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Abstract. The first attempt of modeling changes in additive component composition of 

biomass of Larix sp. communities on the Trans-Eurasian hydrothermal gradients based on 

regional peculiarities of age and morphology of the forests is attempted. The increase of all 

biomass components of the tree layer with increasing temperature at the constant precipitation 

and its decrease with increasing precipitation at the constant temperature is established. The 

positive relationship of the understory biomass with the temperature in the areas of insufficient 

moisture as the transition to moisture-rich areas is replaced by the opposite one. The 

development of such models for basic forest-forming species in Eurasia will give possibility to 

predict any changes in the biological productivity of forest cover of Eurasia in relation to 

climate change. 

1. Introduction 

Since 1850 to the present, the amount of greenhouse gases in the atmosphere has doubled, threatening 

the planet with catastrophic climate change [1]. Today, much attention has been paid to the study of 

the adaptive capacity of the planet’s biological species in the context of climate change One intriguing 

feature of forest trees from an evolutionary point of view is noted: they tend to have a high level of 

genetic diversity and, at the same time, have a low rate of evolution. The rapid rate of current climate 

change places serious constraints on the ability of trees to adapt to new conditions [2]. 

Modelling the response of vegetation to climate change due to an increase in atmospheric CO2 

concentration shows that the greatest changes in the composition and spatial distribution of vegetation 

will occur in the high latitudes of the Northern hemisphere [3]. According to predict by K Kobak and 

N Kondrasheva [3], devoted to change of natural zones areas in connection with evaporation and index 

of dryness by M Budyko [4], when the temperature will increase by 1.4°C to the year 2000, significant 

changes of borders of natural zones were supposed to occur, in particular, the area of the tundra must 

be covered by coniferous forests, which today is not observed.   

Available in the literature, the biomass equations of forest stands are developed mainly for local 

conditions, and separately for the total biomass and its components (stems, foliage, branches, roots). 

As a result, they are not additive, i.e. the sum of the predicted biomasses of the all components is not 

equal to the value of the predicted total biomass of the forest stand. Apart from the lack of logical 
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consistency of the equations, they are statistically correct not enough, since the estimation of the 

parameters was not taken into account the internal correlation between the biomass components [5]. 

Unlike many developed additive models of biomass at a tree level (see overview: [6]), only single 

modeling results are published at a forest stand level [7], mainly at a regional level and without taking 

into account the influence of climatic factors.  

In 2013, the prominent foreign ecologists formulated 100 main questions, which should be 

answered by the ecology of the XXI century. At the end of the list under number 97 is the question: 

“How atmospheric changes will affect the primary production of terrestrial ecosystems?” [8]. In the 

proposed article we try to partially answer this question, namely, we undertake, in essence, the first 

attempt to model changes in the additive component composition of biomass of forest phytocenoses on 

Trans-Eurasian gradients of mean temperatures and precipitation on the example of the genus Larix 

sp. In the development of additive systems of equations, preference is given to the principle “from 

general to particular”, in which the equation for the total biomass is “splitted” into additive equations 

for each of the constituent components by proportional weighing [9, 10].  

2. Methods and Materials 

From the database on the biomass of Eurasia’s forests [11] materials in the amount of 540 sample 

plots having definitions of biomass (t/ha) of phytocenoses of the genus Larix sp. are taken, within its 

areal  from the L. decidua Mill. in Central Europe, the L. leptolepsis Gord. in Japan, and L. Principis-

ruprechtii Mayr in China. One means biomass of phytocenosis, not forest stand, because we analyze 

not only the stand, but also the understory layer. Naturally, both are considered in connection with the 

taxation indices of stands, but not phytocenoses. 

Each sample plot on which phytocenosis biomass was determined is positioned relative to the 

isolines of the mean January temperature and relative to the isolines of the mean annual precipitation 

[12], and the matrix of initial data was compiled, in which the values of the biomass components and 

forest stand mass-forming indices are associated with the corresponding values of the mean January 

temperature and mean annual precipitation, and then included in the regression analysis procedure. A 

schematic map of the mean January temperature isolines rather than of the mean annual temperature is 

used, since warming is most pronounced in the cold half of the year [13].  

The common view of the adopted model for biomass (1): 

        2
ln ln , ln ,ln ,ln ,ln ln ,ln 50 ,ln , ln 50 ln ,

i
P f A A M N A N Tm PRm Tm PRm             (1) 

where Pi is the biomass of the i–th component, t/ha; A is the age of the stand, years; M is the stem 

volume, m
3
/ha; N is tree number, 1000/ha; i is the index of the biomass component: total phytocenosis, 

including the tree floor and understory (e), the understory, including undergrowth and living grass 

cover (u), total wood storey (t), aboveground wood storey (a), roots of a stand (r), tree crowns (c), 

stems above bark (s), foliage (f), branches (b), stem wood (w) and stem bark (bk); PRm is mean annual 

precipitation, mm; Tm is mean January temperature, °C. Since in the North of Eurasia the mean annual 

temperature in January has negative values, the corresponding independent variable is modified to the 

form (Tm+50). 

In contrast to the two-step disaggregation additive model for above-ground biomass [10] and to the 

three-step disaggregation additive model for above-ground and under-ground biomass [9], in our 

study, the total biomass of forest phytocenosis (tree stand and understory), estimated by the initial 

equation, is divided into components according to the four-step scheme of proportional weighing 

presented in Figure 1. 

3. Results and Discussion 

The recursive system of the initial regression equations (1) is calculated by their approximation 

according to the harvest data using the common regression analysis software. After correcting on 

logarithmic transformation by G. L. Baskerville [14] and subsequent anti-log procedure, 

characteristics of equations is given in Table 1 and Table 2. Despite the relatively low determination 
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coefficients for the understory, all listed in Table 2 regression coefficients are statistically significant 

at the probability level 0.95 and above, and the equations are adequate to harvest data. Low values of 

the determination coefficient for the understory in comparison with those for the wood story are quite 

natural. If variability of the wood story biomass is explained by the structure of its mass-forming 

indicts mainly, variability of the understory biomass is explained by it significantly less.  

 
Figure 1. The pattern of disaggregating four-step proportional weighting additive 

model. Designation: Pe, Pu, Pt, Pr, Pa, Pc, Ps, Pf, Pb, Pw and Pbk are phytocenosis 

biomass respectively: total of the phytocenosis, understorey, total wood storey, 

underground (roots), aboveground wood storey, tree crown (needles and branches), 

stems above bark (wood and bark), foliage, branches, stem wood and stem bark 

correspondingly, t/ha.  

 

The equations obtained are modified to additive form according to the above mentioned algorithm 

[9] in the sequence shown in the scheme (see Figure 1), and the final form of the transcontinental 

additive model of component composition of biomass of larch phytocenoses is shown in Table 3. 

When tabulating additive model (1), a problem arises, which consists in the fact that we can specify 

the indices of only the forest stand age, temperature and precipitation, but the values of the stem 

volume and tree density can be entered into the resulting table in the form of calculated values 

obtained by a system of auxiliary recursive equations. Such equations have the common form: 

 

 , 50 , ,N f A Tm PRm                                                   (2) 

 , , 50 , .M f A N Tm PRm                            (3) 

 

The results of calculation of equations (2) and (3) are given in Table 4. The results of tabulating the 

equations in the sequence (2), (3), and (1) present a rather cumbersome table. We took from it the 

values of the component composition of biomass of larch forests for the age of 100 years and built 

graphs of their dependence upon temperature and precipitation (Figure 2). 

Looking at the Table 3, all the components of biomass changes are of roughly the same common 

pattern, but in different proportions. Regularity unified to all the biomass components of wood story is 

following: increase with raising temperature in the range from -40 °C to 0 °C at the invariable 

precipitation and decrease with raising precipitation in the range from 200 to 900 mm at the constant 

temperature. The biomass of the understory changes differently: at PRm = 200 mm it increases with 

temperature growth in the range from -40 °C to 0 °C with constant precipitation, and at precipitation at 

the level of 900 mm under the same conditions it decreases. In other words, the positive relationship of 

the understory biomass to temperature in dry areas (РRm = 200 mm) as the transition to wet areas 

(РRm = 900 mm) is replaced by the opposite one. 
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Table 1. Characteristics of initial equations (1).  

Biomass 

components 
Regression coefficients of the model 

Pе 6.19Е+09 А 
0.1398 

М 
0.5831 

N 
0.0922 

A 
-0.0261lnN 

   Step 1   

Pu 4.89E-23 А 
0.3856 

М 
-0.4582 

N 
-1.0170 

A 
0.2240lnN 

Pt 67.9543 А 
0.0497 

М 
0.8133 

N 
0.2032 

A 
-0.0440lnN 

   Step 2   

Pa 0.0699 А 
-0.0118 

М 
0.8988 

N 
0.1317 

A 
-0.0309lnN 

Pr 15.3558 А 
0.2665 

М 
0.5891 

N 
0.1596 

A 
-0.0014lnN 

   Step 3   

Pc 0.00381 А 
-0.0226 

М 
0.6196 

N 
0.5232 

A 
-0.1014lnN 

Ps 0.0309 А 
-0.0120 

М 
0.9941 

N 
0.0049 

A 
-0.0085lnN 

   Step 4а   

Pf 1.35E-05 А 
-0.1671 

М 
0.5821 

N 
0.5450 

A 
-0.0777lnN 

Pb 0.0102 А 
0.0166 

М 
0.6353 

N 
0.4595 

A 
-0.0956lnN 

   Step 4b   

Pw 3.9306 А 
-0.0313 

М 
1.0235 

N 
-0.2805 

A 
0.0512lnN 

Pbk 4.61E-05 А 
-0.0431 

М 
0.9011 

N 
-0.0118 

A 
0.0011lnN 

Table 2. Characteristics of initial equations (continued)(1).  

Biomass 

components 
Regression coefficients of the model adjR

2 a
 SE

b
 

Pе (T+50) 
-5.8510 

PRm 
-3.6313 

(T+50) 
1.0066lnPRm

 0.801 1.37 
   Step 1   

Pu (T+50) 
16.1936 

PRm 
8.6572 

(T+50) 
-2.6011lnPRm

 0.232 3.05 

Pt (T+50) 
-0.7769 

PRm 
-0.5969 

(T+50) 
0.1223lnPRm

 0.917 1.27 
   Step 2   

Pa (T+50) 
0.8427 

PRm 
0.4542 

(T+50) 
-0.1408lnPRm

 0.970 1.20 

Pr (T+50) 
-0.8437 

PRm 
-0.5449 

(T+50) 
0.1294lnPRm

 0.673 1.59 
   Step 3   

Pc (T+50) 
1.5820 

PRm 
0.6331 

(T+50) 
-0.1966lnPRm

 0.784 1.52 

Ps (T+50) 
0.8486 

PRm 
0.5527 

(T+50) 
-0.1629lnPRm

 0.982 1.17 
   Step 4а   

Pf (T+50) 
3.1743 

PRm 
1.5334 

(T+50) 
-0.4829lnPRm

 0.711 1.64 

Pb (T+50) 
1.1342 

PRm 
0.3531 

(T+50) 
-0.1124lnPRm

 0.772 1.56 
   Step 4b   

Pw (T+50) 
-1.0175 

PRm 
-0.3157 

(T+50) 
0.1562lnPRm

 0.963 1.20 

Pbk (T+50) 
2.5172 

PRm 
1.5536 

(T+50) 
-0.4782lnPRm

 0.887 1.32 
a
 adjR2 – determination coefficient adjusted for the number of variables;  

b
 SE – standard error of the equation in the original dimension Pi (t/hа). 
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Table 3. Four-step additive model of biomass component composition of larch forest stands designed 

according to scheme of proportional weighting 

 Pe= 6.19Е+09 А 
0.1398

М 
0.5831

N 
0.0922

A
-0.02611lnN

(T+50) 
-5.8510

PRm
-3.6313

(T+50)
1.0066lnPRm

 

Step 1 
Pu =Pe [1+4.89E-23 А

0.3856
М

-0.4582
N

-1.0170
A

0.2240lnN
(T+50) 

16.1936
PRm

8.6572
(T+50)

-2.6011lnPRm
]

-1
 

Pt = Pe [1 + 67.954 А
0.0497

М 
0.8133

N 
0.2032

A
-0.0440lnN

(T+50) 
-0.7769

PRm
-0.5969

(T+50)
0.1223lnPRm

]
-1

 

Step 2 
Pa= Pt [1 + 0.0699 А

-0.0118
М 

0.8988
N

0.1317
A

-0.0309lnN
(T+50) 

0.8427
PRm

0.4542
(T+50)

-0.1408lnPRm
]

-1
 

Pr= Pt [1 + 15.356 А
0.2665

М 
0.5891

N
0.1596

A
-0.0014lnN

(T+50) 
-0.8437

PRm
-0.5449

(T+50)
0.1294lnPRm

]
-1

 

Step 3 
Pc = Pa [1 + 0.00381 А

-0.0226
М 

0.6196
N

0.5232
A

-0.1014lnN
(T+50) 

1.5820
PRm

0.6331
(T+50)

-0.1966lnPRm
]

-1
 

Ps = Pa [1 + 0.0309 А
-0.0120

М 
0.9941

N
0.0049

A
-0.0085lnN

(T+50) 
0.8486

PRm
0.5527

(T+50)
-0.1629lnPRm

]
-1

 

Step 4a 
Pf = Pc [1 + 1.35E-05 А

-0.1671
М 

0.5821
N

0.5450
A

-0.0777lnN
(T+50) 

3.1743
PRm

1.5334
(T+50)

-0.4829lnPRm
]

-1
 

Pb= Pc [1 + 0.0102 А
0.0166

М 
0.6353

N
0.4595

A
-0.0956lnN

(T+50) 
1.1342

PRm
0.3531

(T+50)
-0.1124lnPRm

]
-1

 

Step 4b 
Pw= Ps [1 + 3.931 А

-0.0313
М 

1.0235
N

-0.2805
A

0.0512lnN
(T+50) 

-1.0175
PRm

-0.3157
(T+50)

0.1562lnPRm
]

-1
 

Pbk= Ps[1 + 4.61E-05 А
-0.0431

М 
0.9011

N
-0.0118

A
0.0011lnN

(T+50) 
2.5172

PRm
1.5536

(T+50)
-0.4782lnPRm

]
-1

 

Table 4. Characteristics of the recursive system of auxiliary equations for mass-forming indices. 

Mass-

forming 

indices 

Regression coefficients of the model adjR
2
 SE 

N 26.3664 А 
-1.0906 

-
 - 

0.501 2.21 

M 9.10Е-07 А 
0.9987

 N 
-0.5372 

A 
0.2240lnN 

0.489 2.34 

N (T+50) 
1.3772 

PRm 
0.6615 

(T+50) 
-0.3313lnPRm

 

M (T+50) 
5.2930 

PRm 
1.1312 

(T+50) 
-0.4694lnPRm
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Figure 2. Dependence of larch phytocenoses biomass of Eurasia upon the mean January temperature 

(Tm) and mean annual precipitation (PRm). Designations: Pt, Pu, Pr, Ps, Pf, Pb are respectively biomass 

of: total wood storey, understorey, underground storey (roots), stems (wood and bark), foliage, 

branches, t/ha.  
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The obtained regularity on the tree layer is consistent with the results obtained in boreal forests of 

Canada, only partially, because in Canada’s conditions the relative radial increment, depersonalized by 

the species composition, increases with the growth of both mean annual temperature and annual 

precipitation [15]. The obtained regularities are also partially consistent with the results revealed for 

the biomass of spruce (genus of Picea sp.) in the hydrothermal gradients of Eurasia [16]: the positive 

trends of the biomass with an increase in the mean temperature are characteristic of both larch and 

spruce, but, in contrast to the larch, the decrease in the biomass of spruce forests with rising 

precipitation, observed in warm climatic zones, as we approach the circumpolar regions, this trend is 

leveled and at Tm = -40 °C does not depend on the level of precipitation. 

A different, specific pattern was observed earlier at the local level in the marsh forests of the 

Siberia, where at the maximum amounts of temperature sums above 10 °C (2200 °C) there is an 

increase in the radial growth of stems by 30-50% with an increase in precipitation from 400 to 600 

mm, and at the minimum amounts of temperature sums (1600 °C) the radial growth is reduced by 4-9 

% with an increase in precipitation in the same range. Correspondingly, at the level of precipitation of 

400 mm the radial growth is reduced by 14-20 % with an increase in the sum of temperatures from 

1600 to 2200 °C, and it increases by 14-33 % in the same temperature range at the level of 

precipitation of 600 mm [17]. According to the results obtained by A A Molchanov [18], the 

temperature of the air has the greatest influence on the growth of the annual ring in the North of 

Eurasia, and precipitation plays the dominant role in the conditions of the southern forest-steppe.  

Thus, for different tree species in different climatic and edaphic conditions, changes in production 

indices in hydrothermal gradiеnts can be very different, up to opposite trends. This means that the 

development of transcontinental models of biomass, sensitive to climate change, should not be carried 

out at the level depersonalized by species composition and morphological structure of stands, as it was 

previously practiced [19], but it is necessary to create such models for each tree species separately and 

to find out the biological and ecological reasons for the differences in the results.  

In our examples with biomass models of the transcontinental level, the change of biomass in the 

named gradient is analyzed under the assumption that the temperature and precipitation change with 

the same rate regardless of the regional features of the observed shifts in both temperature and 

precipitation. In fact, the effect of global warming in different parts of the world is uneven [20]. 

Therefore, when knowing the area of territories with different rates of warming, we can use the 

proposed models to calculate the biomass changes that will be not averaged, but weighted by the size 

of these areas. 

4. Conclusion  

Thus, the first attempt of modeling changes in additive component composition of biomass of larch 

communities on the Trans-Eurasian hydrothermal gradients based on regional peculiarities of age and 

morphology of the forests is fulfilled. It is showed the common for all the components of wood story 

regularity: increase with raising temperature at invariable precipitation and decrease with raising 

precipitation at the constant temperature. The biomass of the understory changes differently: the 

positive relationship of the understory biomass to temperature in dry areas is replaced by the opposite 

one as the transition to wet areas. 

It should be noted that these patterns have a hypothetical character: they reflect long-term adaptive 

responses of stands to regional climatic features and do not take into account the rapid rates of current 

environmental changes, which impose serious restrictions on the ability of forests to adapt to new 

climatic conditions. So the question: "What determines the rate at which species distributions respond 

to climate change?", that one can read at the number 83 in the list of 100 main questions to which the 

ecology of the XXI century should give answers [8], remains open. 
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