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Abstract. In order to investigate the influence of random uncertainty on the vibration 
characteristics of the ship shafting system, a nonparametric model that adds the data 
uncertainty and model uncertainty was constructed, and the system’s frequency 
response function and vibration response were calculated. The results show that the 
random uncertainty will make the frequency response function and vibration 
characteristics of the ship shafting system fluctuate. With the increase of random 
uncertainty, the degree of fluctuation of the system gradually strengthens. The study 
demonstrates that it is essential to consider the influence of random uncertainty during 
ship shafting designing and vibration calculation. 

1.  Introduction 
The propulsion system is the core component of the ship's power plant. During the ship's navigation, the 
propulsion system will be affected by many dynamic nonlinear factors, such as hull deformation, 
hydrodynamics, dynamic oil film force [1~4]. The influence of these dynamic factors is mostly ignored 
in the calculation of the former ship propulsion shafting. Nevertheless, recent studies have shown that 
the impact of these dynamic factors often results in the substantial uncertainty of actual operation state 
in the propulsion shafting, and it is difficult to establish accurate vibration calculation models [5~8]. 
Besides, it cannot obtain a uniform description of the model based on a single method. These lead to 
significant errors between the existing calculation results and the actual ship test results and cannot 
accurately guide the design and installation of the propulsion shafting. 

Uncertainty refers to the fact that the occurrence of an event or result cannot be accurately determined. 
There is variability and inconsistency inside and outside the system, and ambiguity in the decision-
making and designing process. In the study of shafting vibration and alignment calculation considering 
uncertainty, Zhou [5] studied the influence of hull deformation, stern bearing fulcrum position and oil 
film stiffness on reasonable alignment of shafting, and developed integrated calculation and analysis 
software for shafting vibration and alignment; He et al. [9] established a coupling alignment model of 
the vibration damping system and the shaft system. Tian [10] and Ma et al. [11] established the dynamic 
model of large ship propulsion shaft system considering the hull deformation excitation and stern 
bearing elevation from the overall dynamics of the ship shaft system, and studied the influence of 
dynamic factors on the shaft system vibration. 

The above studies indicate that the inaccuracies can be alleviated by considering the influence of 
dynamic factors in the calculation of shafting vibration. However, the current research only considers 
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the uncertainty in the process of data input or model establishment, and cannot yet incorporate data 
uncertainty and model uncertainty into the dynamic model. In this way, the unified description of the 
model cannot be obtained based on a single method. Therefore, it is also necessary to find new methods 
to solve the uncertainties in the research of ship shafting vibration modeling. 

The nonparametric modeling proposed by Soize [12] is an emerging method for studying the effects 
of uncertainty in dynamic systems and can carry out the calculations and simulations without identifying 
the type and number of uncertainties. Therefore, it is appropriate to introduce the nonparametric 
modeling into the study of ship shafting uncertainty. 

Based on this, in this paper, the non-parametric modeling method was introduced and the self-built 
ship shaft testbed was taken as the research object to establish a non-parametric dynamic model of the 
shaft system that consider both data uncertainty and model uncertainty. By analyzing the nonlinear 
characteristic of shafting output vibration response, the influence of uncertainty on shafting operation 
and vibration is revealed. 

2.  Nonparametric dynamics model of ship shafting 

2.1.  Customary dynamics model 
In this paper, the shafting of the test bench is composed of the shaft, front bearing, intermediate bearing, 
stern bearing, and counterweight disk. All three bearings are oil-lubricated sliding bearings. The 
counterweight disc is used to simulate the actual propeller. The horizontal direction is the x-direction, 
the vertical direction is the y-direction, and the axis is the z-direction. According to the structural 
characteristics of the system, considering the unbalanced excitation force and nonlinear oil film force, 
the dynamic model of the shafting system was established, as shown in Figure 1. In the model, only the 
transverse vibration of the system is considered, and the influence of torsional vibration and the 
gyroscopic effect is ignored. 
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Figure 1. The ship shafting dynamic model 
In Figure 1, the mi（i=1~7）are seven equivalent mass disks, m1 is the equivalent lumped mass of 

the drive end of the shaft, m2, m4, and m6 are the equivalent lumped mass at the front bearing, 
intermediate bearing, and stern bearing, m3 and m5 are the equivalent lumped mass of the shaft between 
the three bearings, and m7 is the equivalent lumped mass at the load end of the shafting. The disks are 
connected by massless elastic shafts. 

Considering the effect of gravity gG , unbalanced excitation force eF , and nonlinear oil film force 

F  at the shafting, the description of each force is as follows: 

(1) Gravity gG  acts on the entire shaft and acts equivalently on each lumped mass disk. The 

direction of it is downward in the y-direction. 

(2) The unbalanced excitation force 2
e iF m ew  acts on each lumped mass disk, and the direction 

changes periodically. The e is the mass eccentricity and ω  is the rotational angular velocity. 
(3) The calculation model used for the nonlinear oil film force F  on the shaft at the front bearing, 

intermediate bearing, and stern bearing is the unsteady nonlinear oil film force model proposed by 
Capone in 1991. The details can refer to the literature [13]. 
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Taking the position state x, y of the center point of each disk as the degree of the system’s freedom, 
according to the centroid theorem in vibration mechanics, the differential equation of the shaft system 
is obtained: 

 
[ ] [ ] [ ]

[ ] [ ] [ ]

x

y

M x C x K x G

M y C y K y G

  
   

 
                        (1) 

Where, x and y are generalized coordinate vectors, [ ]M  is the mass matrix, [ ]K  is the stiffness 

matrix, [ ]C  is damping matrix, xG  and yG   are the excitation force matrices in the x and y 

directions. At this time, the dynamic model is deterministic, which can be regarded as modeling based 
on mean, and the result obtained is also the mean model. 

2.2.  Nonparametric modeling 
In the actual navigation of the ship, due to the influence of many dynamic factors, it will bring substantial 
uncertainty to the shafting. Besides, there are always errors between the design parameters and the actual 
operating conditions. All these indicate that the mean model does not accurately reflect the actual 
situation. In order to represent the actual operating state, the uncertainties must be considered. Therefore, 
the random matrix model has more considerable practical significance. 

The nonparametric approach was proposed by Professor Christian Soize in 2000. By introducing the 
stochastic matrix theory in statistical physics, it provides a new method for the dynamic analysis of 
uncertain systems. The following key equations are introduced to explain the theory and implementation 
process of nonparametric modeling. 

Assuming that the matrix [A] is a n n  random matrix of the mass, damping, or stiffness, according 
to the statistical characteristics of the random matrix, it can be easily deduced that the probability density 
function of [A] must fulfill the following three basic constraints: 
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Where, ( )nM R  is constituted by positive definite symmetric matrices. 

In order to ensure the physical significance in the probability density function of the above random 
matrix, the entropy is introduced to represent the degree of uncertainty of the system, and the maximum 
entropy principle is used to construct the Lagrange function. Then the probability density function can 
be expressed as 

 1 -1
[ ]

( 1 2 )
([ ]) (det[ ]) exp( {[ ] [ ] })

2
λ T

A A

n λ
p A c A tr A A  

     (3) 

Where, [ ]A  is the mathematical expectation of the random matrix [ ]A , Ac  is a positive constant 

calculated by 
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Where Γ( )x is the Gamma function defined by 1

0
Γ( ) ( 0)x xx t e dt. x

    . The variance of the 

random matrix [ ]A  can be expressed as 

  21

1 2jk jk jj kkσ A A A
n λ

 
 

 (5) 

Since  2 2[ ] [ ] Σ Σj k jkF
E A A σ  , if defining a dispersion control parameter Aδ  as 
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2 1 22

2 2
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 (6) 

Then, the parameter λ  in Eqs. (3~6) can be deduced as 

 
2

2
2 2

1 ( [ ] )
= (1 ( 1) )

2 ([ ])

tr A
λ δ N

δ tr A
    (7) 

It should be noted that for a stochastic system determined by the dimension n, the λ  increases as 

Aδ  decrease. If λ   , then 0jkσ  , 0Aδ   and the random matrix [ ]A  will approach in the 

mean matrix [ ]A . 

Therefore, the construction of the random matrix [ ]A  is mainly related to the dispersion control 

parameter Aδ . The random matrix can be obtained by controlling the dispersion control parameters and 

performing Monte Carlo simulation on the mean matrix.  
For any positive symmetric matrix [ ]A , it can be decomposed by the Cholesky factorization into a 

product form of a lower triangular matrix and an upper triangular matrix: 

 [ ] [ ] [ ]T
A AA L L  (8) 

Where, AL  is the upper triangular real matrix. Assuming λ  is a positive integer, let 

1 2Am n λ   , and the random matrix [ ]A  can be simulated by 

   
1

1
[ ] [ ] [ ]

Am
TT T

A j A j
jA

A L U L U
m 

   (9) 

Where, jU  is the vector composed of independent Gaussian random variables with zero mean and 

unit variance. Then, the random samples that fluctuate in a certain range can be obtained through the 
mean matrix[ ]A , and the random matrix model of the system can be established. 

For the ship shafting system in section 2.1, the Monte Carlo method is used to simulate the random 
matrix of the mass, stiffness, and damping, and the system's Random matrix model can be obtained as 

 
[ ] [ ] [ ]

[ ] [ ] [ ]

x

y

M x C x K x G

M y C y K y G

  
   

 

 
 (10) 

Where,  M , C  and  K  are the random matrices corresponding to the mean mass, damping, 

and stiffness matrices, respectively. The dispersion control parameters Mδ , Cδ  and Kδ  determines the 

sample space of the random matrix. At this time, the dynamic model can represent the vibration state of 
the ship shafting system that includes both the data uncertainty and the model uncertainty so that the 
dynamic response characteristics of this system can be studied. 
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3.  Vibration characteristics analysis 
According to the dynamic model in Figure 1 and the structural characteristics of the ship shafting testbed, 
the main parameters of the calculation are set as follows: the masses and damping coefficients of the 
equivalent mass discs are m1=5 kg, m2=2.53 kg, m3=2.78 kg, m4=7.05 kg, m5=9.05 kg, m6=7.94 kg, 
m7=35 kg, c1=1050 N·s/m, c2=2100 N·s/m, c3=1050 N·s/m, c4=2100 N·s/m, c5=1050 N·s/m, c6=2100 
N·s/m, c7=1050 N·s/m, the stiffness coefficients of the shaft segments are k1=3.13.1×109 N/m, 
k2=7.8×108 N/m, k3=3.42×107 N/m, k4=3.9×108 N/m，the radius and width of the front bearing are 
R1=21.5×10-3 m, L1=100×10-3 m, the radius and width of the intermediate bearing are R2=21.5×10-3 m, 
L2=100×10-3 m, the radius and width of the stern bearing are R3=21.5×10-3 m, L3=300×10-3 m, the 
average oil film thickness c=0.1×10-3 m, the dynamic viscosity of lubricating oil µn=0.12 N·s/m2, the 
radius clearance of bearing δ=0.1×10-3 m, the unbalanced eccentricity e=0.2×10-3 m, and the acceleration 
of gravity g=9.8 m/s2. 

Since the shafting is coupled by the gravity, unbalanced excitation force, and nonlinear oil film force, 
in this paper, the Runge-Kutta method is used to solve the Eq. (10), and the dynamic response of the 
system is computed. The time step is set as 1/50 of the period, and 1100 periods were simulated. The 
data of the first 1000 periods were discarded, and the results of the last 100 periods were taken for 
analysis. 

3.1.  Frequency response function 
The frequency response function is an important indicator to measure the performance of the system. It 
represents the relationship between the output and input of frequency and can describe a nonlinear 
system's essential characteristics. The frequency response function of the system can be expressed as: 

 2 1( ) ( [ ] [ ] [ ])h w w M iw C K      (11) 

And it is generally converted into decibels: 

 
24

10( ) 10log ( [ ( )] )
F

dB w w h w  (12) 

Where, 
F

 represents the Frobenius norm. 

According to the shafting system dynamic model, the system’s frequency response function with 
several random uncertainties is calculated, as shown in Figure 2. Figure 2(a) shows the frequency 
response function without considering the uncertainty. It can be seen that the frequency response 
function shows a gradual upward trend with increasing rotating speed. Figures 2 (b ~ d) show the 
frequency response functions for different dispersion control parameters, i.e. 0 2M C Kδ .δ δ   , 

0 5M C Kδ .δ δ   , and 0 8M C Kδ .δ δ   , and the number of samples is 32. By comparing it with 

Figure 2(a), the frequency response function presents certain volatility. It is because after considering 
the uncertainty, the mass, stiffness, and damping matrix of the system are transformed from the 
deterministic matrix to random samples, which is distributed within a specific range. Moreover, from 
the variations in Figure 2(b) to Figure 2(d), it can be seen that as the uncertainty increases, the degree 
of fluctuation of the system’s frequency response function also strengthens. 

The above analysis can be concluded that uncertainty will change the essential characteristics of the 
ship shafting. When the uncertainty is considerable, it will have a certain fluctuation effect on the system 
performance. 
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Figure 2. The frequency response function of the system with several random uncertainties 
(a) 0M C Kδ δ δ       (b) 0 2M C Kδ .δ δ    

(c) 0 5M C Kδ .δ δ     (d) 0 8M C Kδ .δ δ    

3.2.  Time-frequency characteristic 
To further illustrate the influence of random uncertainty on the ship shafting, the vibration state of the 
ship shafting is explained from the perspective of time history and frequency spectrum under different 
degrees of uncertainty. Since it often brings more considerable uncertainty to the stern bearing than 
others when the ship shafting is affected by nonlinear dynamic factors, the vibration response of the 
shaft at the stern bearing is mainly analyzed. 

Figure 3 shows the waveform, axis trajectory, and frequency spectrum of the ship shafting at the 
stern bearing without considering the uncertainty. In this circumstance, the speed is 60 rad/s. It can be 
seen that the vibration response of the system in the time domain is sinusoidal, the peak-to-peak value 
of the vibration is 1.6×10-8m. Besides, the axis trajectory presents a standard ellipse, and the 
corresponding frequency spectrum is also composed of a single frequency component, which is the 
driving frequency of the system, indicating that the system’s vibration is caused by the unbalanced 
excitation force. 
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Figure 3. The time-domain waveform, axis trajectory, and frequency spectrum of the system under  
0M C Kδ δ δ    

Figures 5 to 7 show the waveform, axis trajectory, and frequency spectrum of the ship shafting at the 
stern bearing when the dispersion control parameters of mass, stiffness, and damping are 

0 2M C Kδ .δ δ   ， 0 5M C Kδ .δ δ   , and 0 8M C Kδ .δ δ   , respectively. Due to space 

limitations, only the calculation results of some of the 32 random samples are given. 
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Figure 4. The time-domain waveform, axis trajectory, and frequency spectrum of the system under  
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Figure 5. The time-domain waveform, axis trajectory, and frequency spectrum of the system under  
0 5M C Kδ .δ δ    
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Figure 6. The time-domain waveform, axis trajectory, and frequency spectrum of the system under  
0 8M C Kδ .δ δ    

Comparing Figures 4-6 with Figure 3, it can be seen that after considering the influence of uncertainty, 
the system's vibration characteristics have changed significantly. Although the vibration response of the 
shafting system at the stern bearing is still periodic signal, it is no longer a single sinusoidal curve, and 
other components appear. Besides, it can also be discerned from the frequency spectrum that a one-half 
octave component appears in the system's vibration response. Moreover, in addition to a single ellipse, 
the system's axis trajectory also exhibited inner loops, multiple loops, and chaotic trajectories, indicating 
that the uncertainty caused the system to exhibit nonlinear behavior. 

It can be seen from the changes in Figures 4 to Figure 6 that as the uncertainty increases, the degree 
of disorder in the system’s waveform and axis trajectory gradually strengthens, and the amplitude of the 
one-half octave on the spectrum also has raised. Figure 7 shows the amplitude of the fundamental 



2nd International Conference on Oil & Gas Engineering and Geological Sciences

IOP Conf. Series: Earth and Environmental Science 558 (2020) 052005

IOP Publishing

doi:10.1088/1755-1315/558/5/052005

10

 

frequency in the vibration response of 32 random samples in the x and y directions under the three 
dispersion control parameters. As the uncertainty increases, the range of the system's vibration response 
fluctuations also gradually expands, which further proves that when the ship's shafting is in operation, 
its vibration should be a random process that fluctuates within a certain range. 
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Figure 7. The amplitude of the fundamental frequency in the x and y directions 

4.  Conclusion 
Due to the inevitable random uncertainties, there will be some problems such as the excessive amplitude 
of vibration and frequent failure in the shafting during operation. In order to investigate the influence of 
random uncertainties on the operating characteristics and vibration response of the shafting, the 
nonparametric dynamic model which considering data uncertainty and model uncertainty was 
constructed, and the calculation results were analyzed. The following conclusions can be drawn from 
the study: 

(1) The random uncertainty will bring instability to the operating characteristics of the ship shafting, 
and the degree of fluctuation of the system’s frequency response function strengthens with the increase 
of the uncertainty. 

(2) The vibration response of the ship shafting is not a certain value, but it is continuously changing 
within a certain range, and it will also excite other frequency components besides the fundamental 
frequency, such as one-half octave. As the uncertainty increases, the fluctuation of the amplitude of the 
system's vibration response will gradually strengthen. 
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