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Abstract. Light scattering by clouds significantly affects the values associated with the content 
of NO2, H2CO and other small gases in the lower troposphere, which are obtained by the 
differential optical absorption spectroscopy (DOAS) technique. Since there are a large 
databases of optical observations of trace gases by DOAS technique that are not accompanied 
by other measurements of clouds, the development of approaches to the refinement of 
scattering characteristics and coefficients linking the DOAS slant column depth with the gas 
vertical content directly from spectral measurements remains an important task. The paper 
considers the tasks of determining the coefficient F used for transformation of the DOAS slant 
column depth of a gas to its vertical column from quantitates obtained from ZDOAS 
measurements (the O4 slant column, the color index, the absolute intensity, etc.). It was shown 
in numerical experiments that an algorithm based on a neural network can estimate the 
coefficient F in cloudy conditions. It looks like the better approach that two step estimation of 
this parameter using a neural network for estimation of cloud characteristics in the first step 
with the following radiative transfer simulation at the second step. 
Keywords: determination of air mass factor of DOAS measurements, neural networks, DOAS 
technique, cloud and aerosol scattering in the atmosphere. 

1. Introduction 
To determine the vertical distribution and/or the integral content of trace gases and aerosol in the 
troposphere, the differential optical absorption spectroscopy (DOAS) technique is widely used [1][2]. 
Multi AXis (MAX-DOAS) and Zenith (ZDOAS) versions of the technique use measurements of the 
scattered solar radiation from several elevation directions or from the zenith, respectively. Due to such 
measurement geometries, estimations of gas and aerosol tropospheric contents, based on the DOAS 
technique, are under the strong influence of clouds. 

Quantitatively, this dependence can be described using the following formalism. A value called the 
slant column density (SCD) of a trace gas, which is initially determined from DOAS spectrum, is a 
weighted average  

    S m h n h dh    (1) 
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of the gas number density n(h) along height h. The weighting coefficient )(hm  of integral (1) depends 

on light scattering in the atmosphere and, hence, on cloud properties. The coefficient )(hm  coincides 
with the efficient layer (box) air mass factor (AMF) [3][4]. The gas vertical column density (VCD) V, 
the value in which researchers are interested in, is determined as  

  V n h dh  .  (2) 

Hence, VCD V  may be calculated using equivalence  

 FSV  ,  (3) 

where coefficient F 

 
 


dhhmhk

F
)()(

1
 (4) 

depends on the layer AMFs )(hm  and the shape of the gas vertical profile )(hk . We determine the 

shape )(hk  as the normalized gas number density: ( ) 1k h dh  . )(hk  can be set using some model 

assumptions in case of ZDOAS measurement or determined from the measurements itself in case of 
MAX-DOAS observations. The layer AMFs )(hm  can be estimated using a linearized radiative 
transfer model (LRTM) if we know the scattering characteristics and the content of the strong 
absorbers of the atmosphere in time of the observation [5][3][4]. The effects of possible inaccuracies 
in description of cloudy conditions during DOAS observations on )(hm  were briefly discussed, for 
example, in papers [6][7].  

As it follows from equality (3), the determination of the coefficient F with the greatest possible 
accuracy is an important task of retrieval the vertical distribution and/or the integral content of trace 
gas by the DOAS method [8]. There are possible a few approaches to treat cloud-contaminated DOAS 
measurements. 

The first approach is to select and process only DOAS measurements obtained in clear sky 
conditions. A few algorithms for the cloud detection basing on several quantities derived from DOAS 
measurements have been proposed and used [9]-[12].  

The second approach is to obtain cloud properties from some measurements and calculate AMFs 
)(hm  and coefficient F using RTM. We previously developed an algorithm for the nitrogen dioxide [7] 

and formaldehyde [8] retrieval for continuous cloud conditions when height of the cloud base is 
greater than height of the atmospheric mixture layer. Statistical comparison of data on the 
formaldehyde content near Moscow obtained in overcast with its content for cloudless days showed 
the similarity of values for the background air masses and differences in observations in the pollution 
conditions [13]. Since accuracy of gas and aerosol retrieval in the cloudy conditions strongly depend 
on knowledge of cloud characteristics [6][8], to determine them, ceilometers, lidars [9] and other 
instruments [14]-[19] may be used.  

The significant advances were achieved in investigations of the absolute calibration of DOAS 
spectrometers [20][21], what can provide additional information on clouds (see, for example [22]) 
from DOAS measurements itself. We showed the early results on development an algorithm for 
determination of the height of the cloud base and the cloud optical depth based on some quantities 
derived from absolutely calibrated DOAS spectra in paper [23]. As a basis for the algorithm a neural 
network trained using a sample set of DOAS quantities obtained using a LRTM. 

In this paper we present the early results of the third approach. We train an artificial neural network 
to obtain coefficients F (4) directly from absolutely calibrated DOAS spectra and some standard 
DOAS product without LRTM calculation at this step. A sample set of DOAS quantities and 
coefficients F for different cloud and aerosol scenarios were calculated by a LRTM. 
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2. Mathematical model of DOAS measurement 
For the solution of a problem on estimating any atmospheric characteristics, one has to describe 
mathematically the relationship of the parameters to be estimated with the quantities measured in the 
experiment. 

For calculations of the spectral radiance measured in DOAS experiment and the derived from its 
quantities we use the linearized radiative transfer model (LRTM) MCC++ [3][4][24]. The model 
MCC++ is a combination of the Monte Carlo method to simulate multiple scattering with the direct 
integration procedure to simulate single scattering. This combination makes optimum use of the 
computing resources. To simulate multiple scattering, the method of conjugate walks (in other words 
“backward simulation”) was applied. An approximation of the spherically symmetrical atmosphere is 
applied to further shorten the time of the simulation. The vector (with polarization) version of MCC++ 
code was used with taking into account Lambertian surface albedo, aerosol scattering and absorption. 
The model has participated in several international comparisons (see overview in [24]), and been used 
repeatedly in remote sensing investigations related to the atmosphere [25]-[27]. The model is 
linearized, thus it may efficiently calculate both the radiance and the layer air mass factors. The layer 
air mass factor is a coefficient which connects the vertical distribution of any gas with the slant 
column of this gas obtained by the DOAS technique. 

We performed radiative transfer calculations under different scenarios varying the parameters of 
the atmosphere and the underlying surface within the following limits: 

• the zenith angle of the sun – from 30° to 84°; 
• albedo of the underlying surface – 5% (for summer) and 34% (for winter); 
• the height of the cloud bottom – from 0.4 km to 3.2 km; 
• the aerosol optical depth at 550 nm – from 0.1 to 1.1; 
• the cloud geometrical thickness – from 0.1 km to 3.2 km; 
• the cloud particle number concentration – from 0.25 to 4 of the concentration of the cloud 
model C1 from [28], and the clear sky. 

The microphysical parameters of the cloud particles were taken from [28], the cloud model C1 was 
used. The combinations of geometrical thickness and particle number concentrations give the cloud 
optical depth at 550 nm within 0.4 and 51. A model of the urban aerosol [29] was used for the 
calculation of the tropospheric aerosol phase function [30]. 

We call these parameters the input RTM parameters.  
The calculated by LRTM parameters are: 

• the coefficient F for 475 nm (for the retrieval of NO2 integral content in the troposphere); 
• the absolute intensities at 4 selected wavelengths (345nm, 374nm, 430nm, 480nm); 
• the O4 slant columns at 8 selected wavelengths (340nm, 350nm, 369nm, 379nm, 425nm, 
435nm, 475nm, 485nm); 
• the color indices in the UV (345nm/374nm) and visible (430nm/480nm) ranges; 
• the coefficient at the linear term of DOAS analysis for the UV (345nm/374nm) and visible 
(430nm/480nm) ranges. 

We used two scenarios of the normalized gas vertical profile )(hk  to simulate coefficient F: winter 
and summer (similarly to [8]). In both scenarios, 90% of NO2 content is located in atmospheric 
boundary layer (ABL) and has constant volume mixing ratio. NO2 content above ABL decreases 
exponentially. In winter scenario, we set the height of ABL to 400 m, in summer – 1000 m. 

We will call them the out parameters of LRTM. The total number of parameters involved in the 
LRTM calculation is 21, of which 6 are input and 16 are output. In total, we performed radiative 
transfer simulations for 5400 scenarios. These calculations were used further for estimating the 
coefficient F from DOAS data. 

3. The problem of estimating the coefficient F from DOAS data 
We would like to study the possibility of estimating the coefficient F from measurements of spectra of 
the scattered solar radiation. 
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To simplify the problem, we will further consider not the measured spectra of scattered radiation as 
a whole, but only some quantities given in Section 2 which may be derived from radiance scattered in 
the zenith by DOAS technique. Information on the relationship of the coefficient F with the 
registration results is contained in the data set described in Section 2. The following quantities were 
considered as known parameters: 

• the absolute radiation intensity at 4 wavelengths; 
• the O4 slant columns at 8 wavelengths; 
• 2 color indices; 
• 2 coefficient at the linear term of DOAS analysis; 
• zenith angle of the sun; 
• albedo of the underlying surface; 
• cloud particle number concentration. 

The total number of known quantities is 18, and we will consider them as the coordinates of the 

vector 18
1821 ),...,,( Rggg g . The task is to find the relationship between the studied coefficient F 

and the measured quantities g  in the form of a function   118: RRA  , acting from 18R  to 1R : 

 )(gAF  . (5) 

To find this function, the data set obtained by calculations of LRTM is used. 

Formally, the task is to find a function   118: RRA   from a certain class of functions A  for which 
a minimum of the error functional is achieved [31] 

 








 


N

i
ii

A
AFA

1

2

A'
)('inf)( g . (6) 

Here iF  and ig  are the values of the estimated atmospheric parameters and the values of the 
specified parameters, respectively, for the i-th sample of the data set described in Section 2. Solution 
of minimization problem (6) is carried out by training a neural network [32] (See also other 
applications of neural networks for estimation of cloud properties [33]-[35],[23]).  

4. Neural Network Architecture and Training 
A fully connected neural network [32] is used, consisting of three layers - the input (18 neurons), the 
output (1 neuron) and the hidden one, consisting of 64 neurons with the activation function RELU. 
The number of settings (neural network weights) is 1603. A standard technique of neural networks 
was used in which the set of 5400 examples was divided into three parts. The first part is used for 
training, i.e. to select a function   AA . The second part is used for validation in the learning process; 
the purpose of this part is to avoid setting the network to the training sample (retraining) too 
accurately. The third part is a test one; it is used to determine the accuracy of the estimates. The 
training set was 64% of the total number of examples, the validation set was 16% of the total set, and 
the test set was 20%. Iterative teaching method was used, the learning process was stopped if the value 
of the minimized functional changed slightly during 50 iterations; the total number of iterations 
(epochs) during training did not exceed 1000. 

To prevent overfitting of the neuron network, the regularization was used in the form of a 
restriction on the weighted sum of a combination of the Euclidean and uniform norms of the weight 
vector. I.e. instead of minimizing functional (6), the regularized functional was minimized 

 .max)('inf)(
,...,1

2
1

2
1

1

2
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j
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j
j
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







  g , (7) 

in which a linear combination of the Euclidean and uniform norms of the vector was used as stabilizer, 
the coordinates of which are the weights of the neural network. 
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5. Neural network learning outcomes 
The learning outcomes of the neural network are shown in Figures 1 and 2.  

Figures 1(a) and 2(a) show histograms of the distribution of the estimation errors when estimating 
the coefficient F for summer and for winter. The corresponding scatter plots are shown in Figures 1(b) 
and 2(b); the horizontal axis shows the true value of the parameter, and the vertical axis shows the 
estimates of these parameter obtained by the neural network. 

The r.m.s. retrieval error of the coefficient F is 0.046 for both summer and winter albedo. 
Note that the retrieval errors of the cloud parameters, which were estimated in work [23], were 

rather large and amounted to 1.9 for the cloud optical depth and 0.81 km for the cloud base height. It is 
significantly better results that may be expected in two step estimation of this parameter using a neural 
network for estimation of cloud characteristics with the following radiative transfer simulation at the 
second step. 

 

Figure 1. Estimating the coefficient F for summer: (a) - histogram of the estimation errors; (b) the scatter plots. 

 

Figure 2. Estimating the coefficient F for winter: (a) - histogram of the estimation errors; (b) the scatter plots. 

6. Conclusion 
It was shown in numerical experiments that an algorithm based on a neural network can estimate the 
coefficient F related to the air mass factor of the DOAS technique in cloudy conditions. We obtained 
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preliminary the accuracy of determining the coefficient F at 475 nm as 0.046 for both summer and 
winter albedo. It is better results that may be expected in two step estimation of this parameter using a 
neural network for estimation of cloud characteristics in the first step with the following radiative 
transfer simulation at the second step. 
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