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Abstract. In this study, three different electrode materials (graphite, stainless steel, and 
titanium rods) were used to explore the electro kinetic (EK) remediation of soil 
contaminated with uranium (U). All EK experiments were carried out in a soil cell 
reactor with a moisture content of 25.1% and a total uranium mixture of 90.6 mg/kg at 
a constant voltage gradient (1V/cm) for 5 days. The experimental results show that the 
EK repair process with graphite rod as the electrode material has the highest current 
peak, and the overall current level is higher than the other two electrode materials. 
Compared with stainless steel and titanium rods, the removal efficiency of using 
graphite as the electrode material U in contaminated soil reached 34.11%. However, the 
removal rates using stainless steel and titanium rods were lower, 15.79% and 18.77%, 
respectively. In the EK experiment, the main removal is from the exchangeable part of 
U to the carbon-bound U composition, while the remaining forms of uranium are 
difficult to remove under this condition, so in order to be more efficient, the uranium in 
the soil is removed with maximum reduction. It is necessary to use it in conjunction 
with other enhancement technologies. 

1.  Introduction 
With the rapid development of the nuclear industry, the demand for uranium is also increasing year by 
year. It is understood that since the 1950s, China has identified more than 200 uranium deposits of 
different sizes, of which nearly 85% are distributed in Hunan, Fujian and Guangdong [1]. The mining 
and smelting of uranium mines is the main cause of uranium-contaminated soil. In the mining and 
smelting of uranium mines, a large amount of waste liquid and tail uranium mines are generated. These 
wastes cannot be effectively treated at this stage, generally taken near the mining area. Stacking or 
discharging, these tail uranium mines will release a large amount of radioactive elements U under the 
action of rain, differentiation, etc., which will cause pollution of water bodies and soils [2, 3], both at 
home and abroad for uranium-contaminated soil events. Related reports [4, 5]. Uranium is a highly toxic 
radioactive metal element, mainly inhaling uranium-containing aerosols, ingesting uranium-containing 
water or entering the human body through the food chain [6, 7], which not only affects the yield and 
quality of soil crops, but also there are potential long-term risks to human health that endanger human 
survival and are therefore necessary for the restoration of uranium-contaminated soil. 

Electro kinetic remediation technology is a contaminated soil remediation technology developed in 
the 1980s. Because it has the characteristics of high repair efficiency and a certain degree to avoid re-
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contamination, power saving and in-situ repair, it is called “green remediation technology” [8]. By 
applying direct current, chemical reactions such as electro migration, electroosmosis and electrophoresis 
of pollutants in the soil cause the pollutants to completely migrate out of the soil and achieve the purpose 
of remediation [9]. At present, most of the electro kinetic remediation technology is applied to removal 
of heavy metal contaminated soil such as cadmium, copper, lead, zinc, etc. There is only a small amount 
involved in the repair of radioactive element uranium contaminated soil [10-12]. Research at home and 
abroad has focused on how to control pH to improve the removal efficiency of electrosurgical repair. 
However, there are few studies on the migration and morphological changes of heavy metals for various 
factors in the electric process. The bioavailability and migration of heavy metals in soil depend on the 
form of heavy metals in the soil. Therefore, it is important to study the changes of heavy metal forms in 
the electro kinetic process. In the remediation process, the electrode material is a key factor affecting 
the efficiency of. The existing research shows that the electrode material can significantly affect the 
removal efficiency of the pollutant during electro kinetic remediation process. Suzuki [13] et al. studied 
the removal efficiency of lead in three different anode materials (graphite, Pt/Ti, IrO2/Ti), and the 
removal efficiency was Pt/Ti, IrO2/Ti and graphite from high to low. Yuan [14] et al. compared the 
removal efficiency of graphite, Pt/Ti and PET-CNT as cathode materials for electrically repairing heavy 
metal contaminated soil, and found that the new cathode material PET-CNT has the best repair 
efficiency. Therefore, selecting the appropriate electrode material in the electric repair is of great 
significance to the removal efficiency. However, at present, there are relatively few researches on the 
electric parameters of electric uranium-contaminated soil. Most of them focus on the remediation of 
heavy metals and organic matter. Therefore, the optimization of the electric parameters for radioactive 
uranium-contaminated soil is more practical for practical applications. Great promotion. 

In this paper, the uranium-contaminated soil with uranium content of 100mg/kg was used as the 
research object. The EK treatment was carried out with different electrode materials. The transformation 
of U-form distribution in soil under different electrode materials and the migration of U in different soil 
sections in soil were investigated. Regularity, at the same time, the current density, soil pH and 
conductivity of the remediation process were also analysed, which provided some theoretical support 
for the restoration of the actual site of uranium tailings soil pollution. 

2.  Experiment 

2.1.  Materials 
The experimental soil is 20cm deep from a uranium mine in Hengyang, Hunan Province. After being 
retrieved, it is chopped and air-dried, and then the stones, branches and other debris are removed. It is 
then ground through a 10 mesh screen for storage. The basic physical and chemical properties of soil 
samples are determined according to the Manual of Soil Monitoring and Analysis. The standard solution 
of uranium is prepared. According to the uranium content of the tested soil, 100mg/kg is added to a 
certain amount of standard solution for preparation. After stirring evenly, it is incubated for about 30 
days at room temperature, dried and ground through a 10-mesh sieve, and stored for later use. The basic 
physical and chemical properties of the original soil and the water supply soil are shown in Table 1. 

 
Table 1. The basic physical and chemical properties of soil 

Measurement index Moisture content/% pH Conductivity/(ds·m-1) Organic mass/% U(mg/kg)
Numerical value 25.1 4.51 2.83 3.5 90.6 

2.2.  Electro kinetic remediation installation 
According to the needs of Electro kinetic remediation, the experimental device is a self-made reactor 
(Fig.1), wherein the soil chamber size is 15cm×5cm×6cm, and the electrolysis chamber size is 
5cm×5cm×6cm,. Two peristaltic pumps (HL-2, Shanghai) were used to circulate electrolyte between 
the electrode compartment and the electrolyte reservoir; the DC power supply was applied to the EK 
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system with a specific constant voltage gradient (2.0V/cm). It adopts DC power supply (Hangzhou 
Apple Instrument Co., Ltd., China), the current range is 0A to 3A, and the voltage range is 0V to 30V. 
Electrode materials (20 mm in diameter, graphite, stainless steel, and titanium rods) were placed in the 
anode chamber (left) and the cathode chamber (right), respectively. Separated by a glass partition 
between the soil chamber and the electrolysis chamber, the separator is uniformly provided with a 
circular hole having a diameter of 1 cm, and a filter cloth having a pore diameter of 0.58 μm is placed 
to prevent the soil from entering the electrolysis chamber. 
 

 

Figure 1. A schematic view of the electro kinetic laboratory setup: (1) The cell for soil sample, length: 
15cm, width: 5 cm, height: 6 cm. (2) Perforated polymathic methacrylate and a filter paper. (3) 

Electrode. (4) Electrode chamber. (5) Peristaltic pump. (6) Electrolyte reservoirs. (7) Logger. (8) DC 
power supply. 

2.3.  Experimental processes 
Three types of electrode materials: graphite, steel iron, and Titanium were used for the cathode. Graphite 
was used for the anode. Sodium nitrate solution (0.01 mol/L) was used as anolyte and catholyte 
throughout the experimental. Each electrolyte reservoir was filled with 600 mL of catholyte or anolyte. 
The electrolytes were circulated from electrolyte reservoir into the corresponding electrode chamber 
using peristaltic pump at the rate of 5.6 mL/min and the electrolyte level in the electrode chamber was 
maintained equally. A 1.0 V/cm of potential gradient was applied for 120 h. EOF was calculated 
according to the volume changes of the two chambers. When EK experiment was terminated, the soil 
sample was sectioned into five equal parts and labeled as S1 to S5 from anode to cathode. 

2.4.  Analysis of Soil 
Soil pH and EC were measured using a pH meter (S220 seven compact, Mettler – Toledo International 
Inc., Switzerland) and an EC meter (DDSJ-308A, Shanghai INESA Scientific Instrument Co., Ltd., 
China), respectively, by preparing slurries with soil to water ratio of 1:2.5 [15]. Stepwise chemical 
extraction process of uranium in soil:(F1)Exchangeable state (including water soluble state):Add 20 mL 
of 1 mol/L MgCl2 solution (pH=7), shake at room temperature for 2h, transfer to a 50 mL centrifuge 
tube and centrifuge at 8000 r/min for 10 min, and remove the supernatant in a 100 mL volumetric flask. 
Wash the conical flask twice with 30 mL of distilled water, carefully pour the washing solution into the 
original 50 mL centrifuge tube, centrifuge at 8000 r/min for 10 min, remove the supernatant in the same 
volumetric flask, add 1 mL of concentrated HNO3, and set with distilled water. Allow to scale and shake 
for testing. (F2)Carbonate bound state: Take the residue of I, add 20mL 1mol/L NaAc solution (NaOH, 
HAc adjusted pH = 5.0), shake at room temperature for 7h, the following operation is the same as step 
I, dilute the supernatant with distilled water, shake and test. (F3) Organic matter binding state: Take the 
residue of II, add 20ml H2O2, react at room temperature for 1h, then keep in the water bath of 85°C for 
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1h, evaporate to dry; add 20ml hydrogen peroxide, continue to heat in water bath at 85°C for 1h, 
evaporate to dry; add 50mL 1 mol/L ammonium acetate solution (pH=2 adjusted for HNO3) was shaken 
at room temperature for 2 h. The following supernatant was extracted in the same manner as in step I, 
and the supernatant was made to volume with distilled water, and shaken to be tested. (F4) Iron-
manganese oxide binding state (include Amorphous iron manganese oxide-hydroxide bound state and 
Crystalline iron-manganese oxide-hydroxide bound state): The residue of III was taken, and 20 mL of 
Tamm's solution (10.9 g/L oxalic acid+16.1 g/L ammonium oxalate, pH=3.0) was added, and the 
mixture was shaken at room temperature for 5 hours. The following supernatant was extracted in the 
same manner as in step I, and the supernatant was made to volume with distilled water, and shaken to 
be tested; The residue of IV was taken, and 40 mL of sodium dithionite-sodium citrate-sodium 
bicarbonate (CDB) solution (pH = 7.0) was added thereto, and the mixture was shaken at room 
temperature for 5 hours. The following supernatant is extracted synchronously, and the supernatant is 
made to volume with distilled water and shaken to be tested. (F5) Residual state: Take the residue of V, 
add 15mL of aqua regia and 8mL of hydrofluoric acid, and then digest it with microwave. After 
completely dissolving, dilute to 100mL with ultrapure water and shake for testing. 

3.  Results and discussion 

3.1.  Changes of electric current and EOF during the EK treatment 
Fig.2a shows the change of electric current during the whole EK process using three different cathode 
materials. As seen in Fig.2a, Under three different electrode materials, the electric current will peak first 
in a short time, then gradually decline, and finally stabilize. There was no significant difference in the 
decreasing trend of electric current by using different electrode materials. The electric current in 
Graphite, Steel iron and Ti treatment strongly increased to 120.7mA, 90.8mA and 76.5mA respectively 
within approximately 12 h, then gradually decreased at the following 18 h, and finally reached the 
equilibrium after 90 h. The increase in current at the beginning may be related to the electrolysis of 
water and electrolyte. The generation of H+ and OH- increases the amount of mobile ions in the system, 
and the entry of H+ into the soil promotes the desorption of uranium in the soil. It can be seen from 
Fig.2a that regardless of the electrode, the current gradually decreases with time, mainly because the 
electrode is polarized during the test. The polarization phenomenon of the electrode includes both 
activation polarization and concentration polarization [8]. Activated polarization means that the 
hydrolysis reaction occurs in both the cathode and the anode during the test, and oxygen and hydrogen 
are generated. The generated bubbles will cover the surface of the electrode, making the conductivity of 
the electrode worse, and the electrochemical reaction becomes dull, thereby causing the potential of the 
electrode. Deviation from the equilibrium potential, eventually leading to a smaller current. 

Cumulative EOF for different EK treatments is shown in Fig.2b.The EOF increased with increasing 
the operation time and the direction of the EOF were from the anode to the cathode in all the EK 
treatments. During the whole period of the experiment, the EOF in the Graphite treatment was always 
higher than that in the steel iron and Ti treatments. This result was proved by the previous studies, which 
reported that EOF was clearly dependent on the electric current [16]. 
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Figure 2. Changes of a) electric current and b) cumulative EOF with EK the prolongation of the 
treatment time. 

3.2.  Soil pH and EC after EK treatment 
Soil pH significantly affected the existing form of uranium in the soil. In the low pH environment can 
enhance the solubilization of uranium in soil [10] and improve the removal of uranium in soil. Fig.3 (a) 
shows the pH of soil after 120h of different EK treatment. The initial pH of soil was 4.51, During the 
EK process, electrolysis reactions occurred at electrodes led to produce hydrogen ions at the anode, 
causing that the pH of anode fluid rapidly decreased. Meanwhile hydroxide ion were produced at the 
cathode, causing that the pH of cathode fluid rapidly increased. The acidic anode fluid was transported 
into the soil by electro migration and EOF resulting in a low pH of soil near the anode [15]. Hydroxide 
ions were transported into the soil by electro migration which was also participated in changing soil pH 
[13]. Compared to the initial pH value, the soil pH from S1 to S4 underwent an acidification process, 
however, the soil pH in S5 showed no significant change in graphite and steel iron, This is because that 
the hydroxide ions generated at cathode are neutralized by the hydrogen ions from anode. As the electro 
migration of hydrogen ion is 1.8 times faster than that of hydroxide ion [13]. But the soil pH in S5 
increased to 5.13 in Ti. When graphite is used for the cathode, the acidification process is more 
pronounced. The pH curve of S1 to S4 in the graphite treatment is lower than that of the stainless steel 
and Ti treatment. Graphite as a cathode produces high current and EOF (Fig.2) and spontaneously 
accelerates the electrolysis of water [16]. Therefore, more hydrogen ions and hydroxide ions are 
generated at the anode and the cathode, respectively, resulting in a relatively lower pH of the soil near 
the anode in the graphite treatment than other treatments. 

Soil EC significantly affected the EK remediation. In general, the low soil EC meant that the overall 
movement of ions by electro migration was low, the EK remediation process would take a great deal of 
time [17]. The EC value of the soil profile in different treatments after the EK experiment is shown in 
Figure3b. For stainless steel and processing, the EC value gradually decreases from anode to cathode. 
There was no significant difference from S2 to S4 in the graphite treatment and from S2 to S3 in the 
stainless steel treatment. And similar trends have been observed in previous studies [18]. When Ti is 
used for the cathode, the highest EC value is observed in the intermediate portion (S3) and decreases 
toward both sides. 
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Figure 3. Soil a) pH and b) EC in different soil sections after EK treatments. 

3.3.  Heavy metals removal and Fractionation changes after EK treatment 
Previous studies demonstrate that heavy metals are mostly removed through electromigration and 
electroosmosis during the EK treatment [13]. Fig.4 shows the residual concentrations of uranium in the 
soil sections after EK treatments. After all the different EK treatments, the highest uranium 
concentration in the S4 region contains,70.9mg/kg,100.9mg/kg and 110.7mg/kg in EK1, EK2 and EK3 
respectively. Compared with stainless steel and titanium rods, the removal efficiency of using graphite 
as the electrode material U in contaminated soil reached 34.11%. However, the removal rates using 
stainless steel and titanium rods were lower, 15.79% and 18.77%, respectively and in the EK 
experiments, UO2

2+in the soil migrated towards the cathode. The total distribution of total U(Ⅵ) in EK1, 
EK2, and EK3 were different because the different EK treatment have different the value of EOF, In the 
EK process with graphite as the electrode, the residual amount of uranium is the smallest due to its 
maximum electroosmotic flow [16] (Fig.2(b)). 

As shown in Fig.4, a five-step sequential extraction was conducted to analyse residue Cr speciation 
in soil samples. In EK3 (Fig.4 (d)), the ‘‘EXCH” U fraction was mainly removed with a maximum 
removal rate up to 75.81% in S5. There is also an obvious removal for the ‘‘CAR” fraction in EK3 with 
a maximum removal rate up to 56.32% in S5.but Other fractions, such as FeMnOX, OMB, and RES, 
were hardly removed. The same results were obtained in EK1 (Fig.4 (b)) and EK2 (Fig.4(c)). Relatively 
speaking, the ‘‘EXCH” and the ‘‘EXCH” are easier to remove from the soil. This is because the 
hydrogen ions generated by the electrolyzed water can desorb it from the soil surface, but it is difficult 
to desorb from the soil surface into the soil pores such as FeMnOX, OMB, and RES [8]. 
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Figure 4. a) Residual concentrations of heavy metals and b) Fractionation changes in different soil 
sections after EK treatments. 

4.  Conclusion 
This study explored the EK remediation of uranium (U)-contaminated soil using three different 
Electrode Materials. Compared to stainless steel and titanium electrodes, the degree of water electrolysis 
is more severe than that of the other two electrode materials due to the more active proton transport on 
the graphite electrode surface, which results in higher current values and electroosmotic flow, and the 
degree of change in soil pH is uniform and it has a certain correlation. Compared with stainless steel 
and titanium rods, the removal efficiency of using graphite as the electrode material U in contaminated 
soil reached 34.11%. However, the removal rates using stainless steel and titanium rods were lower, 
15.79% and 18.77%, respectively. In EK repair, F1 and F2 removal can only be effectively achieved. 
The removal rate of the other three forms is extremely low. Therefore, different electrode materials 
cannot effectively remove uranium in other forms, so the development of other electric enhancement 
technologies is the focus of the work. 
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