
IOP Conference Series: Earth and
Environmental Science

     

PAPER • OPEN ACCESS

Development of a Sparse Polynomial Chaos
Expansions Method for Parameter Uncertainty
Analysis
To cite this article: C X Wang et al 2020 IOP Conf. Ser.: Earth Environ. Sci. 435 012011

 

View the article online for updates and enhancements.

You may also like
Fast and accurate sensitivity analysis of
IMPT treatment plans using Polynomial
Chaos Expansion
Zoltán Perkó, Sebastian R van der Voort,
Steven van de Water et al.

-

Uncertainty Quantification and Global
Sensitivity Analysis of Batteries:
Application to a Lead-Acid Battery
Hojat Dehghandorost, Vahid Esfahanian
and Farzin Chaychizadeh

-

Polynomial chaos expansion for
uncertainty analysis and global sensitivity
analysis
Ming Chen, Xinhu Zhang, Kechun Shen et
al.

-

This content was downloaded from IP address 3.12.146.87 on 12/05/2024 at 19:30

https://doi.org/10.1088/1755-1315/435/1/012011
https://iopscience.iop.org/article/10.1088/0031-9155/61/12/4646
https://iopscience.iop.org/article/10.1088/0031-9155/61/12/4646
https://iopscience.iop.org/article/10.1088/0031-9155/61/12/4646
https://iopscience.iop.org/article/10.1149/2.0511816jes
https://iopscience.iop.org/article/10.1149/2.0511816jes
https://iopscience.iop.org/article/10.1149/2.0511816jes
https://iopscience.iop.org/article/10.1088/1742-6596/2187/1/012071
https://iopscience.iop.org/article/10.1088/1742-6596/2187/1/012071
https://iopscience.iop.org/article/10.1088/1742-6596/2187/1/012071
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstzz2TV4IP2mxTZCOv7yN-e2_702ppo2VoWE93vb4PfsZhNuLN4O3huTI438LJDE6zrNsSG1LimTnRdEZqtPU0aSKmxcTGSrDWBOfMdwDc6H1APOEm57F8wrYaYS1YUgPR7q2DVAnEDQZS4t7NLPDSmqZJTK0Iz7CFXRjSkB8Y0dOK162x9krkMazcKRNV2UZUdw2YA01hiw5LZdCl6dFg6VwS6poRkcTNQ-RIeVFmK7bBCL9m_ubYvpqMu3zOhWheJmorJcZTl5CUQMEGWs6xeSs_iBQUZqa5f2QptL_QtfycDwoqgTrw3bYsuSe2aaXy20CY0v6r4BWac93caNnrWq22EnQ&sig=Cg0ArKJSzACK-GiFOytC&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CEESD 2019

IOP Conf. Series: Earth and Environmental Science 435 (2020) 012011

IOP Publishing

doi:10.1088/1755-1315/435/1/012011

1

 

 

 

 

 

 

Development of a Sparse Polynomial Chaos Expansions  

Method for Parameter Uncertainty Analysis 

C X Wang1*, J Liu2, Y P Li2,3,4, J Zhao1 and X M Kong1 

1College of Fundamental Research, Beijing Polytechnic, Beijing 100176, China 
2School of Environmental Science and Engineering, Xiamen University of 

Technology, Xiamen 361024, China 
3School of Environmental, Beijing Normal University, Beijing 100875, China 
4Research Scientist, Environmental Systems Engineering Program, Faculty of 

Engineering and Applied Science, University of Regina, Regina, Sask. S4S 0A2 

*Corresponding Author E-mail: chunxiao20083366@163.com 

Abstract. Incorporating uncertainty assessment into hydrological simulation is of vital 

significance for providing valuable information for conserving and restoring the ecology 

environment in arid and semiarid regions.  In this study, a sparse polynomial chaos expansions  

method was developed to quantify hydrological model parameter uncertainties on model 

performance in Kaidu river basin, China. A four dimension two order polynomial chaos 

expansions model was built and the effect of four parameters were quantified based on the 

coefficients of the polynomial chaos expansions model. Results indicated that  precipitation in 

summer has more significant influence on model output than that in other seasons. High Sobol 

sensitivity indices values (0.22 in spring, 0.17 in summer, 0.21 in autumn and 0.29) for the 

interaction of  precipitation and maximum capacity for fast store demonstrate that they are the 

major factors affecting runoff generation. These results can help reveal the flow processes and 

provide valuable information for water resources management. 

1. Introduction 

With the widespread application of digital elevation models, geographical information system and 

remote sensing, hydrological models have been widely used to provide information for catchment 

management with information on the interaction of water, energy and vegetation processes distributed 

over space and time in a way that cannot be done through field experiment and direct observation 

[1][2]. Nevertheless, there are a variety of uncertainties involved in hydrological processes. Such 

uncertainties would influence model performance due to randomness characteristic of precipitation, 

temperature, infiltration and so on. Model representations of real-world hydrological systems are 

complicated with a variety of factors, including inadequate conceptualizations of physical processes, 

errors related to spatial and temporal scales and derivation of model-parameter values directly from 

basin traits [3]. Parameters obtained from calibration are also affected by several factors such as 

correlations among parameters, sensitivity or insensitivity in parameters and statistical features of 

model residuals. Therefore, evaluating the effect of parameter uncertainties on model output would 

provide more information for hydrological forecasting and related catchment management. 

A number of efforts were made in developing more effective methods for reflecting parameter 

uncertainty in hydrological modelling and their effects on model performance [4]. Among them, the 
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parameter uncertainty assessment methods widely used are mainly based on Bayesian approaches. 

These methods can be roughly classified into formal Bayesian methods using an explicit statistical 

error model and a Markov Chain Monte Carlo sampling procedure [5][6] and informal Bayesian 

approaches, based on the Generalized Likelihood Uncertainty Estimation  method [7]. Although 

stochastic analysis method is capable of handling uncertainties with known probability distributions, it 

cannot ensure a sufficient precision of the statistics inferred from the retained solutions unless the 

sampling of the parameter space is dense enough [8]. 

Therefore, a sparse polynomial chaos expansions method integrating of the semi-distributed land 

use based runoff processes (SLURP) model, polynomial chaos expansions, sparse grid collection and 

Sobol sensitivity indices, would be developed to quantify parameter uncertainties on model 

performance. SLURP model is capable of simulating the interaction among overland, river and 

groundwater flows. A polynomial chaos expansions model would be to build a surrogate model for 

SLURP. Sparse grid collection would be used to determine the sampling dates of different parameters. 

Finally, the Sobol sensitivity indices would be calculated based on the coefficient of the polynomial 

chaos expansions model to quantify the contribution of different parameters and theirs to the total to 

discover the effect of different parameters. 

2. Methodology 

2.1  Polynomial chaos expansions 

The generalized polynomial chaos expansion model can be written in the form: 
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Where y is the output and 
1 2

( , , ,  )
pp i i i    denotes the orthogonal Hermite polynomials of order 

p. In order to perform the global sensitivity of the random variables,  We assume that the components 

of 
1 2
, , ,  

pi i i     are multi-dimensional independent random variables. The polynomial of order m can 

defined as [9]: 
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Where   is the vector of n random variables. Then, the second and third order Hermite 

polynomials with two random variables are 
2 2

1 2 1 1 2 2{1,  ,  ,  1,  ,  1}     − −  and 
2 2 3 2 2 3

1 2 1 1 2 2 1 1 1 2 2 2 1 1 2 2{1,  ,  ,  1,  ,  1,  3 ,  ,  ,  3 }               − − − − − − . The series n-dimensional 

polynomial chaos would be truncated to a finite number of terms for real computational. 

2.2 Sparse grid collection method 

The quadrature method takes a tensor product of the univariate leading to an exponential dependence 

of the number of points of the dimension n. In order to alleviate this “Curse of dimensionality” sparse 

grid quadrature method was proposed based on tensor products of hierarchical difference sets 

( 1k m mU U − = − with 0 0U = ). The Smolyak interpolation operator can be given as follows [10]: 
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Based on the collection points for one-dimension integral, the collection points of multi-dimension 

integral can be obtained as follows: 

 1

( , )
( , ) ... Nii

i Y w N
H w N x x


=                                                       (4) 

In detail, the collection points for N=3   and L = 2 are (0, 0, 0), ( 1 , 0, 0), (0, 1 , 0), (0, 0, 1 ), 

( 1.73 , 0, 0), (0, 1.73 , 0), (0, 0, 1.73 ), ( 1 , 1 , 0), (0, 1 , 1 ) and ( 1 , 0, 1 ). 
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2.3 Sobol sensitivity indices 

Sobol sensitivity indices describing the contribution that the set of variables have on to the total 

variance can be formulated as u u TS v v= , where vu is the variance of variables u. vT is the total 

variance. To calculated the sensitivity indices from the polynomial chaos coefficients, the truncated 

polynomial chaos expansion model is rewritten as follows:  

( ) ( ) ( )0 , 1, , 1

1 1

, , ,
N

i i i j i j N N

i i j N

y M M x M M   
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= + + + +                                    (5) 
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Based on the orthogonality of different  random variables : 
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Thus the total variance and the variance of different variables can be determined and the Sobol 

sensitivity indices can be calculated as follows: 

1 1
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Where  Si is the main effect of variable i and Sij is the cooperative effect  of  variable i and j.  

3. Case study 

Kaidu River Basin is located in North China with an area of 18,827 km2 and an average elevation of 

3100 m [11]. It plays an important role in protecting the ecological environment and green corridor of 

the lower reaches of the Tarim River[12]. The low rainfall and high temperature in this area bring 

notable drought periods and the regional water resources system degraded due to more and more 

frequently human activities. As a sparsely populated region, precise data in Kaidu River Basin is hard 

to be obtained due to the lack of regular monitoring. Moreover, uncertainties associated with the 

temporal and spatial variations in hydrological processes (e.g. precipitation, topography and 

evaporation) may bring errors in hydrological simulation and influence model performance. Thus, it is 

necessary to develop an effective uncertain quantification method for hydrological simulation to 

provide detailed information on water resource management and environmental protection. 

The meteorological data  and daily stream flow records, from 1996 to 2001, are obtained from rom 

the Bayanbulak meteorological station and the Dashankou hydrological station, respectively. The 

meteorological inputs for each ASA in SLURP model are derived using a weighted Thiessen polygon 

method with a lapse rate of 0.75°C and 1%  per 100 m for temperature and precipitation.  River 

network and boundaries of watershed are obtained based on the topography map, with a resolution of 

100 × 100 m,  using the topographic parameterization package.  

4. Results and Discussion 

The performance of SLURP model was estimated using Nash-Sutcliffe efficiencies (NSE) and 

determination coefficient (R2).   NSE values for calibration (2001-2005) and verification (2006-2010) 

are 0.693 and 0.673, respectively. R2 values for calibration and verification are 0.850 and 

0.826, respectively. The results not only indicate a good performance of SLURP for hydrological 

simulation in Kaidu river basin, but also lay a good foundation for further revealing the factors 

affecting hydrological processes from rainfall to streamflow in the study area. Then, a four dimension 

two order polynomial chaos expansions model based on sparse grid collection is formulated and the 

Sobol sensitivity indices for four sensitive parameters of SLURP, i.e., precipitation factor (P1), 

maximum capacity for fast store (P2), retention constant for fast store (P3) and retention constant for 
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slow (P4), are quantified to discovering the effect of parameters and their interactions on model 

performance. 
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Figure 1. Daily streamflow [(a) Calibration  (b) Verification] 

The estimated uncertainty bounds  of daily streamflow associated with 95% confidence interval of 

polynomial chaos expansions for the four parameters are presented in Figure 1. The results indicate a 

good coverage of the observed stream with 26% observation points out of the confidence interval. The 

results indicate that the four dimension two order polynomial chaos expansions model can be used as a 

surrogate model for hydrological simulation. On the other hand, about 9% observation points are 

lower than the lower bound of  the confidence interval and  17% observation points  are higher 

than the upper bound of the  confidence interval, indicating a better simulation of low flow than that of 

peak flow. The underestimation of peak flow may be attributed to the potential observation errors. 
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Figure 2. Sobol sensitivity indices in different seasons 

Sobol sensitivity indices of different parameters and their interactions in different seasons (spring 

from March to May, summer from June to August, autumn from September to November and winter 

from December to the next February) are calculated based on the coefficients of polynomial chaos 

expansions (Figure 2). In summer, the indices of P1 is 0.535, which is higher than that of the other 

parameters. It is indicated that precipitation in summer is the major factor that affect runoff generation.  

On the contrary, the indices of P1 in winter is only 0.065, which is lower than that of the other 

parameters. These can be attributed to the low precipitation, as well as the freezing water temperature 

forming a thick layer of ice and snow on the land.  The indices of P4 is 0.04 in spring, 0.01 in summer, 

0.04 in autumn and 0.06 in winter, which are the lowest among the four parameters. It demonstrated 

that the effect of retention constant for slow, which is associated with the residence time of water in 

the saturated zone, is not significant.  The indices of P2 are 0.19, 0.22 and 0.24 in spring, autumn and 

winter, which is higher than that (0.1) in summer. It is indicated that water holding in soil have higher 
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effect in dry season that than in rainy season. The indices of P2×P1 are 0.22 in spring, 0.17 in summer, 

0.21 in autumn and 0.29 in winter, which is higher than the value of the other interactions. It is 

because that excess infiltration is the main runoff mechanism and precipitation and maximum capacity 

for fast store are the major factors affecting runoff generation.  

5. Conclusion 

In this study, a sparse polynomial chaos expansions  method was developed to quantify parameter 

uncertainties on model performance. The hydrological process from rainfall to runoff was simulated 

using SLURP model with consideration of canopy interception, snowpack, aerated soil storage and 

groundwater. The Sobol sensitivity indices was calculated based on the polynomial chaos expansions 

model and the sparse grid collection. On the other hand, uniform distribution of model parameters was 

used as the sampling distribution for sparse grid collection. In real world, multiple uncertain 

parameters may be interrelated to each other, leading to uncertain parameters distributions. Thus, other 

distributions (e.g., Gaussian) may be introduced to enhance the applicability of the developed sparse 

polynomial chaos expansions model. 

References 

[1] Lenhart T, Fohrer, N, Frede H G. Effects of land use changes on the nutrient balance in 

mesoscale catchments. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(33-36): 

1301-1309. 

[2] Vincendon B, Ducrocq V, Saulnier G M, et al. Benefit of coupling the ISBA land surface model 

with a TOPMODEL hydrological model version dedicated to Mediterranean flash-floods. 

Journal of Hydrology, 2010, 394(1-2): 256-266. 

[3] Guerrero  J L, Westerberg I K, Halldin  S, Lundin L C, Xu C Y. Exploring the hydrological 

robustness of model-parameter values with alpha shapes. Water Resources Research, 2013, 

49(10): 6700-6715. 

[4] Mahiny A S, Clarke K C. Simulating Hydrologic Impacts of Urban Growth Using SLEUTH, 

Multi Criteria Evaluation and Runoff Modeling. Journal of Environmental Informatics, 2013, 

22(1): 27-38. 

[5] Jeremiah E, Sisson S A, Sharma  A, Marshall L. Efficient hydrological model parameter 

optimization with Sequential Monte Carlo sampling. Environmental Modelling & Software, 

2012, 38: 283-295. 

[6] Kottegoda N T, Natale L, Raiteri  E. Monte Carlo Simulation of rainfall hyetographs for 

analysis and design. Journal of Hydrology, 2014, 519, A: 1-11. 

[7] Mortier S T, Hoey S V , Cierkens K , et al. A GLUE uncertainty analysis of a drying model of 

pharmaceutical granules. European journal of pharmaceutics and biopharmaceutics: official 

journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik, 2013, 85(3):984-995. 

[8] Blasone R S, Vrugt J A, Madsen H, et al.. Generalized likelihood uncertainty estimation 

(GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 

2008, 31(4): 630-648. 

[9] Garcia-Cabrejo O, Valocchi A. Global Sensitivity Analysis for multivariate output using 

Polynomial Chaos Expansion. Reliability Engineering and System Safety, 2014, 126:25-36. 

[10] Cooling C M, Ayres D A F, Prinja A K, et al. Uncertainty and global sensitivity analysis of 

neutron survival and extinction probabilities using polynomial chaos. Annals of Nuclear Energy, 

2016, 88:158–17. 

[11] Kalra A, Li L, Li X, Ahmad S. Improving streamflow forecast lead time using oceanic-

atmospheric oscillations for Kaidu River Basin, Xinjiang, China. Journal of Hydrologic 

Engineering, 2013, 18(8): 1031-1040. 

[12] Li Y P, Huang G H, Nie S L. Planning water resources management systems using a fuzzy-

boundary interval-stochastic programming method. Advances in Water Resources, 2010, 33(9): 

1105-1117. 


