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Abstract. Acid mine drainage (AMD) is one of the most serious environmental problems 

encountered in mining areas worldwide. When released into the environment without treatment, 

AMD pollutes the surrounding water bodies and soils with hazardous and toxic elements like 

arsenic (As), selenium (Se) and heavy metals such as lead (Pb), cadmium (Cd), copper (Cu) 

and zinc (Zn) that rapidly destroy affected ecosystems. The most commonly used method to 

treat AMD is chemical neutralization, a technique whereby basic materials like limestone or 

lime are mixed with AMD to raise its pH and remove most of the contaminants via 

precipitation. Although effective, this approach requires the continuous supply of chemicals, 

energy, and manpower, which makes it unsustainable because AMD generation has been 

documented to continue for a very long time (up to several centuries to millennia). One 

promising alternative to chemical neutralization is (micro) encapsulation, a technique that 

directly treats pyrite, the main mineral responsible for AMD formation, and renders it 

unreactive by encapsulating the mineral with protective coatings. In this study, we introduced 

two advanced pyrite passivation techniques to limit AMD formation called “carrier-

microencapsulation” (CME) and “galvanic microencapsulation” (GME). CME uses a redox-

reactive organic carrier to deliver the coating material on the surface of pyrite. Because the 

carrier only decomposes oxidatively, the primary strength of this technique is its high 

selectivity for pyrite even in complex systems like mine tailings and pyrite-rich waste rocks. 

Meanwhile, GME is based on galvanic interactions between pyrite and metals with lower rest 

potentials so this technique could be applied directly in a ball mill during ore processing or 

coal cleaning.  

1. Introduction 

Acid mine drainage (AMD), also called acid rock drainage (ARD), is one of the oldest and most 

serious environmental problems encountered in many countries around the world. AMD/ARD refers 

to the very acidic and heavy metal loaded leachate produced in abandoned/closed mine sites [1,2], 

mining tailings [3] and waste rocks from underground space development [4-7]. Old mining countries 
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like the US, Japan, Canada, China and Australia, for example, have more than 550 000, 5000, 10 000, 

5000 and 52 000 closed/abandoned mines, respectively, a lot of which has already been generating 

AMD/ARD [8]. If released to the environment without appropriate treatment, AMD/ARD rapidly 

pollutes river systems, soils and groundwater in affected areas, leading to the destruction of the 

surrounding ecosystem. Affected people are also not spared, developing many diseases of the cardio-

vascular organs (heavy metals), kidneys (cadmium and arsenic), nervous system (lead), bladder 

(arsenic), skin (arsenic) and bones (mercury) [9,10].  

Although AMD/ARD is one of the most extensively studied environmental problems in the last few 

decades, scientifically sound, economically viable and sustainable strategies for its mitigation remains 

elusive. To date, the most popular and common approach used in AMD/ARD management is chemical 

neutralization using limestone, lime or other basic substances [8]. It is effective, but only treats the 

“symptom” of the problem (AMD/ARD) and not the sources (e.g., pyrite and arsenopyrite). Thus, this 

approach requires the continuous treatment of acidic leachate and disposal of hazardous neutralization 

sludge until all sulfide minerals in the closed mine or tailings are oxidized. Unfortunately, the 

oxidation of pyrite, the most abundant sulfide mineral in nature and the main source of AMD/ARD, is 

a relatively slow process and could continue for several decades or even centuries. For example, a 

recent study of the authors estimated that AMD generation in the relatively small tailings dam of a 

closed gold-silver-copper-cobalt-zinc mine in Hokkaido, Japan may continue for at least 1000 years 

[11]. This means that managing AMD/ARD via chemical neutralization for such a long time is both 

costly and unsustainable.  

The less popular and rarely studied approach is to render the sources of AMD (i.e., 

pyrite/arsenopyrite) un-reactive via chemical and/or biological treatments. Batch-reactor type 

experiments using substances like ferric phosphate [2], phospho-silicates [12], phospholipids [13] and 

iron-8 hydroxy-quinoline [14] to coat pyrite have shown that this passive-type treatment termed 

loosely as “encapsulation” could effectively suppress pyrite oxidation. Unfortunately, these previous 

“encapsulation” techniques suffered from two critical flaws: (1) the chemicals/reagents used to coat 

pyrite were very expensive and impractical for large-scale applications, and (2) these chemicals do not 

specifically target pyrite in the wastes.  

To address these issues, the authors developed two techniques that took advantage of the unique 

way sulfide minerals like pyrite and arsenopyrite dissolve when in contact with oxygenated water. In 

contrast to oxide/silicate minerals that dissociate mainly via proton-promoted dissolution, pyrite and 

arsenopyrite dissolve via an electrochemical mechanism whereby distinct anodic and cathodic 

reactions occur on mineral surfaces via the movement of electrons through their crystal lattice 

[8,15,16]. The first technique is called “carrier-microencapsulation” (CME), an approach that utilizes 

redox-sensitive metal(loid)-organic complexes to deliver the coating material specifically on the 

surface of sulfide minerals (Figure 1).  

 

Figure 1. Schematic diagrams of “carrier-microencapsulation” and “galvanic microencapsulation”. 
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Meanwhile, the second technique is called “galvanic microencapsulation” (GME), which 

selectively targets sulphide minerals in a complex system via galvanic interactions. Galvanic 

interactions occur when two conductive or semi-conductive materials having different rest potentials 

come in close contact with each other. Because of this phenomenon, the material having a lower rest 

potential becomes the anode and is dissolved while the other material with higher rest potential 

becomes the cathode and is galvanically protected (Figure 1). In this study, these two novel concepts 

to passivate sulphide minerals and limit the formation of AMD/ARD are discussed.  

2. Carrier-microencapsulation 

The concept of CME was first introduced by Satur et al. [17] using titanium ion (Ti
4+

) as coating 

material and catechol (1,2-dihydroxybenzene, C6H4(OH)2) as the redox-sensitive carrier. These 

authors found that catechol could extract Ti
4+

 from anatase and rutile, and their leaching experiments 

showed that mixing anatase, catechol and pyrite suppressed the generation of acidity and release of 

dissolved sulfur (S). Unfortunately, these three components were mixed so it was difficult for these 

authors to identify whether the observed suppressive effects were due to catechol, TiO2 or Ti-

catecholate complex. The extractions of Ti
4+

 from anatase and rutile using catechol were also very low 

at only around 0.03 and 0.015%, respectively. Furthermore, Satur and coworkers [17] did not evaluate 

the formation and electrochemical properties of Ti-catecholate complex in their experiments. Park et 

al. [18] recently revisited the Ti-based CME technique, evaluated the redox properties of Ti-

catecholate complex, devised a method to synthesize the complex at higher concentrations, and 

applied CME to prevent the release of toxic arsenic (As) from arsenopyrite. These authors found that 

Ti-catecholate complex can be easily synthesized by mixing catechol and Ti
4+

 at pH < 2 and then 

rapidly neutralizing this mixture to pH 10. Using UV-Vis spectroscopy, these authors confirmed that 

the structure of their synthesized Ti-catecholate complex had the “tris-catecholate” configuration in 

which three catechol molecules are coordinated with Ti
4+

 (Figure 2a). Using this Ti-catecholate 

complex, they treated arsenopyrite and suppressed the release of As by over 70% (Figure 2b). These 

authors also noted that the coating formed on arsenopyrite was a mixture of Ti-O and Ti-C-O phases 

and proposed a more detailed mechanism of Ti-based CME that involves the following steps: (1) 

“intermediate” coating formation via the partial oxidation of Ti-catecholate complex adsorbed to 

arsenopyrite, (2) gradual chemical decomposition of “intermediate” coating and the release of “free” 

Ti
4+

, and (3) Ti
4+

 precipitation and coating formation.  

 

 

Figure 2. (a) Molecular structure of Ti-catecholate complex, and (b) suppression of arsenic 

(As) release from arsenopyrite by Ti-based CME [18]. 
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Jha et al. [19] expanded the work of Satur et al. [17] who used silicon (Si) rather than Ti because 

the former is more abundant in nature than the latter. These authors also reported that aside from 

suppressing pyrite oxidation, Si-catecholate complex-treated pyrite became more hydrophilic that 

aided in its more effective separation from coal during flotation. Yuniati et al. [20] also reported the 

suppression of pyrite oxidation by Si-catecholate complex synthesized using organic-rich waste liquor 

from the hydrothermal treatment of low-grade coal. These authors also evaluated the stability of 

coating formed on pyrite and found that the coating was effective even in the presence of 

acidithiobacillus ferrooxidans [20]. 

Although Ti- and Si-catecholate complexes effectively suppressed pyrite oxidation via CME, the 

use of these two complexes have drawbacks especially for large-scale applications: (1) Ti-catecholate 

complex was very stable and at least 14 days of treatment is needed for an effective coating to form, 

and (2) Si-catecholate complex is difficult to synthesize because this process requires very high 

concentrations of catechol. To address these issues, Park et al. [21] and Li et al. [22] proposed the use 

of aluminum ion (Al
3+

) and ferric ion (Fe
3+

) as coating materials, respectively. Park et al. [21] reported 

that 3 days of CME treatment using Al-catecholate complexes was enough to suppress the oxidation of 

pyrite and arsenopyrite. Depending on the pH, Al
3+

 forms three complexes with catechol – mono 

([Al(cat)]
+
), bis ([Al(cat)2]

–
) and tris ([Al(cat)3]

3–
) [23], and their decomposition occurred sequentially 

(Figure 3a).  

 

 

Figure 3. (a) Linear sweep voltammogram of Al-catecholate complexes at pH 5, 7 and 

10 [21], and (b) a schematic diagram of the sequential oxidative decomposition of Al-

catecholate complexes. 
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These authors found that among these three complexes, mono-catecholate was the most effective 

(Figure 4). They explained that the mono-catecholate complex of Al
3+

 was better because it only 

needed one oxidative decomposition step to release Al
3+

 while bis-catecholate and tris-catecholate 

complexes required two and three steps, respectively (Figure 3b). Using the mono-catecholate 

complex of Al
3+

, Park et al. [21] suppressed not only the oxidation of pyrite but also the release of As 

from arsenopyrite.  

 

 
Figure 4. (a) Concentrations of dissolved Fe and S after pyrite treatment for 3 days in Al-catecholate 

complexes [21], and (b) concentrations of dissolved Fe, As and S after arsenopyrite treatment for 3 

days in Al-catecholate complexes [21]. 

 

Li et al. [22] also reported that Fe
3+

-catecholate complexes decomposed sequentially similar to 

those of Al-catecholate complexes. Moreover, these authors found that Fe
3+

-catecholate complexes 

suppressed the oxidation of pyrite via two mechanisms (Figure 5): (1) electron donating effects of 

Fe
3+

-catecholate complexes, and (2) coating formation.  

 

 

Figure 5. Schematic diagrams of the suppression mechanisms of Al- and Fe-catecholate complexes. 
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3.  Galvanic microencapsulation 

Galvanic interaction is a well-known phenomenon in corrosion science and the mineral processing of 

sulfide ores. For example, Huang and Grano [24] showed that galvanic interactions between pyrite and 

mild steel media during ball milling strongly affected the surface properties of pyrite and its 

floatability. This phenomenon is also important in environmental science because a recent study of 

Chopard et al. [25] reported that the release of toxic elements and heavy metals from sulfide-rich 

wastes was dramatically enhanced due to galvanic effects.  

Using the concept of galvanic interactions, Seng et al. [26] proposed the use of zero-valent iron 

(ZVI) and zero-valent aluminum (ZVAl) to galvanically protect pyrite and coat it with Fe- or Al-

oxyhydroxide coatings. These authors found that among the two metals, ZVI was better in suppressing 

pyrite oxidation because the formation of a passivating oxide film on it was more sluggish than that of 

ZVAl. They also reported that although both metals limited the oxidation of pyrite, the effect was only 

temporary because coating formation on pyrite was negligible. This is because although galvanic 

interactions were stronger at pH < 5, Fe- and Al-oxyhydroxides also become less stable under these 

conditions. To improve their technique, Seng et al. [26] combined galvanic interaction and phosphate, 

which dramatically improved the suppression of pyrite oxidation because of iron phosphate coating 

formation on the mineral (Figure 6).  

 

 

Figure 6. (a) Concentration of dissolved S after pyrite treatment for 7 days in DI water (control), ZVI 

suspension, phosphate solution and ZVI + phosphate mixture, and (b) diffuse reflectance infrared 

Fourier transform (DRIFT) spectra of pyrite after 7 days in various solutions/suspensions. 

 

4.  Conclusions  

This study introduced two advanced passivation techniques to coat sulfide minerals like pyrite and 

arsenopyrite, suppress their dissolutions and limit the formation of AMD/ARD. “Carrier-

microencapsulation” (CME) uses redox-sensitive metal-organic complexes to deliver coating materials 

on the surface of pyrite and arsenopyrite and target them even in complex systems like tailings and 

waste rocks containing silicate and alumino-silicate minerals. Meanwhile, “galvanic 

microencapsulation” (GME) takes advantage of galvanic interactions between materials with different 

rest potentials to suppress the oxidation of sulfide minerals. Although galvanic interaction alone could 

only suppress pyrite oxidation temporarily, the addition of phosphate to enhanced coating formation 

dramatically improved the results. Because steel is commonly used as grinding media in mineral 

processing, it may be possible to use GME directly in ball mills.  
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