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Abstract. Accurate fault diagnosis of photovoltaic (PV) array is important for effective 

operation of PV systems. The back propagation neural network (BPNN) based classifier model 

has wide application in fault diagnosis for PV array. Due to insufficient accuracy obtained by 

using single BPNN, this paper proposes a novel fault diagnosis scheme based on BP-Adaboost 

strong classifier. Firstly, several indicators constitute an effective feature vector which is 

applied to build several BPNN based weak classifier models. Secondly, Adaboost algorithm is 

adopted to build a strong classifier by combining those weak classifiers into the final output 

with certain weights. Four operation conditions including normal condition, short circuit fault, 

partial shade fault, open circuit fault can be accurately identified by the proposed method. 

Dataset from a 1.8 kW grid-connected PV system with 6 × 3 PV array are applied to 

experimentally test the performance of the developed method. 

1.  Introduction 

Owing to environmental pollution and continuous growth in global energy depletion, clean renewable 

energy demand increases. Solar energy is a promising renewable energy due to its advantages of non-

pollution and sustainability, whose main form of application is photovoltaic (PV) power generation [1]. 

Recently, the global PV installed capacity has greatly increased for the improvement of PV technology 

and the support of national policies. However, as the core components of photoenergy acquisition, PV 

arrays are exposed to harsh outdoor environment which may cause several faults. The faults may 

reduce the power generation efficiency, damage PV modules, and even lead to fire risk. 

To address these issues, various fault diagnosis approaches for PV array have been proposed. The 

conventional method is comparing the difference between the measured and estimated variables. By 

analyzing the details of the expected and actual AC power, faults can be detected [2]. Drews et al 

develop a smart approach for fault diagnosis of PV array, the algorithm can detect the probable faults 

once the defined difference between the actual and simulated energy yield occurs [3]. Conventional 

method requires an accurate model, and the method may fail for the impacts of changeable 

environment. Therefore, methods based on machine learning are proposed to detect fault in PV arrays, 

since it doesn't require accurate mathematical models. Karmacharya et al propose a novel fault 

http://creativecommons.org/licenses/by/3.0
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diagnosis strategy, which applies the multi-resolution analysis (MRA) to extract the unique features of 

monitored signal as the inputs of a three-layer feed forward artificial neural network (ANN) classifier, 

which realizes the fault location of ungrounded PV power generation system [4]. The method 

proposed in [5] can train probabilistic neural network (PNN) faults classifiers with higher noise 

tolerance. We have been studying on PV fault diagnosis and achieve some results. In [6], a density 

peak-based clustering approach is proposed to identify faults automatically. Chen et al. introduce an 

efficient method based on kernel extreme learning machine (KELM) to achieve a high accuracy of 

faults diagnosis [7]. 

As a machine learning technique, ANN is widely used for PV array fault diagnosis [8]. Syafaruddin 

et al. present a fault diagnosis method based on three-layer ANN to locate the short circuit fault in PV 

modules [9]. Approach of BP neural network (BPNN) based on Levenberg-Marquardt (L-M) 

algorithm effectively detects open circuit, short circuit, partial shading and abnormal degradation 

faults in PV array [10]. However, single BPNN based classifier model has slow convergence and 

easily getting into local minimum [9]. In addition, the single BPNN based classifier model is a weak 

classifier due to the insufficient accuracy of classification [11]. Therefore, this paper proposes a fault 

diagnosis approach for PV arrays based on BP-Adaboost strong classifier to improve the performance 

of fault diagnosis and classification. 

2.  Strong classifier based on BP-Adaboost 

The Adaboost is one of the most successful boosting algorithm [12]. The idea of the Adaboost 

algorithm is combining the outputs of several “weak” classifiers with certain weights to make the 

classification better [13]. Firstly, the data samples and the learning algorithm of weak classifier are 

given. Then m sets of data are randomly selected from the data samples as training data, the weight of 

each training data is set as 1/m. Secondly, there are T same weak classifiers used for iterative 

operations. When each iteration finishes, weight distribution of each training data will be adjusted 

according to the classification result. After repeated iterative calculations, each weak classifier can be 

described as a corresponding classification function. For the result of classification, the better effect it 

has, the greater weight of the function. Finally, classification result of the strong classifier is weighted 

by all weak classifiers with a certain weight. 

BP-Adaboost algorithm is a case of using the Adaboost to the boosting the performance of BPNN 

[13], BPNN is regard as the weak classifiers of strong classifier model. The flowchart, given in figure 

1, describes the steps of forming a strong classifier 

 

 

Figure 1. Flowchart of strong classifier based on BP-Adaboost. 

 

Data samples

Pre-processing

BPNN 1 BPNN 2 BPNN 3 BPNN n

Decision strategy

Classification results

BPNN 

building

BPNN 

initialization  

Training data

BPNN training

Whether 

results satisfy 

 conditions?

Acquiring  

BPNN weight  

BPNN

prediction

N Y



3

1234567890 ‘’“”

NEFES 2018 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 188 (2018) 012110  doi :10.1088/1755-1315/188/1/012110

 

 

 

 

 

 

Step 1: Data selection and BPNN initialization. Firstly, selecting m sets of data randomly from the 

samples as training data, which is 
1{( , )} ( [0,...0,1,0,...0])m

i i i ix y y= = , the distribution weight of the 

sample is Dt(i) = 1/m. Secondly, determining the node number of the input layer, hidden layer and 

output layer in the BPNN respectively. And the weight and threshold of BPNN are initialized. 

Step 2: Data prediction with weak classifiers. Using ( ) 
1

  1/t

m

i
D i m

=
=  as the priori probability 

function and training the t-th BPNN weak classifier with the training data by standard BP algorithrm. 

The prediction error sum et of the weak classifier is calculated as follow [14]. 

( )      1,2, ( ( ) )t t

i

e D i i m g t y= =  …,  (1) 

where t represents the index of classifier, g(t) is the classification prediction result, and y describes the 

expected classification result. 

Step 3: Calculating the weight of prediction sequence. Using et obtained in step 2 to calculate the 

prediction sequence weight ta  [15]. 

1
ln( )t

t

t

e1
a =

2 e

−
 (2) 

Step 4: Updating weight of sample. Weight of sample in next training is adjusted according to the 

ta  obtained in step 3 [16]. The adjustment method is given as follows: 

1

( )
( ) exp[ ( )]     1,2, ,t

t t i t i

t

D i
D i a y g x i m

B
+ =  − = …  (3) 

where Bt represents a normalization factor which is used to ensure ( ) 1
m

t

i

D i =  when the weight ratio 

stays the same. 

Step 5: Obtaining the function of strong classifier. After T times training, acquiring T weak 

Classification functions f (gt, at) which are combined to obtain the final strong classification function 

h(x). The calculation equation is shown in equation (4) [14]. 

1

( ) [ ( , )]
T

t t t

t

h x sign a f g a
=

=   (4) 

3.  The proposed fault classification scheme 

Based on trial and error, the proposed approach is mainly composed of 10 BPNN based weak 

classifiers, the outputs of 10 BPNN are merged by certain weights to obtain the final output result. The 

parameters used in the proposed model are given as follows: 

Input layer: Six indicators are selected as the effective feature vector of input layer, including 

irradiance (Sn), temperature of PV array (Tn), the voltage of PV array at maximum power point (VMPP), 

the currents of PV string S at maximum power point (I1 to IS). 

Hidden layer: the number of nodes in the hidden layer is 8, maximum learning times is 100, 

learning rate is 0.1, convergence error is 0.00004. 

Output layer: Output layer describes the number of output classification categories. The operation 

conditions studied in this paper are as follows: normal condition (NORMAL), one string occurs open 

circuit fault (OPEN-1), two strings occur open circuit fault (OPEN-2), one module occurs short circuit 

fault in one PV string (SHORT-1), two module occurs short circuit fault in one PV string (SHORT-2), 

one module is shaded (SHADE-1), and two module is shaded (SHADE-2). Table 1 shows the 

correspondence between the output number of BPNN and the conditions of PV array. 
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Table 1. The correspondence between the output number of BPNN and the conditions of PV array. 

Output status Operation conditions 

1 NORMAL 

2 OPEN-1 

3 OPEN-2 

4 SHORT-1 

5 SHORT-2 

6 SHADE-1 

7 SHADE-2 

4.  Experimental results and discuss 

The experiment is carried out on a rooftop photovoltaic power station in laboratory. The system 

consists of PV array, weather station, combiner box, inverter, data acquisition module and data 

processing computer, as shown in figures 2 and 3. The PV array is composed of 3 strings connected in 

parallel (S=3), and each string has 6 modules connected in series. Under standard test conditions 

(STC), the open circuit voltage (VOC) is 21.5V, the short circuit current (ISC) is 6A and the output 

power is 100 W. The grid-connected inverter is GW2500-NS. 

 

  

Figure 2. The physical map of PV array. Figure 3. Data collection system. 

 

The data acquisition module is composed of sampling circuit and data acquisition card. The 

isolated Hall voltage sensor (LV-25P) and current sensors (HBC-LSP) are used to collect the voltage 

of the PV array and the currents of PV strings, respecively. The temperature sensor (PT100) is applied 

to acquire the temperature of PV array. Irradiance is obtained by placing an irradiance sensor (FZD-

V1-2000) on the same inclined surface as the PV array, which can convert the irradiance information 

into voltage value for acquisition. In this experiment, the irradiance varies from 200 W/m2 to 800 

W/m2. Then, setting the sampling frequency of the data acquisition card (USB-1608G) to 200 Hz. 

Collecting the samples data and storing it in the computer by the data acquisition card. 

Once the PV system starts working, the maximum power point tracking (MPPT) algorithm of the 

inverter begins to find the optimal operation point automatically. Therefore, we acquire the dataset 

after PV system operating steadily which ensures the dataset is measured under maximum power point. 

The six attributes, including Sn, Tn, VMPP, I1, I2, and I3, are selected as the inputs for the 

classification model. A total 2584 data samples are acquired as the data set, including 391 samples 

under NORMAL, 359 samples under OPEN-1, 364 samples under OPEN-2, 365 samples under 

SHADE-1, 370 samples under SHADE-2, 372 samples under SHORT-1 and 363 samples under 

SHORT-2. 1800 (about 70%) samples are randomly chosen for training the model, and the rest (about 

30%) samples for testing. Firstly, the function 'rand' is used to generate a random sequence consisting 

of 2584 random numbers from 0 to 1. Secondly, the random sequence is arranged from small to large 

and the indexes of each random number in the original sequence can be acquired by the function 
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‘sork’. The indexes compose a rand sequence consisting of integer numbers from 1 to 2584. Finally, 

the rand sequence is utilized as the index of samples data, by that, the samples data can be arranged 

randomly. 

Before training, the proportional compression method is adopted to normalize the same type data 

set. Assuming a data set x = [x1, x2…, xn], the procedure is shown in equation (5). 

min
max min min

max min

( )
( )

( )

x x
y y y y

x x

−
= − +

−
 (5) 

Where y represents the normalized data, xmax is the maximum value in the data set, xmin is the minimum 

value, ymax is usually set to 1, and ymin can be set to -1. 

The proposed BP-Adaboost based fault diagnose approach is test by using MATLAB R2014b 

software. Figure 4 shows the training accuracy of the presented model. The blue “△” in the figure 

represents the experiment sample, the pink “*” represents the predicted results of training model. As 

can be seen from figure 4, there are 35 data points are wrongly classified, and the overall training 

accuracy of the model is 98.1%. 

 

 

Figure 4. Experimental training results of the proposed model. 

 

The prediction results of the proposed model are shown in figure 5. The overall prediction accuracy 

of the model is 97.7%. 

 

 

Figure 5. Experimental prediction results of the proposed model. 
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The detailed fault detection accuracy for the claimed seven conditions of PV array is summarized 

in table 2. In terms of training results, the classification accuracy of NORMAL, OPEN-1, OPEN-2, 

SHORT-2 and SHADE-2 is more than 99%, and the accuracy of SHORT-1 and SHADE-1 is about 

94%. For the prediction results, the classification accuracy of NORMAL, OPEN-1, OPEN-2, SHORT-

2 and SHADE-2 also reaches more than 97%. The accuracy of SHORT-1 and SHADE-1 is about 95%, 

which may be due to the fact that SHADE-1 and SHORT-1 have similar effect on the PV array. 

 

Table 2. Experimental results of fault classification model. 

Operating conditions Training accuracy Prediction accuracy 

NORMAL 99.1% 98.0% 

OPEN-1 100% 97.1% 

OPEN-2 100% 100% 

SHORT-1 94.4% 95.3% 

SHORT-2 100% 100% 

SHADE-1 93.8% 95.3% 

SHADE-2 99.6% 97.8% 

 

In addition, in order to compare the performance of the proposed model and that of single BPNN, 

the training and classification results of the 10 BPNN based classifiers are listed in table 3. The 

average training accuracy of the 10 classifiers is 96.8%, which is lower than the average training 

accuracy of the proposed strong classifier (98.1%). Moreover, the average prediction accuracy of the 

10 classifiers is 96.6%, which is also worse than that of the strong classifier (97.7%). Therefore, the 

strong classifier based on BP-Adaboost is superior to single BPNN. 

 

Table 3. Experimental training and prediction results of BPNNs. 

Index of BPNN Accuracy of training data Accuracy of prediction data 

1 94.5% 92.9% 

2 95.8% 94.0% 

3 97.5% 96.3% 

4 97.7% 96.6% 

5 97.1% 96.6% 

6 96.5% 94.0% 

7 98.4% 97.1% 

8 96.0% 94.7% 

9 97.4% 96.4% 

10 97.2% 96.6% 

 

To further verify the ability of the proposed method, PNN based model is also applied for 

comparison [17]. The accuracy of training and prediction for PNN are 94.75% and 95.57%, 

respectively. Therefore, the accuracy of the BP-Adaboost based model is obviously higher than that of 

PNN. 

5.  Conclusion 

A fault diagnosis method for PV array based on BP-Adaboost strong classifier has been presented. Six 
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attributes including Sn, Tn, VMPP, I1, I2, and I3 are selected as the inputs of the classifier. Four types of 

operating cases including normal condition, short circuit fault, partial shade and open circuit fault can 

be accurately detected and classified. According to the experiment, the average classification accuracy 

of the 10 BPNN models is about 96.6%, the accuracy is 95.57% for PNN and the proposed Adaboost 

algorithm based model achieves best accuracy over 97%. Results demonstrate the promising 

performance of the proposed method for fault diagnosis in PV array. 
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