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Abstract. Synthesis and characterization of graphene oxide nanocomposite from coconut 

shell GO-Fe3O4 has been done. Graphene oxide can be prepared using Hummer's method 

and Subsequently , the synthesis of GO-Fe3O4 nanocomposite was carried out by ultrasound 

assisted co-precipitation of iron (II) and (III) chlorides in the presence of GO. The formation of 

GO and graphene-Fe3O4 nanocomposite was confirmed by x-ray diffraction (XRD), Fourier 

transform-infrared (FTIR), SEM and Raman spectroscopy. The characteristics of GO-Fe3O4 as a 

result of synthesis from coconut shell analyzed using XRD showed that GO characteristics peak 

in accordance with the characteristics of GO-Fe3O4 in (JCPDS No. 88-0315). Analysis using FTIR 

was seen in 3421 cm-1 (O-H stretching), 1631 cm-1 (C = C aromatic), and 565 cm-1 (Fe-O). 

Analysis using SEM seen in the presence of Fe, O and C in the EDX analysis confirmed the 

formation of GO-Fe3O4 nanocomposite. Analysis using Raman spectroscopy showed that peaks 

of Fe3O4 were at wavelengths of 396 cm-1 because sp3 carbon was bound to Fe3O4 so that the peak 

band D was not present in GO-Fe3O4 spectroscopy. 
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1. Introduction 

Biomass is a ubiquitous and abundant renewable resource on Earth [1]. Charcoal from biomass is 

popular adsorbent for air and water purification [2]. Activated carbon (AC), which is sometimes called 

activated charcoal or active carbon, is used mostly for adsorption in industry and is commonly used 

owing to its large adsorption capacity, fast adsorption kinetics and relative ease of regeneration [3,4]. 

AC can be produced from a range of raw carbon resources, such as lignite, peat and coal and biomass 

resources, such as eucalyptus [5], cherry, car stone, apricot stone, nuts, grape seeds [6], olive and peach 

stones [7], walnut shell [4], [8], oil palm trunks/sells [9], wood, sawdust, bagasse and coconut shells 

[10]. Gratuito et al. [11] suggested that coconut shell (AC) is advantageous over carbon made from other 

materials because of its high density, high purity and virtually dust-free nature [12]. 

Graphene oxide (GO) is an oxidized derative of graphene which contains epoxide, hydroxyl, and 

carboxyl groups [13]. These functional groups lead to the negative charge, hydrophilicity and easy 

dispersion of GO in aqueous solutions [14]. These properties make GO a great candidate for the removal 

of different pollutants by degradation. Due to its high surface area and functionalities, GO can be used 

as an excellent platform to grow various nanoparticles. In addition, GO helps prevent on nanoparticles 

[15]. GO consists of a hexagonal ring-based carbon network with both sp2 and sp3 hybridised carbon 

atoms in two-dimensional structure that contain copious oxygen functional groups such as epoxy, 

hydroxyl, carbonyl and carboxyl groups on surfaces and edges [17-20]. These oxygen functional groups 

serve as activation sites for nucleation and growth of iron precursors to form GO supported iron-

containing nanocompozites [20]. 

Nowadays, Fenton process is becoming more and more important on the degradation of organic 

pollutant in dye wastewater [21], for its own advantages such as high degradation efficiency, low cost, 

http://creativecommons.org/licenses/by/3.0
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eco-friendly and mild conditions [22]. In Fenton system, Fe2+ ions are served as catalyst to decompose 

hydrogen peroxide (H2O2) to generate hydroxyl radicals (•OH) which can degrade dyes into harmless 

chemicals, such as CO2 and H2O completely [23]. In order to develop a novel Fenton-like system, some 

recent studies have investigated different iron solid compounds to replace the soluble Fe2+ such as 

hematite, α-FeOOH, β-FeOOH, iron-immobilised zeolites, Fe3O4 and so on [24]. Especially, owing to 

the unique characteristic such as easy preparation, high stability and convenient separation from water 

solution by external magnetic field, Fe3O4 nanoparticles were attracted many attentions in recent years 

[25]. 

2. Experimental Method 

2.1 Materials 

The graphite used in this experiment was prepared using coconut shell obtained from Surabaya 

Indonesian. The preparation of GO used graphite of the coconut shell, sulfuric acid (H2SO4, Merck, 

98%), peroxide acid (H2O2, Merck, 30%), hydrochloric acid (HCl, Merck, 5%), potassium 

permanganate (KMnO4, Merck), sodium nitrate (NaNO3, Merck), hydrogen fluoride (HF, Merck), 

Iron(II) chloride hexahydrate (FeCl3.6H2O, Merck), Iron(II) sulfate heptahydrate (FeSO4.7H2O, Merck), 

sodium hydroxide (NaOH, Merck), methanol (CH3OH, Merck) and deionized water (DI water).  

 

2.2 Instrumentation 

The instrumentals used were X-Ray Diffraction (XRD), Infrared Tracer-100 (IR), Raman spectroscopy 

and Scanning Electron Microscopy (SEM). XRD was used to measure the crystallin of graphite and GO, 

IR and Raman was used to know the functional groups of graphite and GO, and Scanning Electron 

Microscopy (SEM) used to determine the morphology of GO-Fe3O4.  

 

2.3 Procedure 

Preparation of graphite  

Graphite was produced from coconut shell. First these waste was washed and inserted in vial and dried 

using oven for 24 hours. After that furnace at 550°C for 3 hours. These three materials contain high 

silica. Hence silica was removed using hydrogen flouride (HF). 10 g of graphite was dissolved using 30 

mL HF 40%, heated and stirer for 3 hour. After that the suspension was washed using distilled water 

and dried. Graphite was then analyzed using XRD and IR instruments. 

 

Preparation of graphene oxide (GO) 

GO was prepared according to modified Hummers method. Graphite 5 g was added 2.5 g NaNO3 and 

115 mL H2SO4 (98%), the rate of addition was controlled carefully. Avoiding a sudden increase of 

temperature reaction was performed on ice bath. The stirring was continued for 2 h at temperatures 

below 20°C. Then 15 g of KMnO4 was slowly added to the reaction, with stirring for 2 h. The ice bath 

was removed and then the reaction was covered by aluminum foil, stirring for 30 minutes to form a 

brown paste. After that, the reaction mixture was diluted with 230 mL of DI and the temperature was 

kept below 100°C. the mixture was stirred for 1 hour, and further diluted to approximately  700 mL of 

DI water. After that 10 mL of 30 % H2O2 was added to the mixture which changed its color to brilliant 

yellow. The resultant was centrifuged and washed several times with 5% HCl aqueous solution and DI 

water. Finally the resulting solid was dried at 60°C for 24 h where a loose brown powder, was obtained. 

GO was analyzed using XRD and IR instruments. 

 

Preparation of GO-Fe3O4 nanocomposite 

In a typical process, 0.025 g of GO was dispersed in 50 mL of distilled water by ultrasonic treatment for 

15 min, and then 100 ml of FeSO4.4H2O (0.556 g) and FeCl3.6H2O (1.081 g) mixed water solutions 

were slowly added to the GO solution. And stirred and heated up to 40ºC. After that, several drops of 

NaOH was put into the mixture until the pH was 10, followed by stirring for a further 30 min at 80ºC. 

After cooling to room temperature, the product (GO-Fe3O4 nanocomposites) was washed with distilled 

water three times and dried in a vacuum at 80ºC. In comparison, bare Fe3O4 nanoparticles were prepared 

by the similar process as GO-Fe3O4 nanocomposites except the addition of GO. 
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3. Result and Discussion 

X-ray diffraction (XRD) was taken to confirm the formation of various phases. Comparison result 

between the XRD patterns before and after desilication process was shown in Figure 1. Neither of 

graphite patterns or GO patterns has the broad patterns in Figure 1 before graphite desilication, its meant 

that there is silica content. After the silica on the graphite base material was removed by HF solution, 

the difractogram pattern becomes slightly thinner and the pattern not widened such as before the silica 

removal. The widening difractogram pattern is likely to be debated because the crystals of graphite and 

GO are still covered by silica having the same peak as graphite and GO. 

 

 
Figure 1. XRD diffraction patterns (a) and (b) graphite and GO before desilation, and (c) and (d) 

graphite and GO after desilication 

 

GO was made from graphite derived from coconut shell. GO was synthesized using modified 

Hummer's method. The concentrated sulfuric acid was used to exfoliate the number of layers from the 

graphite flakes, KMnO4 was used as oxidizing agent. The addition of KMnO4 must be slowly done to 

avoid the exothermic reaction and the bumping. The temperature must be maintained under 20°C. The 

results were suspension. After adding by water, the temperature of suspension increased, and the colour 

turn from brown to brilliant yellow. After adding by H2O2, indicating the GO formation. Figure 1 showed 

commonly the characteristic of graphite pattern before treatment by HF solution defined peaks at 23,11° 

[26] and 38° [27]. The result of characteristic of graphite from coconut shell 23° for graphite and 43° 

for GO. After oxidation, the characteristic graphite pattern was so small broad such as coconut shell at 

23.11°. Commonly the GO pattern from commercial graphite was defined at 10-11°, but it was different 

thing if we used graphite from waste, although based on [28] that XRD spectrum of GO nanoplatelets 

from carbonized agro waste was 26.60°. 

To compare the structural properties of GO-Fe3O4 nanocomposites synthesized with GO, XRD 

analysis was performed and shown in Figure 2. GO-Fe3O4 nanocomposite XRD patterns were found to 

be equivalent to magnetic. The peak characteristic of GO-Fe3O4 in (JCPDS No. 88-0315), which is at 

30°; 35°; 43° and 57°. The XRD pattern shows all Fe3O4 nanoparticle peaks that are in accordance with 

those reported in the literature [30,31]. GO-Fe3O4 nanocomposite particle size of 19.53Å or 1.95 nm 

uses the Scherrer equation. This shows the results of nano-sized synthesis. 
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Figure 2. GO-Fe3O4 XRD diffraction pattern 

 

Figure 3 showed the IR spectrum of GO from coconut shell. The bands coconut shell of graphite are 

3620 cm-1 (OH stretch), 1612 cm-1 (C = C aromatic), 1238 cm-1 (stretching CO), and 829 cm-1 (stretching 

CC), while the GO spectrum is 3593 cm-1 (OH stretch), 1722 cm-1 (C = O stretch), 1283 cm-1 (CO 

stretch) and 822 cm-1 (CH stretch). This can also be distinguished by functional groups such as carboxyl, 

hydroxyl, and epoxy on GO. GO is also stable at the transmission peak at a wavelength of 1722 cm-1 

which indicates the stability of the functional group (C = O). GO-Fe3O4 nanocomposite spectrum shows 

3421 cm-1 (O-H stretch), 1631 cm-1 (C = C aromatic), and 565 cm-1 (Fe-O). The GO-Fe3O4 

nanocomposite IR spectrum showed a shift in the O-H peak from 3593 cm-1 to 3421 cm-1 which showed 

loading of Fe3O4 nanoparticles on GO [31]. Also the IR GO spectrum shows a characteristic peak at 

1722 cm-1 which indicates the presence of a carboxylic acid functional group which shifts to 1631 cm-1 

due to the formation of -COO- after Fe3O4 nanoparticles are composed. Furthermore, the characteristic 

peak at 565 cm-1 is indicated by Fe-O, which confirms the presence of Fe3O4 [32]. 

 

 
Figure 3. FTIR spectra (a) graphite, (b) GO and (c) GO-Fe3O4 
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Figure 4. (a) Spectroscopic Raman spectra of GO and (b) GO-Fe3O4 

 

The SEM image and EDX analysis of GO-Fe3O4 nanocomposite are depicted in Figure. 5, it is 

evident that the Fe3O4 nanoparticles are distributed between the layers of the graphene sheets, which 

lead to the formation of porous GO-Fe3O4 nanocomposite with large amount of void spaces. The 

enhancement in the cyclic performance of GO-Fe3O4 nanocomposite as an anode material for lithium-

ion batteries takes place because of the porous nanocomposites with several void spaces [34,35]. 

Furthermore, Fe3O4 nanoparticles distributed between the graphene sheets can reduce the aggregation 

of Fe3O4 nanoparticles to a greater extent in the presence of ultrasonic irradiation, which can be of great 

benefit to cycle life. The presence of Fe, O and C in EDX analysis confirms the formation of GO-Fe3O4 

nanocomposite. 

 

 
Figure 5. SEM of GO-Fe3O4 

4. Conclusion 

We have successfully demonstrated the synthesis GO from waste environmental using modified 

Hummers. This study was successfully to confirm the formation of GO-Fe3O4 of coconut shell with 
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characterization of XRD, FTIR, SEM and Raman spectroscopy. From the present study it can be 

concluded that this research has low cost and effective to decreease much of environmental.  
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