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Abstract. A simple method is proposed for identifying mesoscale eddies in the results of
numerical modeling. The method uses extrema in distributions of the sea level elevation as
eddy markers. By using the method, we analyze statistics of mesoscale eddies resulting from
SibPOM numerical simulations in the Eurasian sector of the Arctic marginal seas. The results
of using this method show that the number of cyclonic eddies slightly exceeds the number of
anticyclonic eddies, but the excess is only 2-3%. Also, we demonstrate that a significant number
of eddies arise under the ice cover. The number of such eddies increases significantly in winter.
This fact indicates that the convection caused by salt rejection during freezing plays an essential
role in their formation. The numerical modeling results confirm the phenomenon of active eddy
generation in the ice edge zone. Besides, the results show that in the near-edge zone, a more
significant number of eddies are formed from the icy side adjacent to the edge, and not from the
ice-free side. The periods of seawater freezing and ice melting, accompanied by corresponding
displacements in the ice edge, produce eddies different in nature. The number of eddies in the
marginal ice zone has two seasonal maxima corresponding to these two periods.

1. Introduction
Mesoscale eddies are formed, as a rule, in the frontal zones [14], due to baroclinic and barotropic
instabilities of mean flows [15, 16], in regions of active vertical mixing and cascading [17, 18]
in close connection with atmospheric variations. For example, [3] found that subtropical gyre
potential energy variations are associated with the North Atlantic Oscillation (NAO). It could
contribute to a 25% increase in eddy kinetic energy (EKE) near the Gulf Stream extension. In
the Arctic, the edge zone of ice is also a place of active eddy generation [8].

Eddies play a significant role in the cross-frontal exchange and influence the along-front
advection intensity [1]. A single eddy may carry trillions of tons of water and dozens of terajoules
of heat [11]. Regions of strong currents are sources of mesoscale eddies responsible for the cross-
frontal exchange. [4] derived the cross-front eddy heat flux as a result of a density change across
the front and the along front velocity. Using the example of the North Atlantic current, [2]
emphasized the role of eddies in compensating for the asymmetry of heat fluxes at the fronts.

Taking into account the role of mesoscale eddies in numerical models, even at the
parameterization level, leads to significant improvements in the simulation of the global
temperature distribution, the poleward and surface heat fluxes, and the locations of deep-water
formation [5]. High-resolution ocean models containing an explicit representation of mesoscale
eddies and realistic boundary currents, can be used to simulate AMOC (Atlantic meridional
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overturning circulation) pathways [6] which are in close agreement with observations. These
models also exhibit AMOC variability, which cannot be simulated at low resolutions.

The number of generated eddies and their physical properties are key parameters to evaluate
the integral effect of eddies on the variability of the large-scale ocean circulation. Analysis
of satellite radar images of Envisat ASAR for the summer-autumn period of 2007 and 2011
[8] showed that 64% of the total number of eddies are cyclonic, and the range of observed
eddy diameters was from 1 to 50 km, but about 80% of all eddies had diameters less than 10
km. According to the results of [10], cyclonic eddies are also twice more frequent compared to
anticyclonic eddies at the surface. It is distinct from the dominating anticyclonic eddies observed
at depth by in situ moorings [12] and ice-tethered profilers [13]. An intrahalocline eddy observed
on the Chukchi slope in [9] was also anticyclonic.

2. Numerical models, data, and experimental conditions
In our study, we will use a nested model system described in some previous works (see, for
example, [19, 18]). The system includes the Siberian Coupled Ice and Ocean Model (SibCIOM)
as a large-scale model of the Arctic and North Atlantic and the Siberian clone of the Princeton
Ocean Model (SibPOM) tuned for several Arctic marginal seas: the Barents Sea, the Kara Sea,
the Laptev Sea, the East Siberian Sea, and the Chukchi Sea with a horizontal resolution of
about 2-3 km.

In the numerical experiment, we used data on the state of the lower atmosphere from the
CORE-II [20] reanalysis as a forcing of the SibCIOM model in 1948–2010. The run of regional
SibPOM models was started in September 2006 and finished in October 2008. When nested,
SibPOM uses the large-scale model temperature and salinity distributions as the ”climatic”
state, and the stream function and horizontal velocity components as fluid boundary conditions.
In this variant of the experiments, feedbacks (the influence of regional processes on large-scale
ones) were not taken into account.

3. Mesoscale eddy recognition method
To recognize eddy formations, we used a selection of solitary minima and maxima in the field
of surface elevation, treating them as cyclonic and anticyclonic eddies, respectively. For each
2D output of sea surface elevation, we construct a field with a uniform one-kilometer resolution
using bilinear interpolation. Then, averaging the resulting field over squares of 3×3 or 4×4 grid
nodes, etc., we can identify a set of solitary minima and maxima. We consider as a maximum at
point (i, j) in case the value at this point satisfies the following expressions in both coordinate
directions: 

ηi,j −
ηi−1,j + ηi+1,j

2
> α |ηi−1,j − ηi+1,j |

ηi,j −
ηi,j−1 + ηi,j+1

2
> α |ηi,j−1 − ηi,j+1| ,

(1)

where ηi,j is the surface elevation matrix obtained as a result of averaging over the corresponding
square, and α is the tuning coefficient, which after a series of tests we chose equal to 0.5. If,
for example, the value at the point (i, j), when averaged over 4×4 km squares, satisfies the
conditions (1) while the values at all eight neighboring points do not satisfy this condition, then
we consider that the point (i, j) contains an anticyclonic eddy of 4 km scale. The identification
of cyclonic eddies is carried out similarly.

According to [8], the observed eddy diameters range from 1 to 50 km. The horizontal
resolution of the model is 2-3 km; therefore, it makes no sense to identify eddies of 1-2 km.
To identify larger eddies, we used squares with sides of 3, 5, 7, 10, 14, 20, 28, 40, and 56 km.
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The energy of eddy formations can be estimated by taking the integral value of the eddy
kinetic energy

EKE =
ρ0

2

∫
Ωi,j

∫ ηi,j

−H

(
u′u′ + v′v′

)
dz dΩ, (2)

where the integral is taken over Ωi,j - a corresponding vicinity of the point (i, j) and from the
bottom z = −H to the surface z = ηi,j . In this case, during the model run it is necessary to
store not only the time-average values of the horizontal velocity components u and v, but also
their squares u2 and v2, so that, using the well-known statistical expression, from the results of
numerical simulation it would be possible to calculate(

u′u′ + v′v′
)

=
(
u2 + v2

)
−
(
u2 + v2

)
. (3)

4. Results and discussion
Table 1 shows the average monthly number of identified eddies in the seas of the Eurasian sector
of the Arctic with a scale of at least 5 km. There were 19.43 thousand eddies on average in these
seas, of which 10.19 thousand are cyclonic (52%). The absolute predominance of cyclonic eddies
as a whole is justified by the cyclonic nature of water movement in these areas. If the jet has a
cyclonic bend, then, provided the potential vorticity is preserved, the number of cyclonic vortices
generated by this jet should be more generous. Seasonality is expressed in a greater number
of eddies in winter (under the ice) with a maximum in March and a minimum in September.
Seasonal fluctuations are approximately ± 16% of the average annual amount.

This statistics is significantly different from the results of [11, 10, 8], obtained on analysis of
space-borne observations. For example, in [8] it is stated that the largest number of registered
eddies was in August and September, while the eddies of the cyclonic type of rotation are 64%;
i.e., there are about two times more of them than the anticyclonic eddies. A possible reason for
this discrepancy is, firstly, that the possibility of observing eddies is available only for ice-free
water areas. Secondly, registration of anticyclonic eddies is visually more difficult, because they
often reside in the subsurface layers [9].

Table 2 presents statistics for the Barents and Chukchi Seas for areas where, according to
model calculations, the ice concentration was less than 15%. As can be seen in this case, the
maximum number of identified eddies coincides with the time of maximum sea openness from
ice, even in the Barents Sea, which is not entirely covered by ice. For the Chukchi Sea, the
absence of eddies is noted throughout the winter solely because there is no surface sufficiently
open from ice. We did not present calculations for other seas, which also confirm the conclusion
that the maximum number of eddies in about September is not associated with an increase in
the eddy activity during this period (or not only with it) but with the maximum ice-free area
of the sea surface. Besides, a comparison of the results of Table 1 and Table 2 shows that a
significant part of eddies resides under sea ice, where its concentration is higher than 15%. The
share of subglacial eddies in the Barents Sea is about 32%, and in the Chukchi Sea it is 85%.
Perhaps the main reason for such a high ratio in the Chukchi Sea is that this sea is under ice for
a significant part of the year. However, even in the Barents Sea, these eddies account for about
a third. The only mechanism of eddy formation, we believe, is convective instability during the
freezing period. In March, the fraction of sub-ice eddies in the Barents Sea is 39% against 16%
in September, and in the Chukchi Sea the comparison gives 100% against 41%. Nevertheless,
even during ice melting, the fraction of sub-ice eddies is nonzero; therefore, other mechanisms
need to be studied.

In paper [10], results showed that the marginal ice zone is one of the sources of mesoscale
eddy formation. The reason is a jump in the flow of heat, moisture, and momentum at the
ice boundary, which creates some semblance of a front. Moreover, the same front is also
present in the atmosphere. Unfortunately, we cannot estimate the effect of the atmospheric
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front within the framework of this formulation of the problem, since we had prescribed the
lower atmosphere’s characteristics, and the ice boundary in the reanalysis hardly coincides with
the boundary obtained in our experiment. Nevertheless, we can assess the role of the boundary
in the formation of mesoscale eddies.

Table 1. Average number of eddies (in thousands) with a scale of at least 5 km by months
simultaneously existing in the marginal seas of the Eurasian sector of the Arctic, detected using
the proposed procedure based on the results of numerical modeling in the period from September
2006 to September 2008: the first value corresponds to the number of cyclonic eddies, the second
is the number of anticyclonic eddies. The first column contains the average annual number of
cyclonic and anticyclonic eddies in each of the seas and in total.

1 2 3 4 5 6 7 8 9 10 11 12

Barents Sea 3.8 3.8 3.9 3.8 3.8 3.5 3.3 3.1 3.1 3.4 3.6 3.8
3.55/3.21 3.6 3.5 3.6 3.5 3.5 3.1 2.9 2.7 2.7 3.0 3.2 3.5

Kara Sea 1.9 2.1 2.1 2.2 2.1 1.9 1.7 1.6 1.5 1.5 1.7 1.8
1.82/1.63 1.8 1.9 1.9 1.9 1.9 1.7 1.4 1.4 1.3 1.4 1.5 1.7

Laptev Sea 1.5 1.5 1.5 1.4 1.3 1.3 1.1 1.1 1.1 1.3 1.5 1.5
1.32/1.12 1.4 1.3 1.3 1.2 1.1 1.0 0.9 0.9 0.9 1.1 1.3 1.3

East Siberian Sea 1.5 1.6 1.8 1.8 1.8 1.7 1.3 1.1 1.0 1.1 1.3 1.4
1.42/1.29 1.4 1.5 1.7 1.6 1.7 1.6 1.2 0.9 0.8 1.0 1.2 1.3

Chukchi Sea 2.4 2.3 2.3 2.1 1.8 1.7 1.8 1.9 2.1 2.2 2.2 2.2
2.07/1.99 2.3 2.2 2.2 2.1 1.7 1.7 1.6 1.8 2.0 2.1 2.1 2.1

Total 11.1 11.4 11.6 11.3 10.8 10.1 9.2 8.7 8.5 9.5 10.2 10.7
10.19/9.24 10.3 10.5 10.6 10.3 9.8 9.0 8.1 7.6 7.6 8.6 9.4 9.9

Table 2. Average number of eddies (in thousands) with a scale of at least 5 km by months
simultaneously existing in the marginal seas with less than 15% ice cover in the Eurasian sector
of the Arctic, detected using the proposed procedure based on the results of numerical modeling
in the period from September 2006 to September 2008: the first value corresponds to the number
of cyclonic eddies, the second is the number of anticyclonic eddies. The first column contains
the average annual number of cyclonic and anticyclonic eddies in each of the seas and in total.

1 2 3 4 5 6 7 8 9 10 11 12

Barents Sea 2.6 2.3 2.4 2.1 2.2 2.0 2.3 2.4 2.6 2.7 2.7 2.6
2.42/2.19 2.4 2.1 2.2 2.0 2.0 1.8 2.0 2.1 2.3 2.4 2.4 2.4

Chukchi Sea 0.0 0.0 0.0 0.0 0.0 0.03 0.4 1.0 1.2 1.3 0.6 0.03
0.38/0.36 0.0 0.0 0.0 0.0 0.0 0.03 0.4 0.9 1.2 1.2 0.6 0.03
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If we set the ice concentration isoline equal to 50% as the ice field’s conditional boundary,
we can estimate what fraction of the eddies is on the free surface side and the under-ice side.
Table 3 shows that about 61% of eddies formed in the near-edge zone appeared on the side of
concentrated ice. That is, there are about 1.5 times more such eddies. In general, the number of
cyclonic eddies is somewhat larger than that of anticyclonic ones. However, the difference is not
as significant as, for example, in [8], and the fraction of cyclonic eddies is about 51%. Also, the
table shows two separate maxima. The first maximum corresponds to August and the second
one to October. These two periods differ in that in August, the ice mostly melts, and, therefore,
the ice boundary is also a source of freshened water on the ocean surface. In the second case,
the formation of young ice, accompanied by salt rejection, prevails. Therefore, in the edge zone
dense waters are formed, creating conditions for convection. However, the process continues
throughout the wintertime since December, it is already wholly hidden from observation, and
the edge zone is merely absent.

Table 3. Average number of eddies with a scale of at least 5 km by months (June-December)
simultaneously existing in the area with ice cover of 10-50% and 50-80% in the Chukchi Sea
resulting from numerical modeling in the period from September 2006 to September 2008.

6 7 8 9 10 11 12

Ice cover is 10-50% 10 131 207 244 82 128 60
72/69 8 125 191 233 83 121 57

Ice cover is 50-80% 37 223 407 374 48 142 121
114/109 30 205 384 364 48 141 122

Figure 1 shows some of the distributions of eddies over the five seas in August 2007. The
animation based on such figures shows that most of the medium and large eddies are stationary,
since they are trapped to the topographic features. The most mobile are mesoscale eddies on a
scale of 3-10 km. The figure shows the most obvious trajectories of such eddies.

In the Barents Sea (Fig. 1a), this is the trajectory of the Norwegian and West Spitzbergen
Currents along the Scandinavian coast and further towards Svalbard. Also, as noted in [18],
under the conditions of cascading formation (sliding of dense shelf waters along the sloped
bottom), eddies form and move along the right slopes of Bear Island Trough (Bjørnøyrenna),
Franz-Victoria Trough, and along the northern coast of Novaya Zemlya. In the Kara Sea
(Fig. 1b), cascading develops in the area of St. Anna Trough and Voronin Trough, which
is accompanied by a series of mesoscale eddies generated in these areas and propagating towards
the open ocean along the right slopes of the troughs. Besides, many eddies are formed in the
area of the mouths of the Ob and Yenisei rivers at the front of fresh and salty waters and
contain, respectively, either freshened river water or Arctic salty water. These eddies spread
towards the adjacent shelf areas of the Kara Sea. We can also note a series of eddies arising in
the Matochkin Shar Strait area and propagating along the southern coast of Novaya Zemlya.
At the front of the river waters of the Lena, Olenek, and Khatanga Rivers and sea waters in
the Laptev Sea (Fig. 1c), many mesoscale eddies are also formed, they propagate mainly in the
northern direction towards the shelf-slope. Along the shelf-slope itself, we also note a series of
eddies moving eastward. These eddies come from the St. Anna Trough and the Voronin Trough
from the Kara Sea. Besides, some of them arise due to the baroclinic instability of the Atlantic
water flow along the shelf-slope. Trapped by topography, these eddies propagate further along
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Figure 1. Eddies in marginal seas in August 2007: (a) Barents Sea, (b) Kara Sea, (c) Laptev
Sea, (d) East Siberian Sea, (e) Chukchi Sea. Red circles correspond to cyclonic, and blue ones
to anticyclonic eddies. The diameter of the circles corresponds to the characteristic size of
the eddies. Arrows indicate the most obvious direction of eddy propagation as it is seen from
corresponding animation (not presented).

the Lomonosov Ridge towards the open ocean. This trajectory can be seen in the figure (Fig.
1d) for the East Siberian Sea. On the opposite side, along the shelf slope, a series of eddies
moves. They arise on the outskirts of the Beaufort Gyre. Some of the eddies appear in the
shallow areas off the coast. They spread northward towards the shelf slope. An active source of
eddy formation in the Chukchi Sea (Fig. 1e) is the branches of the current of the Pacific waters
entering through the Bering Strait. Since these waters are less saline, there is a front where
mesoscale eddies are formed and propagate towards the Beaufort Gyre, mainly along the coast
of Alaska, but at the same time, a prominent part of them moves along the coast of Chukotka
towards Wrangel Island. On the Beaufort Gyre’s outskirts, we can also note a series of eddies
propagating along the isobaths in a westerly direction.

Figure 2 demonstrates the normalized statistical distributions of eddies by their length scales,
obtained from the results of modeling. It shows that large eddies have an enormous total kinetic
energy, even though their number is 2-3 orders of magnitude less, and this is not because they
have a large area. The eddy kinetic energy per unit area also grows with increase in eddy size
and reaches a plateau when it becomes about 40 km in size.
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(a) (b)

(c)

Figure 2. Normalized statistical distributions of eddies by their length scales obtained from
the results of modeling the five marginal Arctic seas of Eurasia - the Barents (red line), Kara
(blue), Laptev (green), East Siberian (magenta), and Chukchi (cyan) Seas: (a) the number of
eddies, (b) the eddy kinetic energy (EKE), (c) the eddy kinetic energy per unit area. Solid lines
correspond to distributions of cyclonic eddies, and dashed lines to anticyclonic ones.

5. Conclusion
A simple method was proposed for identifying mesoscale eddies in the results of numerical
modeling. The method uses extrema in the distributions of the sea level elevation as eddy
markers. Using the method, we analyzed statistics of mesoscale eddies in marginal seas of the
Eurasian sector of Arctic. The results of using this method show that the number of cyclonic
eddies in this area slightly exceeds the number of anticyclonic eddies, but the excess is only 2-3%.
Also, we have demonstrated that a significant number of eddies arise under the ice cover. The
number of such eddies increases significantly in winter. This fact indicates that the convection
caused by salt rejection during seawater freezing plays an essential role in their formation. The
numerical modeling results confirm the phenomenon of active eddy generation in the ice edge
zone. Besides, the results show that in the near-edge zone, a more significant number of eddies
are formed from the icy side adjacent to the edge, and not from the ice-free side. The periods
of water freezing and ice melting, accompanied by corresponding displacements in the ice edge,
produce eddies different in nature. The number of eddies in the marginal ice zone has two
seasonal maxima corresponding to these two periods.
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