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Abstract. Based on the project of Erzhuangke expansion tunnel, this paper aims to investigate 
the influence of the blasting vibration caused by the expanded tunnel excavation on the 
adjacent existing lining, then a reasonable safety control criterion is proposed. The 3D finite 
element analysis, combined with field test, was employed to analyze peak particle velocity 
(PPV) and the maximum tensile stress of the existing lining under the closely tunnel blasting. 
The results demonstrate that the blasting vibration attenuation rate of existing lining is faster 
within the range of about 1.5B from the blasting source, then gradually tends to be flat, and the 
two sides are basically symmetrical distribution. However, the PPV and tensile stress of the 
side wall and arch waist of the existing lining nearest to the blasting source are significantly 
larger than those of other locations, so it is more likely to be damaged. The numerical 
simulation results are in good agreement with the field test, which also verifies the accuracy of 
the field test results and the rationality of the numerical simulation. Moreover, the safety 
control criterion based on the PPV and maximum tensile stress is established to ensure the 
operation safety of existing tunnels, and the PPV safety criterion of existing lining is 10.73 
cm/s, so that the maximum allowable charge of a single section should be controlled within 
41.05 kg. 

1. Introduction 
With the improvement of blasting technology, blasting disasters often occur, especially the damage 
caused by blasting vibration to adjacent buildings (structures). According to the control standard of 
blasting safety regulations, the safety of structure is not necessarily ensured. In many cases, when the 
PPV reaches the safety control standard, no obvious damage or destroy is found in the structure, while 
when the PPV does not reach the safety standard, the structure is destroyed [1,2]. During tunnel 
blasting excavation, blasting vibration of different strengths will inevitably cause macro-damage or 
cumulative damage to underground structures or adjacent buildings (structures), but it is difficult to 
assess and judge the damage degree of blasting vibration to structures [3]. Therefore, it has attracted 
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widespread attention from many scholars at home and abroad. The methods to study the impact and 
safety control problems of tunnel blasting on existing buildings are mainly divided into three 
categories: 1) Theoretical analysis method, in which the stress wave theory lays the foundation for 
studying the influence of blasting load on adjacent structures. Based on the stress wave theory, the 
critical vibration velocity of lining under different incident angles is obtained by using the complex 
variable function method [4]. Besides, the vibration velocity criterion model to ensure the safety of 
tunnel lining is established according to the stress wave theory and the ultimate tensile stress criterion 
[5]. 2) Field test method, the response of blasting vibration can be well reflected by the field test 
system. The characteristics and regularities of blasting vibration at middle partition wall and 
excavation face in closed tunnel are discussed according to field test [6]. And the application effect of 
short step advance and millisecond blasting control technology inside and outside holes in 
down-penetrating ramp is verified by field test [7]. 3) Numerical analysis method, which is widely 
used in engineering because of its simplicity, rapidity and high accuracy. The dynamic characteristics 
of the existing tunnel lining under the blasting action of the following tunnel are studied, and the 
blasting safety control standard of the branched tunnel is determined by using 3D numerical 
simulation software of ANSYS/LS-DYNA. Moreover, the effects of different depths, spacing and 
excavation step on the existing lining are studied through the numerical calculation model of triangular 
equivalent blasting load [8,9] 

In summary, there are few studies on the impact of blasting on existing tunnel lining structure and 
safety control standards, because different tunnel projects have their own unique characteristics, and 
there is no similar engineering basis for reference. Therefore, based on the Erzhuangke expansion 
tunnel project, this paper aims to study the attenuation law and influence of stress wave in existing 
lining structure under the blasting load of closed distance extension excavation by combining field test 
with numerical simulation, and then puts forward a reasonable safety criterion blasting control, which 
can not only guarantee the safe construction of existing tunnels, but also can provide guidance for 
blasting engineering design and construction. 

2. Description of projects 
The expansion tunnel is located in the near of Erzhuangke village, Yan'an City. It runs parallel to the 
existing Erzhuangke tunnel and crosses the same mountain. The existing tunnel length is 640 m from 
ZK2+027 to ZK2+667, and the new tunnel length is 630 m from YK2+015 to YK2+645, which 
belongs to the medium-long tunnel (>500 m). The maximum cover on the tunnel is 145 m, and the 
surrounding rock is mainly composed of strong - medium weathered sandstone. The new tunnel is a 
one-way three-lane city main road, and the design speed is 50 km/h. Considering the road belt and 
safety width, the excavation area is more 130.4 m2, with a width B of 16.34 m and height of 10.45 m. 
The location relationship between the existing tunnel and the new tunnel is shown in Figure 1. The 
distance between the two measuring lines of tunnel is 25 - 42 m and the clear distance is 21 - 38 m. 
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Figure 1. Location relationship between 
new tunnel and existing tunnel. 

Figure 2. The arrangement of tunnel blasting hole 
(unit: cm). 

 
Therefore, the difficulty of the project is how to control the blasting influence on the closely 

existing lining. But the PPV of traffic tunnels is 10 - 20 cm/s referring to “Chinese Blasting Safety 
Regulations GB 6722-2014” [10], so it cannot be accurately judge the safety state of the structure in 
actual engineering. The two step method was employed to construct the tunnel, and the cutting holes 
of upper steps are wedge-shaped, with a vertical depth of 1.50 m, so the specific blasting construction 
parameters are shown in Table 1. Delay blasting was adopted for tunneling and the blasting design was 
shown in Figure 2. Each row of blasting holes adopts millisecond delay blasting, and the delay time 
difference between adjacent detonator sections is 100 ms. The boreholes are divided into 9 groups 
according to the initiation sequence (different color holes use different detonator groups), which are 
encoded as�1,�3,�5,�7,�9,�11,�13,�15 and�17 respectively. In the 9 groups, Group�1 is a group of cut 
holes, Group�15 and Group�13 are groups of perimeter holes, and all holes between the cut and 
perimeter holes are referred to as auxiliary holes. In order to eliminate the superposition effect of stress 
wave caused by explosion and reduce the influence of blasting vibration on adjacent structures, the 
layer-by-layer initiation from inside to outside is realized. 

3. Analysis on filed monitoring data 

3.1. Monitoring scheme 
Three-vector vibration velocity sensor and TC-4850 automatic acquisition system (made in Chengdu 
Zhongke Instruments Co., Ltd.) are used in the process of blasting vibration monitoring. According to 
the principle of blasting vibration monitoring and the propagation law of stress wave [11], the 
monitoring points were located on the side wall of the blasting face in the existing tunnel. As shown in 
Figure 3, three key monitoring points were arranged in existing tunnel each excavation blasting, which 
were named as C1, C2, and C3, respectively. And a three-dimensional velocity sensor is installed for 
each monitoring point to test horizontal radial (PPVX), horizontal tangential (PPVY) and vertical 
vibration velocities (PPVZ). Since the location of each monitoring point is relatively flat and the 
relative height difference between the monitoring point and others is very small, so the influence of 
height difference on the propagation of blasting stress wave can be neglected in the analysis of testing 
data [12,13]. 
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Figure 3. The arrangement blasting vibration monitoring points. 

3.2. Analysis of monitoring results 
At present, many scholars have proposed the prediction formulas for blasting vibration [14,15], which 
is basically based on Sadovsky's empirical formula, and the parameters are revised and perfected in 
actual blasting engineering. Previously, the equation for predicting the relationship between PPV, 
explosive charge and safe distance are also proposed in China, and has been incorporated into the 
Blasting Safety Regulations. The PPV can be predicted as follows: 

� � � � �� �		 PD/3/1 KRQKPPV  (1) 

� � 3/1/PD QR	  (2) 

� � 3/3
max / RKPPVQ �	  (3) 

where PPV is the peak particle velocity (cm/s); Q is the maximum charge pre delay (kg); R is the 
linear distance from the blasting source to monitoring points (m); K, α are the related parameters of 
blasting vibration, which are related to rock characteristics, site conditions, blasting methods, etc.; [PD] 
is the proportional distance (m/kg1/3). 

Four monitoring sections (YK2+558, YK2+550, YK2+546, and YK2+541) were selected in the 
cross section of new tunnel. And three monitoring points were arranged in existing tunnel during each 
monitoring section, so a total of 12 sets of data were analyzed by regression analysis. The blasting test 
results of each monitoring point are shown in Table 2. 

 
Table 1. Tunnel blasting parameters. 

Parts Hole types 
Detonator 
group 

Holes 
depth 
(m) 

Holes 
numb
er 

Charge 
density 
(kg/m) 

Charge 
per hole 
(kg) 

Sum 
charge 
(kg) 

Total 
charge 
(kg) 

Upper step 
excavation 

Cut holes 1  1.5 12 0.90 1.40 16.80 

98.40 

Relief holes 3  1.5 6 0.60 1.00 6.00 
Auxiliary holes 
A 5  1.3 4 0.64 0.80 3.20 

Auxiliary holes 
B 7  1.3 8 0.64 0.80 6.40 

Auxiliary holes 
C 9  1.3 16 0.64 0.80 12.80 

Inner holes A 11  1.3 22 0.45 0.60 13.20 

Inner holes B 13  1.3 26 0.45 0.60 15.60 

Perimeter holes 15  1.3 47 0.15 0.20 9.40 

Floor holes 17  1.3 15 0.72 1.00 15.00 
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Lower step 
excavation 

Floor holes 1  1.3 7 0.45 0.60 4.20 

51.60 

Auxiliary holes 
A 3  1.3 14 0.72 1.00 14.00 

Auxiliary holes 
B 5  1.3 19 0.64 0.80 15.20 

Auxiliary holes 
C 7  1.3 21 0.50 0.60 12.60 

Perimeter holes 9  1.3 28 0.15 0.20 5.60 

 

Table 2. Blasting monitoring results. 

Monitorin
g sections 

Monitori
ng points 

Maximu
m charge 
per delay 
(kg) 

Distance 
from 
blasting 
source (m) 

PPV (cm/s) Main frequency (Hz) 

PPVX
a PPVY

a PPVZ
a FX

b FY
b FZ

b 

YK2+558 
C1 

16.8 
32.4 4.20 0.93 2.30 142.86 129.03 160.00 

C2 47.5 1.76 0.52 0.86 160.00 19.98 166.67 
C3 43.3 1.87 1.48 1.05 64.52 80.00 121.21 

YK2+550 

C1 

16.8 

34.4 2.65 1.21 1.19 105.26 51.28 57.14 

C2 36.8 2.40 0.94 1.33 160.00 61.54 200.00 

C3 54.4 1.34 0.63 0.69 56.92 42.55 102.58 

YK2+546 

C1 

15.2 

32.5 2.62 1.61 1.33 71.43 19.51 52.63 

C2 66.4 1.01 0.30 0.37 137.93 48.78 72.73 

C3 61.2 1.08 0.69 0.66 65.57 40.40 51.28 

YK2+541 

C1 

16.8 

32.0 3.36 1.03 1.38 137.93 38.10 137.93 

C2 41.9 2.21 0.79 0.98 117.65 55.56 190.48 

C3 38.9 2.29 0.92 1.23 90.91 71.43 142.86 
aPPVX, PPVY, PPVZ are the maximum particle vibration velocity of horizontal radial, horizontal tangential and 
vertical, respectively. 
bFX, FY, FZ are the main frequency of horizontal radial, horizontal tangential and vertical, respectively. 

 
According to the statistical data of PPV in Table 2, the non-linear fitting between the blasting 

vibration velocity and the corresponding proportional distance in formula (1) and (2) is analyzed, then 
the corresponding attenuation parameters K and α of stress wave propagation are determined, thus the 
attenuation curves of PPV in all directions are obtained (Figure 4). The regression empirical formula 
(4) is as follows: 

� �
� �
� �


�



�




		
		
		

�

�

�

0.8747,PD 38.031

0.6049,PD 067.54

0.9347,PD 02.062

26441
Z

24141
Y

26361
X

RPPV

RPPV

RPPV

.

.

.

 (4) 

As Figure 4 shows that the PPV of three directions are similar with the change of proportional 
distance. The peak velocities first show an exponential attenuation law as a whole, then the attenuation 
rate is faster and finally tends to flat. The main reason is that the pressure produced by the shock wave 
near the blasting source far exceeds the tensile strength of the rock, which is used to break the rock 
and consume most of the energy, resulting in a sharp attenuation of the PPV. The attenuation law is 
basically consistent with Sadovsky's empirical formula, that is, the PPV of each directions decreases 
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with the increase of the blast center distance. 
 

 

Figure 4. The regression curve of PPV. 
 
It can be found that the maximum PPV is 4.20 cm/s, which is less that the allowable value of 10 

cm/s in Blasting Safety Regulations, indicating that the excavation blasting will not damage or affect 
existing tunnels. The actual statistics of PPV are given in Table 2. Comparing the PPV in each 
direction, the PPVX is largest, PPVZ is second, and PPVY is the smallest, which indicates that the 
front-side of the blasting source is subjected by the vertical incidence of the blast stress wave, and the 
PPVX is dominant. 

Meanwhile, the main frequency of blasting vibration is highly discrete, accounting for 33.3% of 
0~60Hz, 30.6% of 60~120Hz, and 36.1% of 120Hz~, and generally higher (more than 19.51Hz), but 
the natural frequency of most underground structures are lower [16,17], so high-frequency vibration is 
not easy to resonate with the structure, the structure safety mainly depends on the PPV, and the details 
are shown in Table 2. 

4. Numerical Simulation 

4.1. Finite element model establishment 
To reduce the influence of boundary effect, the left and right boundary of the model are about 3~5 
times of the tunnel excavation diameter respectively, so the width of the model is 120 m, the upper 
boundary is 55 m according to the tunnel depth and the lower boundary is 25 m; The length of the 
model is 80 m, the blast section is in the middle model, so a 3D finite-element calculation model with 
a size of 80 m (length) ×120 m (width) × 80 m (height) was developed, as shown in Figure 5(a). Due 
to the charge of the cutting hole is the largest, only the cutting hole is considered when establishing the 
model, and the diameter of the cutting hole is 0.045 m, the depth is 1.5 m, and the spacing 
arrangement was the same as the in suit conditions, and then the size of the tunnel structures were 
completely referenced to the design value as presented in Figure 5(b). 

In addition, for the convenience of analysis, the surrounding rock around the tunnel is regarded as 
the homogeneous, continuous and isotropic rock, without considering the effects of joint fissures, fault 
fracture zones and blasting damage in surrounding rock. The 3D finite-element model consists of four 
parts, namely rock mass, explosive, existing tunnel lining and air, and the Solid 164 elements are used 
for mesh division, which are divided into 190,869 nodes and 181,620 elements in total. Among them, 
Lagrange algorithm is used for rock and existing lining, and ALE multi-material algorithm is used for 
explosive and air, which can avoid serious grid distortion caused by explosion and realize dynamic 
analysis of fluid-solid coupling. In the numerical calculation model, the m-kg-s unit system is adopted, 
and air medium is filled in both excavated and existing tunnels. Except for the free boundary at the top 
of the model, the other surfaces are applied for non-reflective boundary. 

 



ACEER 2019

IOP Conf. Series: Earth and Environmental Science 351 (2019) 012043

IOP Publishing

doi:10.1088/1755-1315/351/1/012043

7

 

 
 

(a) (b) 

Figure 5. 3D finite element model: (a) 3D model; (b) Cut holes arrangement. 

4.2. Model parameters selection 
The constitutive relationship between rock mass and existing lining is MAT_PLASTIC_KINEMATIC. 
This model can not only consider the elastic-plastic properties of rock medium, but also describe the 
dynamic strengthening, strain rate effect and failure strain of materials [18,19]. Moreover, the 
constitutive relationship of plastic follower material is based on Cowper-Symonds model, which 
reflects the relationship between dynamic ultimate yield stress and strain rate factor. The equation (5) 
is as follows: 

��
�

�
��
�

�
�

�
�
�
�

�

�
�
�

�
�
�
�

�
�
��	 p

tan0

tan0
0

/1

y 1 �����
EE

EE

C

p

 (5) 

where σy is the dynamic yield stress; ε is the strain rate; εp is plastic strain rate; σ0 is the Initial yield 
stress; E0 is Young’s modulus; Etan is the tangent modulus; C p is the strain rate parameter; β is the 
hardening parameter; For isotropic hardening, β=1; And for kinematic, hardening, β=0. Based on field 
tests and “Code for Design of Road Tunnel JTG D70-2004” (Chinese National Standard 2004) [20], 
the physical and mechanical parameters of the rock mass are determined and listed in Table 3. 

MAT_NULL material model and EOS_LINEAR_POLYNOMIAL state equation can be used to 
simulate the constitutive relationship of air in ANSYS/LS-DYNA. The linear polynomial equation of 
state is linear in internal energy. The pressure is given by: 

� � p
2

654
3

3
2

210 ECCCCCCCP ����� ������	  (6) 

where P is the blast pressure; Ep is the detonation energy; μ is the specific volume; C0 ~C6 is constant 
of state equation, for ideal gas, when C0 =C1 =C2 = C3 = C6 = 0, and C4 = C5 =0.4 to satisfy the perfect 
gas equation form; The air density is 1.225 kg/m. 

2# Rock emulsified explosive is described by MAT_HIGH_EXPLOSIVE_BURN high-energy 
explosive model and EOS_JWL equation of state, so the formula (7) for calculating explosive pressure 
is as follows [21]: 

� �
V

E
e

VR
Be

VR
AEVP VRVR

�
���

�

�
��
�

�
�

����
�

�
��
�

�
�

�	� ���� p

21
p

21 11,
   

 (7) 

where V' is the initial relative volume; A B R1 R2 ω is the explosive material parameters; ρ is the 
explosive density; D is the detonation velocity. The specific parameters are shown in Table 4. 
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Table 3. Surrounding rock and existing lining model parameters. 

Material 
Density 
(kg/m3) 

E0 (GPa) 
Poisson's 
ratio 

σ0 (GPa) Etan (GPa) β εp 

Rock mass 2600 21 0.28 0.175 0.03 0.5 1.25 

Existing lining 2350 28 0.17 0.30 0.048 0.5 1.25 

 
Table 4. 2# Rock emulsion explosive model parameters. 

ρ / (kg/m) D/ (m/s) P / GPa A / GPa B / GPa R1 R2 ω Ep / (J/m3) V' 

1120 4300 3.43 42 0.44 3.55 0.16 0.41 3.15 1.00 

4.3. Calculation results analysis 

4.3.1. Distribution Laws of PPV. To investigate the law of PPV and stress variation of the existing lining 
structure under explosive load, the element nodes of the existing tunnel lining are extracted. A test 
section is selected at intervals of 2 m, and 40 groups of test sections are selected, so eight positions are 
selected on each test section, including the left arch foot, left sidewall, left arch waist, vault, right arch 
foot, right sidewall, right arch waist and middle invert. All the selected positions represent the key 
locations of the tunnel structure. Due to limited paper, this paper only lists the time-history curves of the 
PPV in all directions at the sidewall (No: 95,654) face to blasting source as shown in Figure 6. 
Specifically, the direction parallel to the tunnel excavation is negative, while the direction of excavation 
is positive. 

In the same test section, the location of the existing lining sidewall is nearest to the blasting source, 
and the PPV is the largest (Figure 6). The PPV in each direction are 3.79 cm/s (PPVX), 0.92 cm/s 
(PPVY), 1.90 cm/s (PPVZ), where: PPVX > PPVZ > PPVY. The main reason is that the stress wave of 
the cylindrical charge structure propagates outward in the form of cylindrical waveform at the moment 
of explosion, and the horizontal radial vibration intensity is the greatest when the stress wave is 
perpendicularly incident on the tunnel sidewall. Therefore, the PPVX is dominant, which is agreement 
with the vibration velocity distribution characteristics in the field test results. It shows that the 
numerical simulation can better reflect the dynamic response characteristic of the existing lining. 

 

 

Figure 6. Time history curve of PPV in existing tunnel lining sidewall position node. 
 
Figure 7(a) presents the PPV distribution characteristics of existing lining blasting: it can be seen 

that the PPV at different locations of existing lining is close to the change curve with blasting center 
distance. On the whole, the PPV is the largest at the same section of blasting excavation face. With the 
increase of blasting center distance, the PPV decreases gradually. Within the range of 1.5B (about 20m) 
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from this section, the attenuation rate is faster, and then gradually tends to be flat. Besides, the PPV 
curve is basically symmetrically distributed with respect to the excavation face. Comparing the PPV of 
existing lining before and after blasting face, we can see that the attenuation rate of PPV in front of 
blasting face is slightly lower than that behind. The main reason is that the square behind the blasting 
excavation is an empty face, and the blast stress wave can not be directly incident on the lining behind 
the blasting face, but can be reached by diffraction, so some energy is lost, resulting in rapid PPV 
attenuation. 

In addition, it can be seen from Figure 7(b) that the PPV on the front-side of blasting source is 
obviously larger than that at the backside, and PPVX is particularly prominent, which indicates that the 
front-side is greatly affected by the adjacent blasting load, while the backside is less affected and 
relatively safe because it is mainly affected by the diffraction of blasting stress wave. Therefore, 
during the blasting excavation, it is necessary to strengthen the monitoring of the PPV on the 
front-side of blasting source. 

 

  
(a) (b) 

Figure 7. The distribution characteristics of PPV: (a) Longitudinal variation curve; (b) Radial 
envelope diagram. 

4.3.2. Distribution Laws of Stress. Figure 8 shows the longitudinal stress distribution of existing lining. 
The stress distribution characteristics of existing lining are basically consistent with that the PPV at 
different locations. Within 1.5B of the same section as the blasting face, the tensile stress of existing 
lining is larger, the maximum value is 0.285 MPa, which is far less than the ultimate tensile strength of 
lining concrete. Therefore, the adjacent expansion and excavation blasting will not destroy the existing 
lining. The stress distribution on the front-side of blasting source is as follows: the left sidewall > the 
left arch waist > the left arch foot > vault. What s more, the PPV is the largest from the sidewall to the 
arch line of the front-side, and the maximum tensile stress is concentrated in this part, which is mainly 
affected by the vertical reflection and tension action of the stress wave, so it is easy to produce crack 
failure. 

Figure 9 shows the stress cloud chart of lining at different times. When t =10 ms, the stress peak 
appears at the left sidewall position, and the maximum value is 0.285 MPa; When t =15 ms, the stress 
wave appears at the vault position, the maximum value is 0.173 MPa. In this process, the peak stress 
area gradually transfers to the backside, and the peak stress decreases obviously. Therefore, the peak 
stress on the backside will be delayed to a certain extent, which indicates the time-history of the stress 
wave propagation along the radial direction of the lining. With the increase of the distance from 
blasting source, the existing lining is affected by the oblique incidence of stress wave, and the stress 
decreases gradually from the blasting source to the outside. The stress distribution on both sides of 
blasting face is basically symmetrical, while the stress on the front-side of blasting source is the largest, 
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and the stress response on the backside is not obvious. 

 

Figure 8. Longitudinal stress distribution of existing lining. 
 

  
(a) (b) 

Figure 9. Cloud chart of existing lining stress distribution (unit: Pa): (a) 10 ms; (b) 15 ms. 

4.3.3. Comparative Analysis. In order to verify the accuracy of the numerical simulation in expanded 
tunnel, the maximum PPVX of each monitoring point in the sidewall position of existing lining (same as 
the field test position) is extracted, and the field test is compared with the numerical simulation result, as 
shown in Figure 10. It can be seen that the numerical simulation and field test results show a linear 
positive correlation, and the relative error is less than 12.1%. Considering the complexity of engineering 
geology and the idealization of numerical simulation, etc, it is reasonable to have a certain deviation 
within the allowable range. 
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Figure 10. Comparison of field test and numerical 
simulation results. 

Figure 11. The relationship between maximum 
tensile stress and PPV of existing lining 
structure. 

5. Discussion on blasting safety control standard 

5.1. Safety criterion of PPV 
To investigate the influence of PPV and tension stress on the safety of tunnel lining structure, the 
maximum tension stress and PPV on the sidewall position of existing tunnel lining are statistically 
analyzed. As shown in Figure 11, the linear fitting relationship between maximum tension stress and 
PPV is obtained. 

9083.0,0194.00702.0 2 	�	 RPPV�  (8) 

where σ is maximum tension stress (MPa), other symbols have the same physical meaning as before. 
Eq (8) shows that the fitting correlation coefficient is close to 1, which indicates that there is a 

linear relationship between the PPV and the peak tensile stress. According to the ultimate tensile stress 
criterion, when the tensile stress is greater than the ultimate tensile strength of lining concrete, the 
lining will cause tensile failure. The existing tunnel lining adopts C25 reinforced concrete with a 
thickness of 55 cm. The dynamic elastic modulus and dynamic tensile strength of concrete structure 
increase under blasting load. However, considering the unfavorable factors such as service life of 
existing lining and cumulative blasting damage, the ultimate tensile strength of existing lining is 
determined to be 1.30 MPa [8,22]. That is, when the PPV exceeds 18.24 cm/s, the peak tensile stress 
of the existing tunnel lining reaches the ultimate tensile strength, and the lining structure will be 
damaged. Considering the safety of tunnel lining structure, the revised coefficient of engineering 
importance is 1.7 [23], and the safety criterion of existing lining PPV is 10.73 cm/s. Besides, because 
of the high frequency of blasting stress wave, the impact on concrete lining is limited, so it is not 
necessary to consider the impact of blasting vibration frequency on lining structure. 

5.2. Safety control of charge 
Generally, under the conditions similar to geological and rock properties, the parameters K and α 
related to blasting vibration are basically the same. Therefore, K=206.02 and α=1.636 are selected 
from the formula (4). When the location of adjacent structures is determined, the maximum charge 
quantity is mainly determined by the safety PPV. In other words, the relationship curve between the 
maximum charge quantity and the blasting center distance can be obtained by formula (3) at a certain 
safe PPV =10.73 cm/s, as shown in Figure 12. 

As can be seen from Figure 12, when the tunnel excavation approaches the existing tunnel 
gradually, the intensity of blasting vibration should be strictly controlled to reduce the damage of 
blasting construction to the existing lining structure. When the distance between blasting source and 
existing lining is nearest 21 m, and the maximum allowable charge should be controlled within 41.05 
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kg. It can be seen that a single-segment allowable charge in the design of blasting network is within 
the allowable range, which will not affect the safety of existing tunnel lining structure. 

 

 

Figure 12. Maximum charge control curve. 

6. Conclusions 
Based on the expansion project of Erzhuangke Tunnel, this paper aims to investigate the influence of 
existing tunnel lining under the close blasting load through field test and numerical simulation. The 
primary conclusions can be summarized as follows: the corresponding attenuation parameters K, α of 
stress wave are determined by regression analysis of the field monitoring data, and then the regression 
equations of PPV in different directions are obtained, and the PPV mainly depends on the maximum 
charge and the distance from blasting source. It is difficult to resonate with the structure when the 
main frequency is high, so the safety of the structure depends mainly on the PPV. Moreover, the 3D 
finite element simulation results show that the PPV of the existing lining is the largest at the same 
section position as the blasting source. With the increase of the distance from the blasting source, the 
PPV of existing lining decreases gradually, and the both sides are basically symmetrically distributed 
with the blasting excavation face, while the existing lining within the range of about 1.5B from 
blasting source is greatly affected by the blasting vibration. And the stress distribution is too. The PPV 
and stress at front-side of tunnel lining are obviously larger than that of backside, so some measures 
should be taken to focus on protection. The PPVX is larger than those of other directions, and it 
dominates. The numerical simulation results have been confirmed by field blasting tests. In addition, 
the safety control criterion is proposed according to the linear fitting relationship between the PPV and 
the maximum tensile stress. Combining with the ultimate tensile stress criterion of concrete, the safety 
PPV of existing lining structure is obtained to be 10.73 cm/s. In order to ensure the safe operation of 
the existing tunnel under the blasting of the close-distance expansion tunnel, the maximum allowable 
charge for a single group should be controlled within 41.05kg. 
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