56,5717], band ratios [44, 6] can be directly used to predict and to map SSS without using the 
CDOM-salinity approach first [37, 38, 28, 39, 24, 31, 40, 41, 42, 43 29, 3, 15,44,5], as stated by [45]. 
Our study also indicates that the ratio of Rrs Blue to Green and Rrs Chromaticity of Green 
(Green/(Blue+Green+Red)) has a high relationship with SSS of R2=0.90 and 0.84, respectively 
(Table 6). However, the ADG parameter, which is the non-phytoplankton detrital material or CDOM 
absorption coefficient at a wavelength of 443 has the highest R2 (0.94) and thus used to predict the 
SSS directly. Thus, Table 8 concludes that ocean color optical satellites such as MODIS and/or GOCI 
have a great potential to provide data and information about SSS and to map it. 
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Table 8. SSS derived from Aqua MODIS and GOCI satellites using various wavelength bands and various algorithms as a 
comparison with this study.  

No. Location Satellite and model used to estimate SSS Salinity (PSU) R2 RMSE Source 
1 Bohay Sea, China Aqua-MODIS, Band Ratio, Rrs (531) / Rrs (555) 28~31 0.76 0.26 [44] 
2 Gulf of Mexico, USA Aqua-MODIS, Neural Network, Input  parameters 27~ 37 0.86 1.2. [56] Rrs (412, 443, 488, 555, and 667 nm) and SST       

3 Chesapeake Bay, USA Aqua-MODIS, Neural Network, Input parameters     

 Rrs (412, 443, 412/547, 443/547, 488/547 nm), 9.58 ~ 32.7 0.98 1.12 [57]   Longitude, Latitude, and (SST).     
      

4 Coast of Peninsular Aqua/Tera(?)-MODIS, Multiple regression analysis 28.5 ~ 33.5 0.96 0.37 [58] Malaysia of the first seven bands (Band 1 ~ 7)* of MODIS      

5 Hong Kong waters Aqua-MODIIS, Multiple regression analysis of the 10~34 0.81 1.63 [45] first seven bands (Band 1 ~ 7)* of MODIS       

6 Northern Gulf of  
Mexico, USA 

Aqua-MODIS, Neural Network, input parameters     
 Water leaving Reflectance Band (1,4)*, and Band 10 ~ <35 0.90 N/A [17]   (8,9, 10,14)**     

      

7 Southern Yellow Sea, GOCI, Band ratio, Rrs (490) / Rrs(555) and; 28-78 ~ 32.74 0.76 0.31 [6] China [Rrs(490)-Rrs(555)] / [Rrs(490)+Rrs(555)] 0.79 0.29    

8 Banda Sea, Indonesia Aqua-MODIS, ADG due to CDOM at 443nm 30.4 ~ 34.5 0.94 0.101 Ths study   
Remarks : * Band 1-7 are MODIS Band for Land application;  ** Band 8-16 are MODIS Bands for Ocean application 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 5. Mean climatological SSS, SST and Chl-a based on DJF, MAM, JJA and SON seasons from 2003-2018. 
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3.3. Application of Empirical SSS Model to study the upwelling of the Banda Sea 
 
Figure 5 shows the mean seasonal climatological patterns of SSS, SST and Chlorophyll-a (Chl-a) 
concentrations from 2003-2018. These oceanographic parameters of the SSS generated from the 
empirical model in this study together with SST and Chl-a downloaded from the Giovanni’s web 
shows very clearly the upwelling phenomenon occurred in the Banda Sea during the southeast 
monsoon from June to August (JJA), which indicated by relatively high value of SSS in the ranges of 
1.000~34.374 PSU with an average of 34.189 PSU; by low SST value ranges of 260C ~ 300C with an 
average of 280C, and by higher Chl-a concentration ranges of 0.2~3.0 mg.m-3 with an average of 0.6 
mg.m-3 compared with before upwelling during the northeastern monsoon (DJF) and the transition 
season I (MAM) as well as after upwelling during the transition season II (SON).  

The upwelling phenomenon of this study (Figure 5) was very consistent with the results of our old 
upwelling study in the Banda and Seram Seas during the four cruises of R/V Soerjaatmadja that 
representing four seasons, May 1996 (MAM), August 1996 (JJA), November 1996 (SON) and 
January 1997 (DJF) [59]. Table 9 displays the average value of six oceanographic parameters 
measured at 33 stations from the surface to a depth of 50 m. Of the 4 cruises to the Banda Sea, the 
upwelling event in the Banda Sea occurred on August 1996 or during the Southeast monsoon (JJA) 
indicated by the values of high SSS (34.155~34.559 PSU), low SST (25.93~27.26oC), high Chl-a 
concentration (0.39~1.14 mg.m-3), low dissolved oxygen (DO) (3.34~4.10 ml/l), and high nutrients of 
nitrates (0.024~0.0087 mg/l) and phosphates (0.045~0.051 mg/l) compared to three other observation 
months. This old study showed that upwelling was in its final phase so that its intensity was weak as 
indicated by several oceanographic parameters such as Salinity, Chl-a, and DO not reveal clearly at 
sea surface, except at depths of 25 and 50 m (Table 9) [59].  Upwelling of the Banda Sea was assumed 
to be due to southerly-southeasterly strong winds that were blowing and bringing dry air that 
constantly during that season (JJA) [59, 60]. There was a time lag about 2-3 months from upwelling 
season to generate  the  phyto-zooplankton  abundance  and  the  formation  of  skipjack  tuna  fishing  
ground, especially around the Buru-Manipa-Kelang-Buano Islands of the Maluku Province [59, 60]. 
The results of other studies also confirm that upwelling in the Banda Sea occurs in the Southeast 
monsoon can cause temperature differences up to 4oC cooler than the northeast monsoon The moving 
of deep water mass with a density of >22 kg/m3 or with high salinity to shallower waters was also 
found during the southeast monsoon period, which associated with upwelling events in the Banda Sea 
[61]. This study also agrees well with [62] that stated the variability of the SST during the southeast 
monsoon (JJA) or upwelling season (26.0~29.5oC) cooler than the northwest monsoon (DJF) 
(28.5~30.5oC), while the SSS in this season fresher (33.0~34.5 PSU) than the upwelling season 
(34.25~34.75 PSU). The high concentration of Chl-a during upwelling (the southeast monsoon) also 
seems to be triggered by nutrient input from various rivers as a result of relatively higher rainfall rate 
in the northeast monsoon (DJF) until transition-1 (MAM) seasons as shown in Figure 3. 
 
Table 9. Old upwelling oceanographic data conducted during four cruises of R/V Soerjaatmadja in the Banda 

Sea from May 1996 to January 2017 [59]. 

  
Concluding Remarks 
 
This study analyzes the potential of Aqua-MODIS ocean color satellite imagery to estimate SSS 
through the development of empirical models and assesses the accuracy of this model. The Rrs and 
ADG at 443 nm data available on the NASA Giovanni website are proven to be directly used (without 
going through the CDOM-Salinity approach) to predict SSS not only for the Banda Sea but for most 
Indonesian waters with high accuracy, although still limited to a narrow SSS range between 33.5 PSU 
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and 34.5 PSU. Therefore, it is necessary to develop and to validate this empirical model, which able to 
predict the SSS throughout the Indonesia waters with wider SSS range, and higher spatial resolution (1 
km) of Aqua-MODIS data. The SSS products developed from this study together with other data such 
as SST, Chl-a and/or other marine remote sensing data can describe many other topics on 
oceanography fields in more depth such as the upwelling study as discussed in this study. 
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