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Abstract. Glass-ceramics with akermanite, diopside, spinel and perovskite crystalline phases 
were prepared by using the direct sintering method and using chlorine-containing low-titanium 
slag as a raw material. The changes in crystalline phase composition, relative content and 
microstructure of glass-ceramics sintered at different times were studied. The results suggested 
crystalline phases remained steady while the relative content of each phase changed significantly. 
The relative content of akermanite decreased firstly and then increased while those of diopside 
changed oppositely. The relative content of spinel rose from 6.6% to 9.3% and perovskite 
stabilized at 10.0-11.1%. In addition, the pore size of glass-ceramics declined firstly and then 
increased. The optimal microstrure of glass-ceramics were obtained when crystallized at 890 °C 
for 60 min and sintered at 1185 °C for 60 min. In general, glass-ceramics with compact 
microstructures could be obtained at appropriate sintering times. 

1. Introduction 
Chlorine-containing low-titanium slag (CTS) consists of low-titanium industrial waste residue produced 
during extraction of titanium components from Ti-bearing blast furnace slag [1]. The process typically 
involves two steps: high-temperature carbonization and low-temperature chlorination, with latter step 
producing 2% to 5% chlorine in waste residue. The chlorine-containing low-titanium slag cannot be 
used as building material like ordinary waste residues due to presence of chlorine considered as main 
culprit in erosion of reinforced concrete [2]. So far, chlorine-containing low-titanium slag can only be 
stored in open areas and wasting lands due to lack of reasonable utilization. However, its migration and 
release of chlorine cause pollution to water and soil environment. Therefore, finding novel ways for 
treatment of chlorine-containing low-titanium slag as industrial solid waste is highly desirable for 
environmental remediation.  

Chlorine could be removed from chlorine-containing slag by heat treatment [3]. However, 
dechlorination residues obtained by this method cannot effectively be utilized. Therefore, it is necessary 
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to design more reasonable means for utilization of dechlorinated waste residues while removing 
chlorine. The preparation of glass-ceramics from waste slag is a high value-added method for effective 
utilization of waste slag [4-6]. At the same time, the harmful components present in waste slag can be 
purified in the process of preparing glass-ceramics. Compared with ceramic materials, glass-ceramics 
from waste slag have higher densities, lower or none water absorptions, and elevated strengths. 
Therefore, it can be used as building and decorative material [7]. However, high-temperature melting 
process as necessary step for preparation of glass-ceramics, greatly increases both production and 
environmental costs, therefore limiting large-scale production of glass-ceramics [5]. 

Some studies demonstrated that glass-ceramics could be obtained by direct sintering at low 
temperatures from green bodies pressed from ground mixtures of waste residues and additives [8-10]. 
This route is not only economical but yields glass-ceramics with properties comparable to those 
produced by conventional methods, such as bulk crystallization and melt-sintering. In addition, direct 
sintering is similar to ceramic sintering, meaning that production and preparation of glass-ceramics can 
achieve continuity and automation as ceramics. Moreover, existing ceramic production equipment can 
directly be employed to produce glass-ceramics, which is beneficial to development of glass-ceramics 
industry. On the other hand, sintering is indispensable no matter the used sintering method to prepare 
glass-ceramics. Moreover, both temperature and time are process parameters requiring strict control 
during sintering to determine the sintering effect of glass-ceramics. Numerous studies discussed the 
effects of sintering temperature on glass-ceramics. Some found that increasing sintering temperature 
could accelerate the sintering process and contribute to formation of dense structures with good 
mechanical properties in early and middle stages of sintering [8,11,12]. However, improving the 
properties of glass-ceramics by adjusting sintering temperatures becomes difficult in late stage of 
sintering. Therefore, as sintering temperature tends to be stable, adjusting the sintering time is necessary 
for formation of dense microstructural glass-ceramics with improved properties. Meanwhile, reports on 
the influence of sintering time on the crystalline phase and microstructure of chlorine-containing 
low-titanium Slag glass-ceramics prepared by direct sintering have not been published.  

Here, feasibility of preparing glass-ceramics with good microstructures from chlorine-containing 
low-titanium slag using direct sintering was demonstrated. The effects of sintering time on crystalline 
phase composition, relative content and microstructure of glass-ceramics were all investigated. The 
results suggested that sintering time has a significant effect on phase content and microstructure of 
glass-ceramics and usage of chlorine-containing low-titanium slag as raw material in glass-ceramics 
preparation by direct sintering could be a good resource utilization method for chlorine-containing 
low-titanium slag, which is conducive to environmental protection and sustainable development. 

2. Experimental 

2.1. Raw materials 
The chlorine-containing low-titanium slag (CTS) black granular powder was collected from Panzhihua, 
China. The presence of chloride in CTS induced strong moisture absorption, resulting in CTS with water 
content of 5.28%. Therefore, CTS should be dried before using. 

2.2. Preparation of glass-ceramics 
CTS was first placed in an oven at 105±5 °C for 24 h, then dried CTS was ball milled in planetary ball 
mill at 200 r/min for 4 h. The product powder was passed through a 160 mesh sieve (<96 μm) to yield 
ground powder. On the other hand, the retained CTS was recycled to ensure maximum use of resources. 
Without adding binder, the ground powder was uniaxially pressed in steel mold at 10 MPa to yield 
cylindrical compacts (Ø25.3 mm × 5.5 mm) and rectangular compacts (5 mm × 5 mm × 50 mm). 

The two compacts were placed on a corundum sheet containing alumina powder and placed in an 
electric resistance furnace, heated from room temperature to crystallization temperature at a rate of 
5 °C/min then kept at crystallization temperature for 1 h. Next, the temperature was raised from 
crystallization temperature to sintering temperature at a rate of 5 °C/min then kept at sintering 



ICGDE 2020
IOP Conf. Series: Earth and Environmental Science 615 (2020) 012124

IOP Publishing
doi:10.1088/1755-1315/615/1/012124

3

 

temperature for 30 min, 60 min, 90 min and 120 min, respectively. After cooling to room temperature, 
glass-ceramics with two different shapes were obtained. The glass-ceramics samples obtained at 
different sintering times are listed in Table 1. 

Table 1. Glass-ceramics obtained at different sintering times.  

Sintering time (min) 30 60 90 120 

Samples S-30 S-60 S-90 S-120 

2.3.Characterization 
The chemical compositions of CTS specimens were identified by X-ray fluorescence spectroscopy 
(XRF, Axios, PANalytical, Netherlands).  

The phase structures of CTS and glass-ceramics were examined by X-ray diffraction (XRD, Ultima 
IV, Rigaku, Japan) using Cu Kα radiation at operating conditions of 40 kV voltage, 40 mA current, 
2theta range from 10-70°, and scanning speed of 4º (2θ) min-1 at a step size of 0.02º. The crystalline 
phases and relative content were estimated using MDI Jade 6 software. In this study, The “Whole 
Pattern Fit” refinement function in MDI Jade 6 was used to calculate the quantitative analysis of the 
relative content of each crystalline phase in glass-ceramics. The refinement process is referred to works 
of Zhao et al [13]. The background curve is 5th-Order Polynomial, the profile shape function is 
pseudo-Voigt, and the refinement range is 2 theta=10-70°. In order to  the evaluation of refinement 
results, R-factor value and E-factor value are considered as the criteria for  judging the quality of 
refinement. The ratio of R/E is called the “goodness of fit”, which is approximately 1, the refinement 
results are better [14]. 

The thermal behaviors of CTS were analyzed by differential thermal analysis and thermogravimetry 
(DSC/TG, STA 4499F5, Netzsch, Germany) from 30 to 1200°C at constant heating rate of 10°C/min 
using Al2O3 crucible as reference material. The microstructures of glass-ceramics were observed by 
scanning electron microscopy (SEM, Ultra55, Carl zeissNTS GmbH, Germany).  

3. Results and discussion 

3.1. Characterization and thermal behaviors of CTS specimens 
The phase and chemical compositions of CTS specimens are gathered in Fig. 1 and Table 2, respectively. 
In Fig. 1, CTS showed amorphous phase with crystalline phases of khamrabaevite (PDF#71-0298) and 
carbon (PDF#75-0444). At around 26° is a broad peak which belongs to 002 peak of carbon crystallite of 
coke and the value of d002 is 3.42Å. Coke is an important raw material for high-temperature 
carbonization process of Ti-bearing blast furnace slag, which can promote the formation of 
khamrabaevite. In general, some of amorphous coke are converted to structurally regular carbon 
crystallite at high temperatures [15]. The carbon crystallite 002 peak of coke reflects the regularity of the 
carbon structure, a weak and broad 002 carbon peak in CTS indicates low ordering of carbon structure 
[16]. Khamrabaevite is formed during high-temperature carbonization and remained in CTS due to 
incomplete chlorination at low temperature [17]. The main chemical components of slag were identified 
as CaO, SiO2 and Al2O3, with certain amounts of TiO2, Fe2O3 and MgO (Table 2). The chemical 
composition of CTS met the requirements for formation of glass-ceramics. Besides, TiO2 and Fe2O3 
could act as nucleating agents, contributing to devitrification of glass-ceramics [18]. Theoretically, CTS 
could be used as component during preparation of glass-ceramics. Here, CTS was used as raw material 
for preparation of glass-ceramics, which could reduce the production cost of glass ceramics. On the 
other hand, this made it feasible to analyze the effects of sintering time on glass-ceramics without 
interfering additives. 
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Fig. 1  XRD pattern of CTS specimens.  

 
Table 2  The chemical compositions of CTS specimens (wt%). 

CaO SiO2 Al2O3 TiO2 MgO Fe2O3 Cl Others Loss 

28.30 24.18 11.66 7.57 6.65 3.83 2.58 2.45 12.78 

 
The DSC-TG curves of CTS specimens are shown in Fig. 2. The endothermic valley observed in 

DSC at 70 °C was related to loss of adsorbed water molecules on CTS. As temperature increased, the 
exothermic peak at 890 °C became prominent. This peak could be used as crystallization temperature of 
glass ceramics. The TG curve depicted continuous weight loss. The weight loss below 140 °C was 
mainly caused by evaporation of moisture and that of 5.6% recorded between 140 °C and 1130 °C was 
caused by volatilization of carbon dioxide and chorine-containing gas [3]. Carbon dioxide was formed 
by oxidation of carbon and khamrabaevite. At temperatures higher than melting point, chloride would 
be converted from solid state to gas and escape from CTS, releasing chlorine-containing gas. The TG 
curve between 1130 °C and 1200 °C showed 1.4% weight loss caused by release of SO2 from alkali 
metal sulfates at high temperatures [19]. Meanwhile, the endothermic trends in DSC curve were 
attributed to melting of low melting point components. 

 
Fig. 2 DSC-TG curves of CTS specimens. 

3.2. Heating treatment of glass-ceramics 
Using conventional melt-sintering of glass-ceramics, the sintering process would require completion 
before crystallization. Besides, reduction in compactness caused by rapid growth of crystals during 
sintering should be prevented [20]. In direct sintering, the sintering process was performed 
simultaneously during or after crystallization [21]. In direct sintering of glass-ceramics using 
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water-quenched slag as raw material, the sintering temperature was much higher than crystallization 
temperature [22]. This would result in two independent temperature ranges related to sintering and 
crystallization. Therefore, crystals could grow at crystallization temperature while green compacts 
might densify at sintering temperature. This would prevent negative influence of crystal growth on 
compactness of green compacts. For the above reasons, the sintering temperature and crystallization 
temperature were set separately. Therefore, the preparation of glass-ceramics from CTS by direct 
sintering required heat treatment process to be set in two steps: crystallization and sintering. 
Combinatied with preliminary experiments, the best complete heat treatment process can be determined, 
consisting of first heating from room temperature to crystallization temperature (890 °C) at 10 °C/min 
and then kept at this temperature for 60 min to allow crystallization to occur. This was followed by 
further heating from crystallization temperature (890 °C) to sintering temperature (1185 °C) and then 
kept at this temperature for 30 min, 60 min, 90 min, and 120 min. Finally, the obtained product was 
naturally cooled to room temperature. 

3.3.Crystalline phase composition and content of glass-ceramics 
The XRD patterns of glass-ceramics prepared at different sintering times are gathered in Fig. 3. The 
crystalline phases of all specimens consisted of akermanite (PDF#79-2424), diopside (PDF#87-2070), 
spinel (PDF#75-1799) and perovskite (PDF#86-1393). This indicated that changes in sintering time had 
no influence on crystal phase composition of glass-ceramics. The differences observed in diffraction 
peak intensity of each crystalline phase of glass-ceramics suggested that sintering time did affect content 
of each crystal phase. In order to determine what sintering times did affect the content of each crystalline 
phase in glass-ceramics, XRD patterns of all specimens were refined.  

 
Fig. 3 XRD patterns of glass-ceramics sintered at different times: S-120 for 120min, S-90 for 90min, 

S-60 for 60min, and S-30 for 30min; A:Akermanite, S:Spinel, D:Diopside, P:Perovskite 
 

Table. 3 provides the refinment results including the relative contents of crystalline phases, R-factor 
value, E-factor value and ratios of R/E. Ratios of R/E in all specimens are  between 1.40 and 1.93, which 
indicates that refinement results are reliable [14]. Sintering time greatly influenced the contents of 
akermanite, diopside and spinel while showed little influence on perovskite. With the increase of 
sintering time, the relative contents of akermanite decreased firstly and then increased, but the relative 
contents of diopside oppositely changed. The relative content of diopside in the S-60 specimen was the 
highest (41.7%), while the lowest content of akermanite (40.6%). The change in relative content of 
crystalline phase indicated growth or shrinkage of crystal particles. Akermanite and diopside were 
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susceptible to faster ion migration at high temperatures, degrading stability of crystal structure. Under 
these circumstances, the relative ratio of bridged oxygen to non - bridged oxygen decreased due to alkali 
metal ions, such as Ca2+. Moreover, the tetrahedral group [SiO3]4- of diopside was destroyed and 
converted into ditetrahedral group [Si2O7]6- while octahedral magnesium group [MgO6]10- changed 
into tetrahedral group [MgO4]6- [23]. These changes promoted secondary growth of akermanite grains, 
decreasing diopside content and increasing akermanite content in glass-ceramics. The relative contents 
of spinel rosed from 6.6% to 9.3%, which means the increasd sintering time helped the growth of spinel 
crystals. The relative content of perovskite remained unaffected by sintering time and kept stable at 
10.0-11.1%. 

Table. 3 The relative contents of crystalline phase of glass-ceramics sintered at different times. 

Samples 
Phases and Contents(%) 

R-factor(%) E-factor(%) 
R/E 
ratio Akermanite 

Diopside 
Fe-bearing 

Pervoskite Spinel 

S-30 46.7(1.2) 35.7(2.4) 11.1(0.3) 6.6(1.0) 8.12 4.19 1.93 

S-60 40.6(1.1) 41.7(2.7) 10.5(0.3) 7.2(1.0) 6.43 4.26 1.51 

S-90 41.7(1.1) 39.2(2.5) 10.6(0.3) 8.5(0.9) 5.99 4.25 1.41 

S-120 44.0(1.1) 36.7(2.4) 10.0(0.3) 9.3(1.1) 6.04 4.31 1.40 

3.4.Morphological features of glass-ceramics 
Fig. 4 displays the apparent morphology and microstructure of glass-ceramics obtained at different 
sintering times. Figs. 4(a-d) represent the surface images of S-30, S-60, S-90 and S-120, respectively. In 
Fig. 4(a), numerous voids appeared in glass-ceramics with loose structure. In contrast, no voids were 
observed in Fig. 4(b) but few tiny pores in isolated distributions appeared. The pore size  dropped 
observably and structure looked relatively dense, indicating an increase in the compaction of the glass 
ceramic at a sintering time from 30 min to 60 min. As sintering time continued increasing, some isolated 
tiny pores present on the surface became interconnected and changed into large-aperture pores (Fig. 4(c 
and d)). During sintering at high temperature, solid particles of glass-ceramics would bond to each other, 
and voids would gradually be eliminated. Meanwhile, some liquid would flow among particles, filling 
the tiny pores and increasing density of glass ceramics. These macroscopic changes rose linear 
shrinkage rate and bulk density. Fig. 4(a) and 4(b) confirmed the microscopic changes in structure from 
loose to dense, suggesting S-60 with lower water absorption than S-30. Moreover, XRD indicated 
formation of secondary grown akermanite grains as sintering time prolonged. This would destroy the 
equilibrium and stable structure among liquid phase, pores and crystalline phases, exposing some closed 
pores and forming large pores with adverse effects on properties of both S-90 and S-120 specimens [24]. 

Figs. 4(e-h) shows the internal images of  glass-ceramic specimens. In Fig. 4(e), grains in the forms 
of plate-like, columnar and granular could be clearly observed. Small-sized grains surrounded 
large-sized grains, or precipitated on their surface defects. With the increase of sintering time, some 
grains were softened and deformed, which made the cyrstal boundaries blurred and reduced the gaps 
between grains. Plate-like and columnar grains appeared to be more easily deformed, while granular 
grains could still maintain relatively complete structures. The deformation of crystal grains were more 
serious in Fig. 4(g). These deformed grains filled the interstices of particles like the amorphous "liquid 
phase". In Fig. 4(h) , the complete columanr and plate-like grains were difficultly observed. Granular 
grains and amorphous "liquid phase" constituded a chimeric structure. Some studies had proven that the 
viscous flow of glass phase contributed to the dense sintering of glass-ceramics [25]. However, if  the 
liquid phase was formed by soften and deformed crystal grains, the stability of the microstructure of 
glass-ceramics would be decreased. As a result, the sintered compactness of glass-ceramics became 
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deteriorated, and porosity defects would be formed on the surface of glass-ceramics. This phenonmenon 
was confirmed in the apparent morphology of  both S-90 and S-120 specimens (Fig. 4(c and d)). 

 

    

    

    

    
Fig. 4 Morphology of glass-ceramics sintered at different times: (a) and (e) for S-30, (b) and (f) for 

S-60, (c) and (g) for S-90, (d) and (h) for S-120 

4. Conclusions 
Glass-ceramics with akermanite, diopside, spinel and perovskite crystalline phases were prepared from 
chlorinate-containing and low titanium-bearing slag as raw material using direct sintering method. With 



ICGDE 2020
IOP Conf. Series: Earth and Environmental Science 615 (2020) 012124

IOP Publishing
doi:10.1088/1755-1315/615/1/012124

8

 

the increase of sintering time, the crystalline phase composition remained unchanged while the relative 
content of each crystalline phase varied. In particular, the relative content of akermanite decreased 
firstly and then increased, while diopside was the opposite. The relative content of spinel rose from 6.6% 
to 9.3% and the content of perovskite remained at 10.0-11.1%. The change in sintering time affected the 
microstructure of glass-ceramics, especially pore size and pore state. With a sintering time of 60 minutes, 
few tiny pores distributed on glass-ceramics surfaces were formed suggesting a high compaction degree 
of glass-ceramics. However, excessively long sintering times resulted in the size of the connected holes. 
These connected pores adversely affected the properties of the obtained glass-ceramics. The optimal 
microstrure and high diopside content of glass-ceramics were obtained when crystallized at 890 °C for 
60 min and sintered at 1185 °C for 60 min. In general, the proposed method provided new way for the 
resource utilization of chlorine-containing low-titanium slag, as well as theoretical and technical 
reference for direct sintering of glass-ceramics from industrial waste. 
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