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Abstract. With the ever-growing interest in satellite remote sensing, direct observations of short wave
characteristics are needed along coastal margins. These zones are characterized by a diversity of physical
processes that can affect sea surface topography. Here we present connections made between ocean wave
spectral shape and wind forcing in coastal waters using polarimetric slope sensing and eddy covariance
methods; this is based on data collected in the vicinity of the mouth of the Columbia River (MCR) on
the Oregon–Washington border. These results provide insights into the behavior of short waves in coastal
environments under variable wind forcing; this characterization of wave spectra is an important step towards
improving the use of radar remote sensing to sample these dynamic coastal waters. High wavenumber
spectral peaks are found to appear for U > m/s but vanish for τ >. N/m, indicating a stark difference
between how wind speed and wind stress are related to the short-scale structure of the ocean surface. Near-
capillary regime spectral shape is found to be less steep than in past observations and to show no discernable
sensitivity to wind forcing.

1. Introduction
In the study of physical processes and management of resources in coastal and nearshore environments,
satellite radar remote sensing techniques are important and widely used tools. These techniques rely
on back-scattering of transmitted radar signals by short ocean waves. Scattering models [1] depend
upon the short ocean wave spectrum (i.e., decimeters and smaller — the range for which capillary
effects become significant) in the determination of the normalized radar cross section (NRCS), or σ

— a quantity of primary importance for the retrieval of meteorological and oceanographic parameters
from satellite images. The ability to accurately collect these parameters remotely is a powerful one
— sea surface waves are of crucial significance to all manner of interactions between the atmosphere
and ocean. Heat and gas fluxes are dramatically enhanced by the presence of ocean surface waves [2],
holding implications for areas of study ranging from extreme storms to climatic processes. The transfer
of momentum from the atmosphere into the ocean via wind forcing is inextricably connected to wind-
wave growth, upper ocean mixing, and mass transport.

The vertical transfer of horizontal momentum from the atmosphere to the ocean (i.e., wind stress)
is generally quantified using the eddy covariance method [3]. This relates the turbulent fluctuations in
the wind velocity field to a characteristic wind velocity at the surface. Over water, it has long been
established that these turbulent fluctuations are related to the small scale roughness features on the
surface. Any process that affects the small scale surface waves (O(.− .) m) will modulate the
atmospheric response to the surface [4].
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There are a number of pitfalls associated with observing these short waves (even the 0.1-m waves are
typically not sampled by buoys), especially outside of a controlled laboratory environment. Traditional
time series observations are unable to properly isolate the effects of advection and Doppler-shifting of
short waves by long waves [5]. For this reason, techniques that are able to retrieve synoptic, spatial
measurements of wave structure are preferred for the study of short ocean waves [6]. The polarimetric
slope sensing (PSS) technique is an optical method designed to accomplish such a task [7]; it has been
used successfully to acquire short-scale wave structure from aboard a moving vessel [8, 9]. This has the
advantage of adapting this relatively new field-ready technology to heterogeneous ocean surfaces where
both spatial and temporal variability are first order concerns.

Figure 1. Images taken from and of the R/V Point Sur, clockwise from top left: view of the Washington
coast from MCR; bow-mounted meteorological mast; starboard bow-mounted polarimetric and infrared
cameras; starboard bow-mounted ultrasonic distance meter (UDM).

For this study, short wave and flux measurements aboard a research vessel were used. Field
observations of wind stress and short scale wave slope were made in the vicinity of the Columbia
River mouth aboard the R/V Point Sur. These observations were performed as part of the Office of
Naval Research-sponsored Riverine and Estuarine Transport Experiment (RIVET) II. An over-arching
goal of this multi-faceted campaign was to provide in situ observations of coastal wave-current-wind
interaction that would improve efforts to use remote sensing platforms for sampling these dynamic
regions. The work presented here furthers this aim by providing short wave observations fundamental to
the acquisition methods of remote sensing sampling techniques.
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2. Methods
2.1. Field observations: Mouth of the Columbia River
Observations were made at the mouth of the Columbia River (MCR) along the Oregon–Washington
border from 25 May to 15 June 2013. The peak wave directions observed by NDBC buoy #46243 during
the experimental time frame show waves generally incident from the west-northwest, with typical peak
periods ranging from 7 to 12 s. Surface slope and wind stress measurements were made from the bow
of the 135 foot R/V Point Sur (figure 1). A sonic anemometer was fastened atop a meteorological mast
mounted (2.3 m from deck) on the bow providing three-dimensional wind velocities 8.1 m above the
mean water level (MWL). A polarimetric camera was mounted off the starboard bow (figure 1) and
oriented such that it was imaging an ≈1.56 m region forward of the ship’s wake zone. The vessel’s
angular and linear accelerations were logged at 20 Hz via a Systron-Donner six-axis motion package,
which was located adjacent to the sensor suite on the ship’s bow. This was used to motion-correct the
flux measurements and to properly rectify the polarimeter frames. The following sections describe the
methods used in retrieving the shipboard measurements of the wind stress and short wave slope spectra.

2.2. Wind stress: Eddy covariance
Given here is a condensed version of the estimation of wind stress via eddy covariance that is directly
relevant to this study. The total stress vector on the ocean surface is generally taken as the covariance of
the turbulent along- and across-wind velocities (u ′ and v ′) with the vertical wind component (w ′),

#»
τ wind =−ρair

[〈
u ′w ′

〉
x̂+
〈
v ′w ′

〉
ŷ
]

(1)

where ρair is the air density and a prime indicates a turbulent quantity in a Reynolds decomposition
(i.e.,

〈
u ′
〉

=
〈
v ′
〉

=
〈
w ′
〉

= 0). The brackets indicate that a time average of the contained quantity has
been computed over some appropriate interval. Simultaneous measurements of vessel motion enabled
the 10-Hz winds measured from the sonic anemometer to be corrected for the vessel accelerations and
translation [10]. Rejection criteria included averaging intervals with large vessel heading deviations
(≥40◦) and winds coming from outside of ±40◦off the bow. Critical to the eddy covariance technique
is the use of an appropriate averaging window, which can vary from study-to-study and platform-to-
platform. Generally, intervals between 15 and 30 minutes are used in deep water conditions, where
spatial homogeneity can be assumed over the sampling interval. A five-minute window was chosen for
this study [11] due to the combination of the spatial heterogeneity of the wave and wind stress field
observed at MCR and the area covered by the vessel (∼  m per interval). It is expected that the
short surface waves respond most directly to the smaller-scale eddies in the atmospheric boundary layer,
which are fully resolved over this time frame. The U reported in this work is the 10-m, neutral wind
speed calculated using the eddy covariance techniques, while the wind stress, τ, comes directly from the
along- and across-wind covariance components of the Reynolds stress (equation 1).

2.3. Short waves: Polarimetric slope sensing
Following the work of Zappa et al. [2008], one may obtain the two-dimensional slope field #»

σ(x,y) from
a triplet of simultaneously-acquired images representing light intensities at 0◦, 45◦, and 90◦polarization.
The imaged area of the water surface spans 1.25 m by 1.25 m, with a minimally-resolvable (Nyquist)
wavenumber of 1600 rad/m (corresponding to 3.9 mm). The primary simplifying assumptions for this
work are that the incident light be unpolarized and the subsurface, upwelling light may be neglected.
Multiple sky-looking acquisition runs showed that the light incident upon the surface was, in general, in
an unpolarized state for the cases considered here. For the work presented here (as well as in Zappa et al.
[2008]), upwelling light was taken to be negligible in general. The polarimeter frames were projectively
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transformed onto the ocean surface in order to maintain a uniform scale across the image under a time-
varying camera look angle [9].

S = I+ I
S = I− I (2)
S =  · I−S

I, I, and I are the light intensities at 0◦, 45◦, and 90◦, respectively. The Stokes parameters S and
S are directly converted into the polarization orientation, from which follows the angle of intersection
between the reflection and image planes. The tangent of this angle yields the slope in the cross-look
direction.

ϕ =




[
π+ tan−

(S
S

)]
, σy = tan(ϕ) (3)

In order to compute the slope in the along-look direction, the degree of linear polarization (DOLP) is
generated using all three Stokes parameters (equation 4).

DOLP =

√
S+S

S
=

r‖− r⊥
r‖+ r⊥

(4)

r‖ =
tan(θi −θt)

tan(θi +θt)
, r⊥ =

sin(θi −θt)

sin(θi +θt)
(5)

θi = nsin(θt), σx = tan(θi) (6)

The DOLP may alternatively be represented in terms of the Fresnel reflection coefficients (equation 4;
defined in equation 5), which themselves depend upon the angle of incidence and the index of refraction
n of water. Equation 6 describes the final step in producing a slope component from the observed angle
of incidence. For this analysis, n = . was chosen based on an average water temperature and salinity
of 14◦C and 10 ppt, respectively; analysis of the Point Sur flow-through temperature and salinity data
demonstrated that n should not have deviated more than 1% from this value for the duration of the
experiment [12]. The focus of this work will be on the spectral properties of the time-averaged two-
dimensional slope fields. Each scalar slope field ‖ #»

σ(x,y)‖ is subjected to a two-dimensional Fourier
transform, yielding the two-dimensional slope spectrum P(kx,ky). This may be integrated over direction
to produce the omnidirectional slope spectrum P(k). By multiplying P(k) by k, one extracts the non-
dimensional, omnidirectional saturation spectrum B(k). The high-wavenumber regimes of this spectrum
are emphasized; as such, it is often used to describe the short-wave behavior of the ocean surface.
Empirical and theoretical wave spectra make fundamental use of the short-wave peak and post-peak
behavior of B(k) in defining spectral shape [13, 14]. P(k) itself may be integrated with respect to
wavenumber k to compute mean square slope (

〈
S
〉

— literally, the mean of the squares of the slopes),
an important statistical quantity used to represent surface roughness.

In the section of results that follows (section 3), references will be made to “inside-inlet” and “outside-
inlet” data points. While it is difficult to set a hard line of demarcation between areas considered “inside”
and “outside”, the offshore edge of the south jetty at 124◦6’ W seemed to be the most reasonable
separation point. From figure 2, one can indeed see that this is very nearly the westernmost magenta
acquisition location. The separation of data between inside and outside-inlet groups provides a means of
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comparing two different physical regimes where major differences in short wave statistics are expected.
Sections 3 and 4 also refer to wavenumber regimes. These follow from and correspond to the relative
values of the gravity and surface tension terms in the linear dispersion relation. They are: short gravity
(37.1 rad/m < k < 112.7 rad/m), gravity-capillary (112.7 rad/m < k < 1173 rad/m), and pure capillary
(1173 rad/m < k < 1600 rad/m).

Figure 2. Map of MCR with data acquisition locations marked and a sample TerraSAR-X intensity
image overlaid. SAR image was collected on 2 June 2013. Magenta dots represent those runs taken as
inside the mouth; cyan dots represent those runs taken as outside the mouth. This color code will remain
consistent throughout the figures presented here. The yellow star represents NDBC buoy #46243.

3. Results
For all values of wind speed and wind stress magnitude, kp outside the inlet is smaller than kp inside the
inlet, with little observed wind sensitivity. The re-processed open-ocean results of [9] (figure 4) are also
given for consideration; however, the inside-inlet values appear to be closest to those results. For higher
wind speed values, a gravity-capillary regime peak (≈  rad/m) appears for both outside and inside-
inlet cases. These values are very close to those obtained from the stereoscopic observational spectra of
Yurovskaya et al. [6]. The separation between kp plotted against wind speed and kp plotted against wind
stress manifests itself in the existence of this high-wavenumber peak. This can be seen explicitly in the
four spectra presented in figure 3: the example cases all have similar wind speed magnitudes, but those
with low wind stress (3a, 3b) show a high-wavenumber peak. For the full body of the data set, figures
4a and 4b appear to mirror one another. As in figure 3, greater scatter in kp and higher-wavenumber
spectral peaks are associated with high wind speed and low wind stress. This disparity will be discussed
in greater detail in section 4.

The spectral shape of the near-capillary regime (the high-wavenumber portion of the gravity-capillary
regime) is shown in figure 5. The parameter n (i.e., B(k) ∼ kn) is plotted against wind speed U rather
than wind stress magnitude τ so that the results from past observations [6, 9] can be shown in their native
form in order to avoid invoking a wind stress parameterization. Whereas the spectra from [9] show good
agreement with those of [6], those observed for this work are generally steeper, falling off like k−. None
of the spectra shown have a discernable steepening or shallowing trend with wind speed, though there is
a regime between U = 7 m/s and U = 9 m/s for which the scatter in outside-inlet spectral fall-off is
greater, with some cases exhibiting k−. behavior.
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Figure 3. Four selected omnidirectional saturation spectra B(k). Magenta cases are inside-inlet. Cyan
cases are outside-inlet. Wind conditions: (a) U = 7.879 m/s, τ = 0.0117 N/m; (b) U = 7.952 m/s,
τ = 0.0688 N/m; (c) U = 8.548 m/s, τ = 0.139 N/m; (d) U = 8.476 m/s, τ = 0.102 N/m.

4. Discussion
Analysis of this Columbia River short wave and wind stress data set provides valuable observations of the
shape and scale of the gravity-capillary and near-capillary regimes of the ocean wavenumber spectrum.
The initial high value and tapering off of scatter in kp as wind stress magnitude increases (shown in
figure 4b) is an important part of this picture. In times of low wind forcing, feature interactions that
might induce wave breaking (wave-wave, wave-geography, etc.) are likely to be significant drivers of
variations in the position of the short wave spectral peak and the near-capillary regime shape. As wind
forcing magnitude increases, the aforementioned interactions become secondary and the position of kp
moves almost exclusively into the short gravity wave regime. It is important to note that within the
river inlet, waves grow over shorter fetches, ranging between 3 and 5 km in the regions sampled. The
data shown in figure 4b is a graphical indication that sea states with high-wavenumber spectral peaks
may exist in absence of significant wind stress magnitude and in sea states that have evolved over short
distances. The spectra shown in figure 3 illustrate the connection between wind stress magnitude and kp.
The fact that “high” (≈  rad/m) wavenumber peaks all but disappear for the upper half of the wind
stress magnitude range could be indicative of an increase in the lower-wavenumber (i.e., centimeter and
decimeter-scale) features on the ocean surface that are relevant for the atmospheric turbulence used to
estimate τ. A cursory look at 4a (i.e., kp as a function of U) would not lead to this result, underlining
the importance of computing wind stress during investigations of kp.

In the examination of the near-capillary regime spectral shape (as in figure 5), one sees that the
spectra observed here are steeper than those of prior observations [6, 9], though all share a similar,
general insensitivity to wind speed. There exists no consensus in the body of capillary wave spectral
data that suggests a clear expected behavior. Observational spectra [6, 9] that extend into the capillary
or near-capillary regime are sparse, while empirical/parameterized spectra [13, 15] vary greatly in that
domain, owing largely to the diverse range of observations and theoretical frameworks invoked in their
construction [1, 13, 15].
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Figure 4. Peak wavenumbers of the omnidirectional saturation spectra, plotted against wind speed
magnitude U (a) and wind stress magnitude τ (b). Magenta dots represent those runs taken as inside
the mouth; cyan dots represent those runs taken as outside the mouth. The blue dashed line marks the
wavenumber (370 rad/m) at which the gravity-capillary minimum phase speed (0.23 m/s) occurs. Green
diamonds represent the peaks of the stereoscopic observational spectra of Yurovskaya et al. [6] and
orange squares represent the peaks of the polarimetric observational spectra of Laxague et al. [9].

5. Conclusion
In summary, these results offer some insight to the subject of coastal air-sea interaction, and not only
in the areas previously mentioned (remote sensing, etc.). The disparate behavior of kp with respect to
U and τ underscores the importance of short ocean waves in turbulent momentum flux. Geographic
and spatial considerations likely figured heavily into these observations — the Columbia River mouth
is unique in its interaction between highly energetic ocean-like conditions and river-like conditions in
such close proximity and at such a grand scale. Background current and long wave effects have not
been explicitly considered here, though their impact should be considered in future analysis of the data
set. The estimates of near-capillary regime spectral shape do not form a significant result in their own
right; however, they represent an important addition to the body of observational ocean surface short
wave data. Future study in this vein would include the extension of surface roughness towards existing
Columbia River satellite radar remote sensing acquisition, particularly with regard to hydrodynamic wave
modulation. The use of these spectral shape measurements along with existing scattering models would
allow the authors to independently evaluate NRCS from polarimetric slope data. Finally, it is only natural
to dedicate more time and energy to better understanding the complex dynamics impacting short wave
directionality. A more rigorous study of the factors affecting it, including wind speed/stress direction,
long wave direction and current direction, follows directly from this work.
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Figure 5. Near-capillary regime spectral shape exponent n (for B(k) ∼ kn), plotted against wind speed
magnitude U for comparison with other observational spectra. Magenta dots represent those runs taken
as inside the mouth; cyan dots represent those runs taken as outside the mouth. Green diamonds represent
the shapes of the stereoscopic observational spectra of Yurovskaya et al. [6] and orange squares represent
the shapes of the polarimetric observational spectra of Laxague et al. [9].
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