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Abstract. It is well known that stress-strain relation of sand is influenced by anisotropic fabric. 
In this paper, the relationship between macroscopic strain and shear strain and its pore structure 
is established by combining micromechanical theory and pore structure tensor. It is further 
confirmed that the stress-induced anisotropy and dilatancy of sand are inevitable. Based on this, 
with the help of thermodynamic theory, the inclined elliptic yield surface function in 
dissipative space is built, and there are three important lines in dissipative space for the 
influence of anisotropic fabric, normal consolidation line, phase transition line and peak line 
respectively corresponding to the three characteristic lines of real stress space: normal 
consolidation line, phase transition line and peak line which really reflects the mechanical 
properties of sand, especially dense sand. 

1. Introduction 
Particle mechanics is widely applied in engineering, but this theory is still very immature, and still 
many challenging problems are ready to study. Generally ,we adopt continuum mechanics and 
micromechanics to derive the stress-strain relations of granular materials. And now, continuum 
mechanics is more used for existing models to describe the constitutive relations for granular materials, 
for example, treating soil as isotropic continuous medium to simulate soil behavior, and the framework 
of critical state soil mechanics is based on this. The second is on microscopic mechanics that 
considering soil as an aggregate of discrete particles with regular and irregular arrangement. Generally 
contact distribution of particles in a model usually is described with probability distribution functions 
to reflect their anisotropy[1][2][3]. 

Because the continuous plastic theory can not directly explain the microscopic properties of 
irreversible deformation of granular materials, and the detailed study of the microscopic properties of 
granular materials is very complex in mathematics , so that it is very limited to apply this method. In 
this paper, the pore fabric of sand is discussed from the theory of particle mechanics, and the 
relationship between the anisotropy of pore structure, the dissipation function and the yield function of 
real stress space is analyzed in detail. 

2. Expression of strain tensor on pore fabric 
The most meaningful study for granular materialsis is not the reaction of individual particles but the 
arrangement mode in space and the whole reaction under external force.Here, we uniformly attribute 
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the micro and meso-scale magnitude of the particles to the microstructure. In triaxial compression test 
of sand[4], it is observed that the granular materials have different strength due to different 
compression directions. and the direction along long axis of the non-spherical particles tends to rotate 
vertical to the direction of the maximum contact pressure , so the mechanical behavior of granular 
materials is significantly affected by their microstructure. The porosity ratio e or porosity n is usually 
used to express the compactness of the internal structure, but these quantities do not represent the 
directionality. The randomly arranged inner structure of granular materials can be illustrated by the 
geometry statistical character of the particles and their spatial distribution.The higher-order 
microstructure variables d of the "fabric tensor" can usually represent the distribution and direction of 
the particles and pores [4][5]. Bagi[6] gave the mathematical description of the internal structure of 
granular materials based on the famous Voronoi-Delaunay chessboard mesh, and stated that the spatial 
distribution of particle contact points is the most fundamental factor when considering the shear 
expansion of materials. Li and Li[7] suggested a quantitive method for the inner structure of granular 
materials based on the mesh system formed by contact points . In three-dimensional space, the 
smallest pore elements form the the continuous pore space, and the cell boundaries are all determinate 
structures.The microstructural formula of the strain tensor is expressed below.  

 
Figure1. The boundary surface S 

[7] 

 
Here any representative unit is defined as REV, and the volumeV is set , the boundary surface is 

closed. And for a representative unit REV, the compatibility conditions must be met, namely: 
d( )=0j iS

u S                                     (1)
 

Among them, the continuous boundary surface of the representative element is represented as S , as 
shown in Figure 1,and u denotes the displacement of the representative element. The pressure 
direction is positive according to the soil mechanics convention. Then the average displacement 
gradient tensor of the Rev. can be expressed as 
 

,

1 1
d - dij ij j iv v

e e V u V
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                            (2)

 

Based on the scatter theorem, the formula (2) can be re-expressed as 
1 1

( )d dij j is s
e u n S S

V V
   x u n 

                          (3)
 

( )n x denotes the normal direction of the point x on the boundary surface dS which points to the 

inside. then, Thus, the displacement gradient along the direction n is described by the statistical 
probability method[7]： 
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Here
c is a representative polygon vector of pore units[7] for granular materials which is closely 

related to the directional distribution of pore vector length.The integral range is the whole space，
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and 0E is defined as 
d1=0E   , as the standardization factor equals to 2 and 4 respectively in two 

and three dimensions. u is set as a constanthe for the average relative displacement at the contact 
point of the microelement under the condition of uniform strain. 

The fabric tensor c can be expressed with the directional distribution of the pore vector. For the 

pore length ( ) n along n is the average length of all pore vectors of the sample along the 

direction n .Therefore, based on the directional distribution of the average pore vector length, the 
structure tensor is set to illustrate the shape and direction of the mean pore unit: ( ) n the distance 
from the center of the space pore unit to the boundary of the pore unit  , n the unit vector in the pore 
direction, pore vector ( ) n along the direction n  can be approximately as follows: 

0 0( )= ( : ( ) = (1 )    n I d) n n n d n                            (5) 

Here ( ) (- ) n n ，d as the second order tensor of no trace symmetry, represents the anisotropy of pore 

structure. 00 ( )E d    n ,
 
representing the average pore length, and substituting the formula(5) into 

the formula(4), we obtain: 

00 0

1 1
( ) d = (1 ) dE u E u

V V
 

 
      n n n n d n n n    e

             (6)
 

Here removing the rotation tensor, then the strain tensor is expressed as: 
( ) / 2ij ij jie e                                        (7) 

The volumetric strain along the directional n with the action of compressive stress is as follows 

00

1
( )= (1 d ) dijtv ij kl k l i j ijE u n n n n

V
    


  n  

                    (8)
 

Here 00v E u V   , then formula (8) can be transformed into 
( )= (1+ : )tv v  n d n n                                   (9) 

Here ( )tv n  represents the change rate of pore volume along the unit vector n . 

3. Fabric changes caused by shear  
The change of particle arrangement and pore fabric caused by shear is in fact the change of structure. 
Early researchers [8][9][10] have made a research on the relationship between fabric and strain . For 
granular material structure, the pore structure changes as the relative position between particles 
changes.The dual structural system[7] formed by pore and solid particles are dependent , and each of 
them can illustrate the inner structure of the granule. Numerical tests[7] haved showed that the 
anisotropy for particle contact normal and pore structure is closely related, and the direction 
distribution of contact normal usually tends to that of pore structure. So, the relationship between pore 
fabric tensor and volume strain changes in compression is as follows 

d ( ) d (1 d d(d )tv v ij i j v ij i jn n n n   n + )
                                  (10) 

Summation of the volume strain change rate of the pores along all directions: 
d d d(d )tv v v ij i jn n   

                                      (11) 

Horne[1] derived that directions of particle contact normal and its pore structure tended to the 
direction of the maximum principal stress that leads to anisotropy in the initial state of deformation. 
And the relative slippage among particles was no more limited to a certain direction as deformation 
occured, and the degree of anisotropy decreased which not only caused the reduced dilatancy but also 
the stress ratio decreased too. Then, based on the above stated, the pore fabric tensor d is a bias and 

varies with shear strain, we can express the theorem[11]using the isotropic tensor function ：

,d(d )=d(d (d , ))ij ij kl kl vd  , relating the change of the fabric to shear strain ij , however, this function is 
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very complicated, for easy, assuming the principal axis for ddij and ijd are same [12], and the 

relationship between the two is as follows 
d(d ) d( )v ij i j ij i jn n n n                                     (12) 

Here denotes the anisotropic parameter of the fabric reflecting its basic tendency of development. 

As partial strain ij is concerned, ij i jd n n represents the shear strain increment under triaxial stress. Here, 

let's: d( ) d qij jin n  , and integrating it into formula (11), we get 
d d + dtv v q   

                                  (13) 

It shows the increment of volumetric strain d tv is coupled with the partial strain increment 

d q under compressive stress for granular materials . 

4. decomposition of plastic strain 
Generally, it is believed that the change in material volume is due to pore compression, while the 
plastic volume strain is only due to the action of compressive stress and is independent of the soil 
skeleton.As a matter of fact, the relationship between bulk strain and pore fabric analyzed above 
shows that volume change under shear stress consists of two processes for granular materials such as 
dense or medium dense sand, Firstly, when the axial strain is very small, dense or medium dense sand 
produces shear shrinkage under compressive stress tv , and following with the development of 

anisotropic fabrics, additional volume changes q will occure what is called "Reynolds 
dilatancy[13]" .Therefore, for dense or medium dense sand, another source of plastic volume strain is 
shear-induced bulk deformation-dilatancy, the macroscopic plastic strain of granular material can be 
denoted as 

d d - dp p p
v tv q                                   (14) 

Seen from the formula above, the increment of macroscopic plastic volume strain consists of two 
components: one is the pore volume change-shear shrinkage d p

tv caused by the direct change of 

compressive stress of granular material, the other is shear-induced volume change ( d )p
q  -dilatancy. 

Because the pore structure of particles is anisotropic during loading, this part of the body is always in 
dilatant state and plays a major role in volume change. The volume strain in the modified Cambridge 
model generally means the first volume change-shear shrinkage which is completely obtained by the 
change of compressive stress, and does not consider the shear-induced dilatancy. Therefore, it has 
some limitations for the modified Cambridge to reflect the stress dilatancy relationship. The following 
we will further discuss the relationship between shear-induced volume change ( d )p

q  -dilatancy and 

dissipation function and yield function in real stress space based on thermodynamic framework. 

5. Thermal analysis 
Nowadays, there exist many constitutive models to illustrate the mechanical behavior of sand and 
other granular materials. For truly reflecting the mechanical phenomena tested in the lab, researchers 
generally solve these difficulties by adding model parameters.However, all these models can not be 
separated from fundamental mechanical concepts: critical state, stress-dilatancy theory and state 
parameters, and most of them are based on the classical theoretical framework of rate-independent, 
elastoplastic solids, so it is necessary to determine the yield surface, flow rule, etc. and the associated 
flow rule is adopted for many models, however, sand should conform to non-associated flow rule. 

We adopt thermodynamic theory because it is a more rigorous method and does not require many 
human assumptions in traditional methods. Especially important is that the establishment of 
dissipation, yield functions and flow rules, as well as the close relationship between plasticdilatancy 
and induced anisotropy. According to the dissipative part of the energy balance equation, we can infer 
the form of yield function, flow rule, non-associated flow rule, and naturally obtain the properties of 
friction materials in the real stress space 
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6. Anisotropy model of sand 

6.1Shearing model of pure friction material  
According to the thermodynamic principle, the two key points of establishing dissipation 
function are the selection of stress and strain variables.First of all, most isotropic hardening comes 
from compressive strain that makes the particles rearrange and crush as the pressure is large enough. 
The definition of sand or granular material as pure friction material is given in this paper[14].This kind 
of material has a large shear deformation before shear failure occurs which means the normal 
consolidation stress cp applied should  large enough to make particles broken. Here particle 

breakage is not considered, the stress variables of the dissipation function in this paper are no 
longer dependent on consolidation pressure [14]. Secondly, through the mechanism analysis of plastic 
volume deformation of sandy soil in this paper, it can be seen that the macroscopic plastic volume 
increment d p

v of dense sand or medium dense sand consists of two parts: one is volume compression 

d p
tv caused by the change of current compressive stress, the other is shear deformation 

( d )
p

q  induced by shear deformation which is closely related to pore structure anisotropy. As a matter 

of fact, this part of the volume increment associated with the anisotropy of pore structure d p
tv is the 

result of the motion of granular rigid bodies, even if the particles are rigid and smooth, dilatancy will 
occur , then Collins[15] , Collins and Muhunthan[14] concluded that reynolds dilatancy only represented 
the internal motion constraint of the material, and the storage energy generated by the pressure and 
shear component of the reaction force associated with it was balanced and offset, and the dissipation 
energy associated with this part of the shear expansion was zero. As a result, the dissipation function 
 should be directly related to the stress-dependent volume change d p

tv , independent of the 

shear-induced bulk strain-dilatancy[9][17]. For simplicity, = tan  is defined, based on the above two 
aspects of analysis, let the dissipation function  be: 

2 2 2(d tan d ) dp p p
v q qp M       

                         (15)
 

The complete expression of plastic work is: 

2 2 2

d d

( d d ) ( d d )

( d d )

(d tan d ) d

p p p
v q

p p p p
v q v q

p p
v q

p p p
v q q

W p q

p M

  

       

   

   

 

   

  

 
                       (16)

 

If the two sides of the above equation are divided by d p
qp  , we can obtain the general dilatancy 

relationship of pure friction particle materials expressed by angle 

2 2

( tan - tan )=

(tan - tan )+ ( tan - tan ) + tan

m

m

 

                             (17)
 

Here tan = /m q p ， = p  ， tan =   ， m  、 、 respectively denote sliding friction angle, internal 

friction angle and dilatancy angle, and meet d d tan
pp

qv    . 

According to above formula, corresponding dissipative stress components are 
2( ) (d tan d ) /

(d )
p p

p v q
v

p    
    


                              (18)

 

2 2((d tan d ) tan d )( ) =
(d )

p p p
v q q

p
q

p M     
   

                   (19)

 

Based on the above two formulas ,it can be concluded that 
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2 2tan d /p
qM p                                     (20) 

In this way, an inclined elliptic yield surface equation can be obtained in dissipative space ( , )  : 
2 2

2 2 2

( tan )
1

p M p

  
 

                                 (21) 
As shown in figure 2, it is the yield function of dissipation space of pure friction material, an 

inclined ellipse with an inclined angle . 

Figure2. The inclined ellipse in dissipative stress space 

Integrating formula (19), (20), (21)，it can get 

2 2 22 2

( - tan tan ( - tan
d     dp p

v qp M p M p
        


   

 
 ) )

               (22)

 

Then dilatancy expression D can be derived as 

2d
tan tan

tand

p
v
p
q

D M
  

 
    


                       (23)

 

Shown in Figure 2, there exist three important lines rotating with shear. First is the "normal fixation 
line of motion "(KNCL), the plastic shear strain increment on this line is zero, but the stress state is not 
equidistant. And in the dissipative stress space : = tan   . The second is the "Phase transformation 

line" (PTL), the total volumetric strain increment on this line is zero , that is to say d 0p
v  . At this 

point, dilatancy induced by shear is offset by stress induced shear contraction. Similarly, in the 
dissipative stress space: 2 / tan + tanM    .The third line is the "Reynolds-Taylor Line" (RTL) 

along which dissipative pressure equals to zero, that is 0  , p  . According to formula (18), 

d tan d 0pp
qv    , formula (23)  can be transformed as: 

   

d
tan tan

d

p
v

maxp
q

D D


 


     
                           (24)

 

6.2 boundeded shear model for pure friction particle material 
The analysis above is aimed at the general deformation of pure friction materials. For the research on 
the dilatancy Taylor [18] proposed, Collins and Muhunthan[14] defined the bounded shear deformation of 
a purely frictional particulate material which was considered from a thermodynamic point of view as 
plastic work storage without considering pre-consolidation pressure cp , and it was a pure shear flow 

with a volume part of zero dissipation increment and no plastic free energy stored, that was d =0p ,but 
the pressure and shear components of the reaction force were not equal to zero, and the energy stored 
in the force chain was rapidly dissipated due to frictional shear slip, so no plastic work was stored and 
all energy was dissipated. Collins[14] also showed that for pure friction particle materials, the 

2 2 2= (d d ) dp p p
v q q

p M      





A

B

= 


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"quasi-steady state" shear deformation of dilatancy certainly occured and no plastic properties were 
stored as long as anisotropy is considered in the model, but the reactive force component was not 
equal to zero. 

From the analysis above , we can obtain the relation of the bounded shear deformation of pure 
friction material: 

2 2 2d =0,  d = (d tan d ) dp p p p p
v q v q qp M           

                    (25)
 

When the material is sheared, the volume strain increment is not zero, so it should meet =0 under 
this condition.  According to the formula(21), when the dissipative stress is located at the two 
vertices of the yield trajectory A B、 , as shown in figure 2, and =p , that is, "Reynolds-Taylor line", 

according to formula (21) and(24), we get 
= ,  tan =tanMp                                        (26) 

And formula (17) can be transformed into 
tan = tan + tanm                                       (27) 

Because the bounded shear deformation of the pure friction material is a pure shear flow, the 
plastic free energy stored in the pre-consolidation pressure cp is not considered, so the increment of 
plastic free energy d p  is only related to the Reynolds effect. Based the description above, the plastic 
part of the free energy can be regarded as a function of d p

tv  

'd ( ) d ( )d ( ) d (d d ) =(d + d )
d d

p p p p
p p p p p p p ptv tv

p ptv tv v q v q
tv tv

         
             (28) 

Therefore, the reaction force components are 

d d = d d =p pP P P p
v q               

(29) 

And the storage plasticity work related to the Reynolds effect is expressed as: 
( d ) d (- tan d ) ( tan )d 0p p p p

q q q q              
                       (30)

 

It shows that the storage plastic work related to the Reynolds effect is zero and 
satisfies = tan = tan    .From the previous analysis, it can be seen that the normal consolidation line 

is also satisfied in the dissipation space: = tan   , so the normal consolidation line (KNCL) of the 

dissipative stress space is a ray passing through the origin in -p q space. And formula (27) is further 

transformed into 
tan = tan + tanm                                                (31) 

The formula above is the classic Reynolds-Taylor line[13] commonly known as the failure line or 
peak strength line, passes through the origin in the real stress space -p q  and describes the peak state of 

the sand in the case of drainage . 

Figure 3.Yield function in true stress space for a bounded shear model of a purely frictional material 

Shown in Figure 3, point C corresponds to the position of reactive force component , （ ）in the real 
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stress space. Comparing Fig.2 and Fig.3, it shows that for boundeded shear deformation of pure 
friction materials, the three characteristic lines in the dissipative stress space correspond to the three 
characteristic lines starting from the origin in the real space, namely, the normal consolidation line 
(KNCL), the phase change line (PTL) and the peak line (RTL). 

For simplicity, and meanwhile highlighting the force characteristics of the granular material, we set 
the yield function of real stress space as follows: 

0f q p                                            (32) 
Here is the stress ratio, and although not present in this yield function, implies a close correlation 

between anisotropic parameters ( tan )and changes with the change of stress ratio, in other words, 
dilatancy is inevitable under shear stress, and the corresponding stress-induced anisotropy-change , 
also  known as reaction force ratio . 

On the basis of the above analysis, it can be found that the three characteristic lines of sand as pure 
friction material can be properly described by thermodynamic method: normal consolidation line 
(KNCL), phase change line PTL and peak line RTL, and the strain strengthening and softening 
characteristics of sand are well described, and is exactly matched with the mechanical 
characteristicshe reflected by the boundary plastic model of sand .  

7. Summary 
In this paper, from the point of view of micromechanics and using the averaging theory, the pore 
fabric of granular materials and the additional volume increase-dilatancy caused by structural changes 
are discussed. This part of the dilatancy should be reflected in the plastic model. Due to the influence 
of anisotropic fabric, there are three important lines in the dissipation space, namely: normal 
consolidation line, phase change line and peak line correspondingly extended to the three 
characteristic lines of the origin of the real stress space: normal consolidation line, phase change line 
and peak line which closely reflect the mechanical properties of sand, particularly for dense sand. 
Hence, the constitutive equation of sand based on thermodynamics accords with the boundary surface 
plastic model of sand. 
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