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Abstract. Production and consumption-based approaches are primarily used to determine 

emissions responsibility at industrial and national levels. China is the world‘s topmost emitter 

under both these approaches. Most of the literature especially for China mainly focuses on 

drivers of direct GHG emissions. This study based on the curvilinear analysis, models best-fit 

curves between these two emission types and selective driving factors. GDP, GDP/Capita and 

GNI best-fit curves didn‘t support EKC hypothesis for production-based emissions, while for 

consumption-based emissions their curves are in support of EKC. Population, population 

density, Urbanization, CO2 intensity and urban population agglomeration all had non-linear 

best-fit curves. While energy use indicated a linear relation with production-based emissions 

and non-linear with consumption-based emissions. FDI and renewable energy consumption 

showed a non-linear negative relation with both emissions. Understanding of the non-linear 

relationship between vital driving factors and China‘s emissions under both approaches can 

help policymakers formulate more informed mitigation policies. 

1. Introduction 

Reducing GHG emissions is a global objective [1-3], but the increase in worldwide energy-based 

GHG emissions in 2017 has undermined the global emissions reduction objectives set out in the Paris 

agreement [4]. About 60% of global GHG emissions are CO2 emissions [5]. Ever since the ‗industrial 

revolution‘ CO2 intensity in ‗atmosphere’ has greatly increased [6]. The current rate of global GHG 

emissions can affect the worldwide environment [7]. Carbon emissions from fossil fuel flames are the 

main cause of global warming [8]. Pursuing many nations to impose mechanisms for the decrease in 

the consumption of fossil fuels [9]. China is the world top emitter under production and consumption- 

based accounting approaches [10]. More than 50% of global outflow trade emissions are from China 

[11]. 

Two type of approaches including: consumption-based, where emissions are attributed to the region of 

final consumption [12-13], and production-based, where emissions are attributed to the region where 

they are produced irrespective of the fact where they are eventually consumed [14-16]; are extensively 

employed for calculation of global GHG emissions [17]. PBA, in theory, is similar to IPCC and other 

international agreements. But the IPCC approach has been strongly criticized because outsourcing 

mainly takes place between developed and developing nations [18]. This transferring of CO2 

emissions from developed to developing nations is a major problem, developed nation‘s emissions rise 

when trade adjustment is considered [19]. Therefore, consumption-based emissions of developed 
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nations are usually higher than their production-based emissions [20-21]. Regional accounting 

approach adopted by IPCC encourages direct imports between nations [22-23]. 

The type of accounting approach adopted deeply influence the allocation of CO2 emissions 

responsibility [24]. Hence there is an international debate on approaches and allocation of 

responsibility for GHG emissions [25-26]. Calculations under PBA are uncomplicated, but it neglects 

global transport and carbon leakage problems [10]. On the other hand, the consumption-based 

approach is much fairer when assigning emissions accountability [27-28]. Consumption-based policy 

is objective and cost-efficient [29]. And it may be needed for sustainable environment [30]. It can help 

abate worldwide air contamination [31], stimulate ecological comparative advantages and dispersal of 

technology [32]. The consumption-based approach would pursue importers towards mitigation 

projects in regions from where they import merchandises [33]. The consumption-based approach also 

has some disadvantages which may be eliminated by exercising shared responsibility [10; 33-34]. 

There are three approaches to estimate best-fit curve between dependent (Y) and independent (X) 

variable: Linear regression, data transformations and curvilinear regression [35]. The curved trend in 

non-linear relations can be much better explained by non-linear functions for example ‗quadratic or 

cubic‘ or transformation into a linear function [36]. But transforming data values using some common 

method of transformation and then performing linear regression may give different results then fitting 

a curve to un-transformed data, or we can find an equation best fitting our curved data using 

curvilinear regression [35]. For best fit, we have employed Polynomial, Compound, Growth, 

Logarithmic, S, Exponential, Inverse, Power and Logistic models. 

Most of the current literature on driving factors of China‘s temporal emissions either focuses on the 

identification of these factors or their impact on direct emissions while the relationship of these factors 

with consumption and production based emissions are mostly being ignored. [37] Studied drivers of 

energy-related CO2 emissions of 30 provinces of China. Used ‗panel data and spatial econometrics 

models‘ for their study. [38] Calculated the factors of CO2 emissions of Chinas business sector. Used 

VAR and STIRPAT models. [39] Studied the driving factor for China city level carbon emissions. 

Employed a series of ‗dynamic distribution approaches and panel data models.‘ [40] Also investigated 

drivers of city level carbon emissions of China. [41] Calculated CO2 emission decrease potential of 

Chongqing city of China. Employed LMDI, STIRPAT model‘ to forecast future carbon emissions. 

[42] Researched drivers of energy-related carbon emissions of Beijing. Employed ‗Input-output model 

and SDA to study drivers.‘ [43] Examined key drivers to predict carbon emissions of Hebei.  

Employed ‗Bivariate correlation analysis, factor analysis, PSO-ELM.‘ [44] Considered the effect of 

population-related drivers on carbon emissions in 30 Chinese provinces. 

This paper is novel in several aspects first of all non-linear regression analysis has rarely been applied 

to understand the relationship between different driving factors and carbon emissions of a country. 

Secondly, in general, there is not much literature available where the relationship between a country‘s 

direct (production-based) and carbon footprint (consumption-based) emissions and significant driving 

factors have been analysed. Finally, to the best of author‘s knowledge, there is no such attempt has 

been made to graphically model the relationship between both the direct and consumption-based 

emissions and important socioeconomic factors of China (which is the largest carbon emitter under 

both the approaches). In this study, the author has tried to fill this gap. The author estimated best-fit 

curves for both production and consumption-based emissions with selective key driving factors from 

1970 to 2015. A comprehensive presentation of key driving factors temporal relationship with both 

type of emissions will help policymakers to devise better informed future mitigation policies for both 

PBA and CBA based emissions of China. 

2. Experimental design, materials, and methods 

The Data on consumption and production- based emissions of China from 1970 to 2015 was obtained 

from the Eora database which is based upon [45-46]. The relationship between following 

socioeconomic factors GDP [47-48], GDP per Capita [49-52], population [49; 51-54], population 

density [51], urbanization [47-50; 54], FDI [48; 53], energy consumption [55]; Urban 

agglomera t ion  [56] coupled with consumption & production based yearly emission of China was 

found out. Plus, the author also included GNI, CO2 intensity and Renewable energy consumption [57]. 
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All socio-economic data is from ‗The World Bank data bank‘ [58]. First, the presence of linear or 

linear-relationship between socio-economic factors (independent variables) and Production and 

consumption-based emissions (dependent variable) through residual plotting in SPSS was found out. 

From the graphs, it was apparent that a non-linear relationship exists between most of the socio-

economic factors and PBA & CBA emissions. Bivariate correlation using the Pearson Coefficient is 

used to establish a relevant relationship between shortlisted variables and carbon emissions [55]. 

Pearson correlation is a parametric test for a linear relationship between two variable, is not useful for 

non-linear relation so alternatives should be considered [59]. 

3. Results 

3.1. Model selection 

The purpose of regression analysis is to check for influence, significance, and certainty of the factors 

[60]. The basic linear regression equation is: 

 Y=α + βx (1) 

Where the value of dependent variable is represented by Y, α represents the constant and β represents 

the value of coefficient of regression and x is independent variable. 

For the best fit, the author employed Polynomial, Compound, Growth, Logarithmic, S, Exponential, 

Inverse, Power and Logistic models to the data; eventually most of the factors best-fit curves in 

relation with production and consumption-based emissions were obtained through Polynomial model 

curve fitting. Different powers of x variable are respectively added to the equation to find out their 

effect on R2 till no more noteworthy contributions can be obtained for the value of R2, So on until the 

increase or change in R2 is no more significant [35]. Starting by fitting linear regression equation 

(y=α+βx) to the data followed by: 

             
  (2) 

             
     

  (3) 

where    and    represent the values of the dependent variable at quadratic and cubic levels 

respectively. 

3.1.1. Production-based emissions. Table 1, contains the details about the final selected models based 

upon the derivation of the highest R2 values. 

 

Table 1. Summary of selected models (production-based emissions). 

 

Independent variable Model type R R2 Adjusted R2 Std. Error of the Estimate 

GDP Cubic .950 .903 .901 .666 

GDP/Capita Cubic .953 .908 .905 .649 

Population Quadratic .835 .698 .691 1.17 

Population density Quadratic .835 .698 .691 1.17 

Urbanization Quadratic .961 .923 .921 .594 

FDI Quadratic .913 .833 .827 .880 

GNI Cubic .950 .903 .901 .666 

Energy use Linear .999 .999 .999 .072 

Urban agglomeration Cubic .960 .923 .921 .594 
CO2 Intensity Quadratic .810 .656 .647 1.199 

Renewable Energy Consumption Inverse .994 .989 .988 .226 

 
The best-fit curves for the independent variables of GDP, GDP/Capita, GNI and Urban 

agglomerations were obtained under the cubic model. For Population, Population density, 

Urbanization, FDI and Carbon Intensity, the Quadratic model yielded the highest values of R2. For 
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both Population and Population density the Cubic model between these two variables and Production- 

based emissions of China, could not be tested due to near-collinearity among model terms. 

Additionally, due to the existence of the non-positive values, the Logarithmic and Power models could 

not be tested for the independent variable of FDI (Foreign direct investment). Best fit curve for the 

energy use and production based emissions was obtained under the Linear regression model. And 

finally for Renewable energy consumption, the best fit curve was obtained under the inverse model. 

The Cubic model could not be fitted for Renewable energy consumption due to near-collinearity 

among model terms. ANOVA null hypothesis for both linear and non-linear models was rejected at a 

significance of .000. 

3.1.2. Consumption-based emissions. Table 2, contains the details about the final selected models 

based upon the derivation of the highest R2 values. 

 

Table 2. Summary of selected models (consumption-based emissions). 

 

Independent variable Model type R R2 Adjusted R2 Std. Error of the Estimate 

GDP Cubic .996 .992 .991 .159 

GDP/Capita Cubic .996 .992 .991 .159 

Population Quadratic .924 .854 .848 .666 

Population density Quadratic .924 .854 .848 .666 

Urbanization Cubic .993 .986 .985 .207 

FDI Cubic .915 .837 .820 .743 

GNI Cubic .996 .992 .991 .160 

Energy use Cubic .999 .998 .997 .081 

Urban agglomeration Cubic .991 .982 .981 .236 
CO2 Intensity Cubic .928 .861 .854 .617 

Renewable Energy Consumption Power .991 .982 .981 .066 

 

Like production-based emissions, the highest R2 values between the independent variables of GDP, 

GDP/Capita, GNI and Urban agglomerations and the consumption-based emissions were again 

obtained under the cubic model. Contrary to the best fit curve obtained under the Quadratic and Linear 

models respectively for the independent variables of carbon intensity, FDI, Urbanization and the 

energy use with production-based emissions, the best fit curves between these variables and the 

consumption-based emissions were obtained under the cubic model. For Population and Population 

density the best-fit curves were obtained under the Quadratic model. Finally, for Renewable energy 

consumption Power model produced the highest results. ANOVA test for both linear and non-linear 

regression models was significant at .000. 

3.2. Rationalization of best-fit curves 

Figure 1a and 1b contains the graphical presentation of the best-fit curves between production and 

consumption based emissions (dependent variable) and selective socio-economic factors (independent 

variables) from 1970-2015. GDP, GDP/Capita and GNI regression slopes are steeply concaved 

approaching last few observations it smoothens. Which means initially slight increases in GDP, 

GDP/Capita or GNI have seen a larger increase in China‘s PBA emissions while later on the opposite 

is true. Approaching end it is steeping again. Thus not supporting EKC hypothesis which advocates 

the presence of an inverted U-shaped relationship between a country‘s emissions and its economic 

progress. The same cannot be said about China‘s consumption-based emissions relation with GDP, 

GDP/Capita and GNI. Although their best fit curve is obtained under the cubic model but almost a 

semi-inverted U shaped regression curve can be observed between these economic factors and 

consumption-based emissions of China. 
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Figure 1a. Best-fit curves for Production-based emissions. Where, Y-axis presents PBA (dependent 

variable) emissions in ‗Mt CO2 per capita‘; X-axis presents independent variables: GDP, GDP per 

capita and GNI (PPP) measured at (current US$), Population density (people per sq. km of land area), 

Population in urban agglomerations of more than 1 million, Energy use (Terajoules), Foreign direct 
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investment, net (BoP, current US$), Renewable energy consumption (% of total final energy 

consumption), and urbanization (% of total population).   

 

Figure 1b. Best-fit curves for Consumption- based emissions. Where, Y-axis presents CBA 

(dependent variable) emissions in ‗Mt CO2 per capita‘; X-axis presents independent variables: GDP, 

GDP per capita and GNI (PPP) measured at (current US$), Population density (people per sq. km of 
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land area), Population in urban agglomerations of more than 1 million, Energy use (Terajoules), 

Foreign direct investment, net (BoP, current US$), Renewable energy consumption (% of total final 

energy consumption), and urbanization (% of total population).   

Total population and population density best-fit curves with both production and consumption based 

emissions have shown hockey stick shaped curves. Which employs that initial increases in China‘s 

population and population density didn‘t seem to be affecting its PBA and CBA emissions much. 

Afterward slight population increases have (holding other factors constant) resulted in larger increases 

in PBA and CBA based emissions. Which could be owing to the increased purchasing power of 

China‘s general population over time.  

Very steeped slightly convexed best fit curves are obtained for production and consumption-based 

emissions and urbanization. Which means in the beginning increases in China‘s urbanization rate 

observed a lower rate of increases in its PBA and CBA emissions. Afterward slight increases in 

urbanization rate have resulted in large increases in PBA and CBA emissions. The same observation 

holds for best-fit curves between urban population agglomerations and PBA and CBA based emissions 

of China. 

Energy use best-fit curve with China‘s production based emissions were obtained with linear model. 

Which means (holding other factors constant) every unit increase in energy use will result in .004 units 

increase in PBA emissions. While for consumption-based emissions its best fit curve was obtained at 

cubic level. Which with slight variations also indicate more or less a linear trend. 

CO2 intensity best-fit curves with both production and consumption-based emissions show hockey 

stick shaped patterns. While FDI and renewable energy consumption have shown negatively sloped 

best-fit curves with both production and consumption-based emissions. For FDI these curves are 

slightly concaved while for renewable energy consumption, these curves are slightly convexed. 

4. Conclusion and policy implications 

The purpose of this paper was to find out the best-fit curves between production & consumption-based 

emissions and vital socio-economic factors of the topmost carbon emitter China. Until now most of the 

literature takes in to account only direct emissions while ignoring these main two accounting 

approaches for GHG emissions. This paper will not only be helpful specifically to Chinese 

policymakers but also to other scholars and governments concerned with environmental mitigation. 

The main points for policy guidance are summarized below: 

1) GDP, GDP/Capita and GNI best-fit curves with PBA emissions didn’t indicate the presence of 

the EKC hypothesis. While their best-fit curves with CBA supported the presence of the EKC 

hypothesis and shown somewhat inverted semi U shaped curves. Which indicates that the 

Chinese government cannot allow unchecked growth based on the EKC theory, i.e., in the hope 

that after reaching a certain peak its emissions will come down with the further growth of its 

GDP. Our results indicated no clear presence of the EKC relationship between direct emissions 

of China and the GDP, GDP/Capita and GNI. 

2) On the other hand, there is some evidence of the existence of the EKC curve between China’s 

carbon footprint (consumption-based emissions) and these socio-economic factors. Which 

means with further economic growth (GDP, GDP/Capita and GNI), China’s consumption-based 

emissions are expected to decrease. This indicates that China’s rapid economic growth has 

resulted in decreasing degree of foreign carbon imports as compared to its carbon exports. Due 

to this reason, China as a nation can benefit from an emission accountability system based upon 

its carbon footprint (consumption-based) as compared to direct emissions. Consumption-based 

emissions accounting approach can also help the Chinese government to maintain its rapid 

economic growth while witnessing a decrease in its carbon footprint (after a certain point). 

Which as per this study’s findings, would not be possible under a production-based approach 

(direct emissions). 

3) It is recommended that the Chinese government should pursue the implementation of the 

consumption-based method under the IPCC and at other international forums. The consumption- 

based system also will particularly save China from the problem of the global carbon leakage. 

Not only China’s consumption-based emissions are less than its production-based emissions but 
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also a consumption-based emissions accountability mechanism can help China achieve future 

economic growth while reducing its carbon footprint. 

4) Population, population density and CO2 emission intensity all have shown hockey stick shaped 
curves with both production and consumption-based emissions. Which means initially with an 

increase in these factors both the direct and consumption-based emissions did not increase 

significantly. But after some time a smaller amount of increase in population, population density, 

and CO2 emission intensity have witnessed the larger amount of direct and consumption-based 
emissions. Which means the Chinese government at all costs should control future increases in 

population, population density, and CO2 emission intensity. 
5) Very steeped slightly convexed best fit curves were obtained for production and consumption- 

based with Urbanization and urban population agglomerations. It indicates that for mitigation of 

China’s future emissions the rapid phenomenon of urbanization in China should be stopped or 

slowed as much as possible. The rural population should be discouraged to move to urban cities 

which is the main cause of conversion of the rural population into urban population in China. 

Furthermore, to reduce the impact of urban population agglomerations on both the production 

and consumption-based emissions urban infrastructures should be made more environmentally 

friendly, residents in the urban agglomerations should be encouraged to improve their 

consumption habits, etc. 

6) Energy use has indicated a linear relation with China’s production based emissions. Although, 

it’s best fit curve with consumption-based emissions was obtained at cubic level but it was also 

more or less indicating an almost linear relationship with both the production and consumption-

based emissions. Due, to this presence of almost a linear relation (direct relation) 

improvements in energy use structure and efficiency can help directly in the reduction of the 

China’s consumption and production-based emissions. Chinese government can invest in 

technological advances to improve its overall energy efficiency. 

7) Both FDI and penetration of renewable energy showed negatively sloped non-linear curves with 

production and consumption-based emissions. They might hold the key towards unlocking 

China’s carbon mitigation potential. China has already shifted its attention towards more use of 

renewable energy to fulfil its energy needs. This process should be further supported and 

financed. Furthermore, more FDI could be attracted through tax breaks, subsidies and 

miscellaneous incentives. 
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