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Abstract. Making energy carry information is the major research direction of achieving Energy 

Internet. Besides, electric energy has incomparable advantages in energy transmission 

efficiency. Therefore, the future of Energy Internet is the Power Internet. Then, accurately 

predicting the consumption of power becomes the foundation of Energy Internet. Depending 

on the extraction, transformation, loading (ETL), Hadoop, Oracle and OLAP technologies. 

This paper establishes energy, electricity, economy forecasting and warning system. By 

considering the data of energy, electricity and economy together, a new economic power 

transmission model is established. The traditional econometric methods, such as OLS, AR, MA, 

ARMA and X11, are all employed during the estimated process. The estimating results 

demonstrate that the goodness of fits of the new models are all approximately equal to 0.998. 

The electricity consumption of industry is 1935224.28*104 kWh in the 3rd quarter and 

2,846,897.0 *104 kWh in the 4th in 2017, respectively.  

1. Introduction 

With the degradation of the environment and the aggravation of energy shortages, a remarkable 

amount of attention has been paid to the energy revolution. Meanwhile, the concept of Energy Internet 

(EI) was developed [1-4]. Energy Internet, first proposed by Jeremy Rifkin, is a new development 

form of energy system [5]. The main unit of Energy Internet is the renewable energy. Consuming 

renewable energy sources, such as wind, solar, hydro water, biomass, geothermal and marine energies, 

have been considered as alternatives for conventional energy resources in most developed and 

developing countries [6,7]. 

According to Ming Zeng et al [6], during the establishment of Energy Internet, technologies will be 

applied are as follows: interaction analysis technology for energy flow and information flow; 

coordinated optimization planning technique for wide area energy resources; coordinated scheduling 

technique for wide area integrated energy. Moreover, the key technology of Energy Internet is to 

utilize internet technology to combine energy flow with information flow at real-time, so as to achieve 

the goal of energy saving and emissions reduction [8-10]. In general, Energy Internet is characterized 

by openness, interconnection, reciprocity and sharing, exhibiting a multi-source collaborative 

optimization decision effect [11]. Technologies, such as Cyber-Physical System (CPS) technology, 

http://creativecommons.org/licenses/by/3.0
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Active Distribution Network (AND) technology and self-balancing of distributed resources, etc. 

primary discussed applying in Energy Internet, demonstrating that making energy carry information is 

the major research direction of achieving Energy Internet [12-17].  

Owing electric energy has incomparable advantages in energy transmission efficiency, power acts 

as the core of secondary energy, playing an important role in transforming the renewable energy into 

the direct available energy [18]. Essentially, the future of the Energy Internet is the Power Internet. 

The dramatic increase of renewable energy generation brings some intermittent problems to the power 

distribution networks. Real-time optimal power flow may solve these intermittent problems [19-22]. 

However, how to accurately predict the consumption of power becomes another significant challenge 

of Energy Internet, with substantial renewable energy utilization. Fortunately, the applying of big data 

technology makes it possible to improve the accuracy of power forecasting. 

However, the recent development of big data technology employed in energy researches are mainly 

the following ones: power marketing innovation, electricity customer value, and consumption habits of 

residents’ electricity consumption [23-27]. As far as we are aware, there is no one that utilizes big data 

technology to forecast the consumption of electricity. This research gap forms the basis for this paper. 

In this novel analysis, there is a case study that highlights the implications of using big data 

technology to predict power consumption.  This paper firstly demonstrates how economic statistics 

can be used to predict electricity consumption from a new perspective.  

The remainder of the paper is organized as follows: Section 2 details the methodology utilized in 

this paper. Section 3 describes the data collection. Section 4 presents and discusses the results of the 

regression. Section 5 presents conclusions as usual. 

2. Methodology 

2.1. Analysis of the variables of interest 

The ultimate aim of this study is to precisely forecast the demand of industrial electricity consumption, 

and makes it orient to Energy Internet based on the big data technology, focus on:  

Electricity consumption of energy-intensive industries: a correlation analysis will be carried out to 

detect the influence of the microeconomic indicators on the power demand of power-intensive 

industries. 

Climate variables: those variables that have a most significant influence on the electricity 

consumption will be detected. 

Microeconomic indicators: added value of smelting and pressing of ferrous metals (SPFM), 

smelting and pressing of non-ferrous metals (SPNFM), manufacture of raw chemical materials and 

chemical products (RCCP) and manufacture of non-metallic mineral products industries (NMMP); 

steel production, investment in real estate, electrolytic aluminum output, production of cement, caustic 

soda production, the tertiary industry added value, urban disposable income.  

2.2. The big data technology 

With years of development, the information construction of power industry, such as electrical power 

dispatching SCADA system, power marketing SG186 system, power information collection system, 

ERP system, geographic information system (GIS) and other application systems, has achieved 

remarkable achievements. However, these systems have been running independently in the power 

enterprises, becoming an independent "information-island". Comprehensively considering the data 

from different systems has become virtually impossible [28], when predicting the power supply and 

demand data synthetically. 

Owing the data of electricity is considerable in amount, complex in structure, the extraction, 

transformation, loading (ETL) technology is adopted in this article. The ETL technology has been 

widely used for big data system [29,30]. Meanwhile, Hadoop technology, a distributed file system 

with parallel execution environment, allows users to easily handle massive data over TB and above 

[31,32]. In this paper, Hadoop has been brought to store the immense electricity data, such as the 
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electricity consumption of day from the power information collection system, 24 or 96 load data, 

energy data, climate data, etc.  

2.3. Electricity consumption forecasting models 

As China faces a New Normal economic growth, traditional power demand forecasting methods seem 

like unsuitable for continued use [33]. Under the new normal economic growth setting, this paper 

divides the whole society power consumption into 8 parts, i.e. the power demand of four high 

energy-intensive industries (smelting and pressing of Ferrous Metals, smelting and pressing of 

Non-ferrous metals, manufacture of raw chemical materials and chemical products, manufacture of 

non-metallic mineral products industries), industrial electricity consumption, the tertiary industry, 

electricity consumption for urban residents and for rural residents. Considering the application of big 

data technology and the acquisition of detailed data for each industry, Hunan province is selected as a 

case in this article.   

⚫ Electricity consumption forecasting model for smelting and pressing of ferrous metals 

Clearly, there is a need to discover ways of combining both “traditional” (grey prediction model, 

ARIMA model, multivariate regression models, and index decomposition analysis method) methods 

and “new” (big) data sources to harness the best attributes of both [34].  

Traditionally, the growth rate of the added value of SPFM and that of the consumption of power are 

analyzed firstly. There exists a big deviation between them from the first quarter of 2012 (figure 1). As 

such, if we just utilize the added value to predict the demand of power based on traditional methods, 

there is no doubt that the power of SPFM will be overestimated. The short fluctuations between 

electricity consumption and the added value might be attributed to the output of ferroalloy, whose 

production is a power-intensive process. The amount of electricity consumption caused by ferroalloy 

production dropped sharply from 36.4% of the total consumption of SPFM in 2011 to 28.1% of that in 

the first quarter of 2012.  

 

 

Figure 1. The growth rate of the added value of SPFM and that of 

electricity consumption of SPFM during 2010-2016. 

 

Further, the growth rate of power demand of SPFM, excluding ferroalloy industry, has great 

consistency with the growth rate of steel (figure 2). Historically, the prediction of production capacity 

based on the fixed assets investment is reasonable in theory. However, under the transition settings, 

investment in fixed assets are usually spent on improving the production technology, but not on 

expanding the production, especially for the overcapacity industry SPFM. Therefore, the estimation of 

the steel output is depended on its downstream industry (the growth rate of real estate industry). 

Therefore, the power consumption forecasting model (simultaneous equation model) for SPFM is 

established as follows: 
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𝑄1𝑚𝑡 = 𝛼0 + 𝛼1 ln(𝐼𝑚𝑡) + 𝐴𝑅(𝑝1) + 𝑀𝐴(𝑞1) 
ln(𝐸1𝑚𝑡

′ ) = 𝛽0 + 𝛽1 ln(𝑄1𝑚𝑡) + 𝐴𝑅(𝑝2) + 𝑀𝐴(𝑞2) 
ln(𝐸1𝑚𝑡) = 𝛾0 + 𝛾1ln(𝐸1𝑚𝑡

′ ) + 𝐴𝑅(𝑝3) + 𝑀𝐴(𝑞3) 
(1) 

where the dependent variable Q1mt is the steel production in quarter m year t, Imt is the investment of 

fixed assets in quarter m year t, E’
1mt is the consumption of electricity of SPFM without ferroalloy 

industry in quarter m year t; E1mt is the electricity consumption of SPFM in quarter m year t. Variables 

AR(pi) and MV (qi) are indicated to the independent variables autoregressive model order and moving 

average model order.  

 

 

Figure 2. The growth rate of electricity consumption of SPFM without 

ferroalloy and the growth rate of steel during 2010-2016. 

 

⚫ Electricity consumption forecasting model for smelting and pressing of non-ferrous metals 

 

 

Figure 3. The growth rate of electricity consumption of SPNFM and that 

of the added value during 2010-2016 in Hunan China. 

 

SPNFM is an energy-intensive industry like SPFM. Hence, the deviation between the growth rate 

of the added value of SPNFM and that of electricity consumption also exists (figure 3). The output of 

electrolytic aluminium makes a big difference in the power demand of SPNFM (figure 4). It is easily 

found that the deviation exists steadily during 2012-2015 (figure 4). The discontinued production of 

Chuangyuan aluminium industry makes the 300000 tons of electrolytic aluminium production capacity 

-15

-10

-5

0

5

10

15

20

T
h

e
 g

r
o
w

th
 r

a
te

  
  
u

n
ti

: 
  
%

the growth rate of electricity consumption of SPFM without ferroalloy

the growth rate of steel

0.0

5.0

10.0

15.0

20.0

25.0

-60

-40

-20

0

20

40

60

80

100

120

th
e 

g
ro

w
th

 r
at

e 
o

f 
th

e 
ad

d
ed

 v
al

u
e 

 u
n
it

: 
 %

 

th
e 

g
ro

w
th

 r
at

e 
o

f 
el

ec
tr

ic
it

y
 c

o
sn

u
m

p
ti

o
n
  

 u
n
it

: 

%
 

the growth rate of electricity consumption of SPNFM

the growth rate of added value of SPNFM



5

1234567890 ‘’“”

NEFES 2018 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 188 (2018) 012031  doi :10.1088/1755-1315/188/1/012031

almost all shut down in Hunan in January 2016, which expanded the deviation in the first quarter of 

2016 (figure 4). Moreover, the growth rate of nine non-ferrous metal products has a close correlation 

with the growth rate of industry electricity either. Considering the rich kinds and widely use of 

SPNFM in products, it is difficult to predict the prosperity just depend on the downstream enterprises. 

While the investment in fixed assets of SPNFM in China reflects the prosperity of the whole industry 

to a certain extent. Thus, the power consumption forecasting model for SPNFM is established as 

follows: 

𝑄2𝑚𝑡 = 𝛼0 + 𝛼1𝐷𝑚𝑡 + 𝐴𝑅(𝑝4) + 𝑀𝐴(𝑞4) 
ln(𝐸2𝑚𝑡) = 𝛽0 + 𝛽1(𝑙𝑛𝑄2𝑚𝑡) + 𝐴𝑅(𝑝5) + 𝑀𝐴(𝑞5) 

(2) 

where Q’
2mt is the nine non-ferrous metal products, Q2mt is indicated to the products of electrolytic 

aluminum, Dmt is indicated to the investments of fixed assets. Variables AR(pi) and MV (qi) are 

indicated to the independent variables autoregressive model order and moving average model order.  

 

 

Figure 4. The growth rate of electricity consumption of SPNFM and that 

of electrolytic aluminium during 2010-2016 in Hunan. 

 

⚫ The electricity consumption forecasting model for the manufacture of non-metallic mineral 

products industries 

As the same with SPNFM and SPFM, the deviation also exists between the growth rate of the 

added value of NMMP and that of the consumption of electricity of NMMP (figure 5). The cumulative 

growth rate of cement output and the growth rate of industry electricity consumption is not consistent 

in individual quarters, the general trend is the same, though. Thus, the electricity consumption of 

NMMP is depended on cement output. The cement outputs relies on its downstream industry (real 

estate industry) (figure 6). Thus, the power consumption forecasting model for SPNFM is established 

as follows: 

𝑄3𝑚𝑡 = 𝛼0 + 𝛼1𝐷𝑚𝑡 + 𝐴𝑅(𝑝6) +𝑀𝐴(𝑞6) 
ln(𝐸3𝑚𝑡) = 𝛽0 + 𝛽1(𝑙𝑛𝑄3𝑚𝑡) + 𝐴𝑅(𝑝7) + 𝑀𝐴(𝑞7) 

(3) 

where the dependent variable Q3mt is the cement production in quarter m year t, Imt is the investment of 

fixed assets in quarter m year t,  E3mt is the consumption of electricity of NMMP; Variables AR(pi) 

and MV (qi) are indicated to the independent variables autoregressive model order and moving 

average model order. 
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Figure 5. The growth rate of electricity consumption of NMMF and that 

of the added value during 2010-2016 in Hunan. 

 

Figure 6. The growth rate of cement outputs and that of its downstream 

industry’s investment in fixed assets. 

 

Figure 7. The growth rate of electricity consumption of RCCP and that of 

the added value during 2010-2016 in Hunan. 
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The deviation between the added value of RCCP and that of the consumption of electricity of 

RCCP is also the reason why we chose it to estimate independently (figure 7). The output of caustic 

soda can be considered as the prediction index of power consumption. The downstream products of 

caustic soda are as follows: alumina, paper- making, printing and dyeing, military project, etc. 

According to the national data depicting, alumina is the main downstream products, whose production 

contributes the highest rates, maintaining 23%-27%. Though the amount of the production of alumina 

is 0 in Hunan, caustic soda might be sold to other provinces to produce alumina. Based on the 

correction analysis, the correlation coefficient between the investments of fixed assets of SPNFM and 

the outputs of caustic soda is up to 0.8. Thus, the power consumption forecasting model for RCCP is 

established as follows: 

𝑄4𝑚𝑡 = 𝛼0 + 𝛼1𝐷𝑚𝑡 + 𝐴𝑅(𝑝8) +𝑀𝐴(𝑞8) 
ln(𝐸4𝑚𝑡) = 𝛽0 + 𝛽1(𝑙𝑛𝑄4𝑚𝑡) + 𝐴𝑅(𝑝9) + 𝑀𝐴(𝑞9) 

(4) 

where the dependent variable Q3mt is the cement production in quarter m year t, Imt is the investment of 

fixed assets in quarter m year t, E3mt is the consumption of electricity of NMMP; Variables AR(pi) and 

MV (qi) are indicated to the independent variables autoregressive model order and moving average 

model order. 

⚫ The electricity consumption forecasting model for industrial electricity consumption 

The proportion of electricity consumption of the four high energy consuming industries is 

relatively high, as high as 42.6% in 2016. Thus the electricity consumption of industry is established 

as follows: 

𝐸𝑚𝑡
′ = 𝐸1𝑚𝑡 + 𝐸2𝑚𝑡+𝐸3𝑚𝑡 + 𝐸4𝑚𝑡 

ln(𝐸𝑚𝑡) = 𝛼0 + 𝛼1 ln(𝐸𝑚𝑡
′ ) + 𝐴𝑅(𝑝10) + 𝑀𝐴(𝑞10) 

(5) 

where E’
mt is indicated to the electricity demand of the four energy-intensive industries, Emt is the 

power demand of the industry. Variables AR(pi) and MV (qi) are indicated to the independent 

variables autoregressive model order and moving average model order. 

3. Data source 

Electric power demand data used in this work was provided by State Grid Hunan Electric Power 

Company and gathered from the first quarter in 2010 to fourth quarter in 2016. The data includes day, 

month, year and aggregated electric load consumptions.  

The meteorological data used in this study were collected from Hunan Provincial Bureau of 

Statistics and Chinese Bureau of Statistics, including the added value, the industry outputs, investment 

of fixed assets. These data were collected from the first quarter in 2010 to the fourth quarter in 2016.  

The climate variables are precipitation (mm), air temperature (℃), average wind speed (m/seg), 

average wind direction (sexagesimal degrees), relative humidity (%), pressure (hPa) and global solar 

radiation (W/m2). 

4. Result 

4.1. Construction of the energy, electricity economy forecasting and warning system 

Based on the ETL, Hadoop, Oracle, OLAP, etc. technologies, the economic, power, energy analysis 

systems are established (figure 8). The more accurately predicting of consumption of power lays a 

compacted foundation for achieving energy internet.  
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Figure 8. The energy, electricity, economy forecasting and warning system. 

4.2. Description of scenarios 

Based on the big data technology, a total of 3 scenarios are set to forecast the electricity consumption 

of the whole society in Hunan from 2017–2020. Different investment in real estate development 

growth rates, electrolytic aluminum output growth rates, investment in fixed assets of nonferrous 

metals in China, the growth rates of the added value of the territory industry, the growth rates of the 

income of urban residents. The details are as follows. 

⚫ Investment in real estate development growth rates in Hunan 

The real estate development investment has experienced a gradual rebound after bottoming process 

(figure 9). By the end of the 4th quarter of 2016, the cumulative growth rate of Hunan's real estate 

development investment has rebounded to 13.1%. Regarding the truth of the commercial residential 

building sales in Hunan province, both the sales volume and the sales area of commercial housing 

have gone up again. Thus, this paper sets the growth rates of the investment of the real estate 

development still keep the stable recovery trend. The specific settings are shown in table 1. 

 

 

Figure 9. The growth rate of investment of the real estate development. 
 

Table 1. The settings of the scenarios. 

indicators Scenario 2017Q1 2017Q2 2017Q3 2017Q4 

Investment in real estate 

development growth rates 

in Hunan 

actual value 4.5 14.7 
  

low scenario 4.5 14.7 15.7 15.9 

medium scenario 4.5 14.7 15.9 16.1 

high scenario 4.5 14.7 16.1 16.3 

Investment of fixed assets 

of SPNFM in China 

actual value -3.5 -4.7 -4.2 
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medium scenario -3.5 -4.7 -4.2 -4.7 

high scenario -3.5 -4.7 -4.2 -4.2 

The products of 

electrolytic aluminum in 

Hunan 

actual value 0.1 0.1 
  

low scenario 0.1 0.1 0.1 0.1 

medium scenario 0.1 0.1 0.1 0.1 

high scenario 0.1 0.1 0.1 0.1 

 

⚫ Investment of fixed assets of SPNFM in China 

Affected by the rising prices of SPNFM, the investment of fixed assets of SPNFM will still keep 

increasing trend. The details are shown in table 1. 

⚫ The products of electrolytic aluminum in Hunan 

As it analyzed in part 2, the discontinued production of Chuangyuan aluminium industry makes the 

300000 tons of electrolytic aluminum production capacity almost all shut down in Hunan in January 

2016, which expanded the deviation in the first quarter of 2016 (figure 4). 

Under the contraints of energy-saving, emission reduction, reduction the production capacity and 

other policy factors, the probability of electrolytic aluminum output re-entering in Hunan province is 

small. Therefore, the output of electrolytic aluminum in Hunan province is set to be zero in 2017. The 

details are depicted in table 1. 

4.3. Results  

The estimated equation of power consumption forecasting model for SPFM are shown as follows: 

𝑄1𝑡 =−5160.15 + 837.27 ∗ 𝑙𝑜𝑔(𝐼𝑡) +[𝐴𝑅(4) = 0.84,𝑀𝐴(1) = 0.93] 

𝑅2 = 0.995, 𝐷𝑊 = 1.15 

log(𝐸1𝑡
′ ) = −2.9768 + 1.0059 ∗ 𝑙𝑜𝑔(𝑄1𝑡) + [𝐴𝑅(4) = 0.7230,𝑀𝐴(1) = 0.9403] 

𝑅2 = 0.996, 𝐷𝑊 = 1.92 

log(E1𝑡) = −0.1108 + 1.1811 ∗ E1t
′ +[AR(4) = 0.7091,MA(4) = −0.9832] 

R2 = 0.999, DW = 1.34 

The estimated equations of power consumption forecasting model for SPNFM are shown as 

follows: 

𝑙𝑜𝑔(𝑄2𝑡) = 1.6631 + 0.9740 ∗ 𝑙𝑜𝑔(𝐼𝑡) + [𝐴𝑅(4) = 0.3916,𝑀𝐴(3) = −0.8981] 

𝑅2 = 0.999, 𝐷𝑊 = 0.87 

𝑙𝑜𝑔(𝐸2𝑡) = −4.4811 + 0.9773 ∗ 𝑙𝑜𝑔(𝑄2𝑡) +[𝐴𝑅(4) = 0.4231,𝑀𝐴(1) = 1.0000] 

𝑅2 = 0.997, 𝐷𝑊 = 1.25 

The estimated equations of power consumption forecasting model for NMMP are shown as 

follows: 

log(Q3t) = −4.0137 + 0.7504 ∗ log(Dt) ++[AR(4) = 0.9065,MA(1) = 1.0000] 

𝑅2 = 0.987, 𝐷𝑊 = 0.83 

𝑙𝑜𝑔(𝐸3𝑡) = 0.2483 + 0.9787 ∗ 𝑙𝑜𝑔(𝑄3𝑡) +[𝑀𝐴(3) = 0.8507] 

𝑅2 = 0.97, 𝐷𝑊 = 0.4 

The estimated equations of power consumption forecasting model for RCCP are shown as follows: 

𝑄4𝑡
′ = 23.7524 + 0.0323 ∗ 𝐷𝑡 + [𝐴𝑅(4) = 0.7776,𝑀𝐴(2) = 0.9241] 
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𝑅2 = 0.994，𝐷𝑊 = 1.14 

𝑙𝑜𝑔(𝐸4𝑡) = −0.6709 + 0.1134 ∗ 𝑙𝑜𝑔(𝑞) + 0.872 ∗ 𝑙𝑜𝑔(𝑄4𝑡
′ ) +[𝐴𝑅(1) = 0.6879] 

𝑅2 = 0.99，𝐷𝑊 = 2.19 

The estimated equations of power consumption forecasting model for RCCP are shown as follows: 

𝐸𝑡
′ = 𝐸1𝑡+𝐸2𝑡 + 𝐸3𝑡+𝐸4𝑡 

𝑙𝑜𝑔(𝐸𝑡) = 3.3613 + 0.9673 ∗ 𝑙𝑜𝑔(𝐸𝑡
′) +[𝐴𝑅(1) = 0.9964,𝑀𝐴(2) = −0.9999] 

𝑅2 = 0.99，𝐷𝑊 = 2.36 

As the equations shown, the goodness of fits for the electricity forecasting models are all quite high. 

It demonstrates that the new view for forecasting the power demand is more suitable than the 

traditional models.  

Based on the estimated results, the electricity consumption is shown in table 2. As displayed in 

table 2, in the 3rd quarter in 2017, the medium estimation results of electricity consumption of SPFM, 

SPNFM, NMMP, RCCP and Industry is 89.99*108 kWh, 41.6*108 kWh, 75.37*108 kWh, 35.29*108 

kWh, 1386956.18*104 kWh, respectively. The electricity consumption of SPFM, SPNFM, NMMP, 

RCCP and Industry growth rate is 2.7%, -3.4%, -3.5%,-15.3% and 4.2% respectively. The decrease of 

the electricity consumption in energy-intensive industries might be attributed to the environmental 

supervision.  

 

Table 2. The prediction results of energy-intensive industries and industry. 

Indicators 2016Q1 2016Q2 2016Q3 2016Q4 2017Q1 2017Q2 2017Q3 2017Q4 

SPFM true 

value 

26.20 56.50 87.65 120.63 31.15 61.30 
  

high 

scenario 

26.20 56.50 87.65 120.63 31.15 61.30 90.91 121.59 

medium 

scenario 

26.20 56.50 87.65 120.63 31.15 61.30 89.99 120.35 

low 

scenario 

26.20 56.50 87.65 120.63 31.15 61.30 89.07 119.10 

SPNFM true 

value 

14.60 28.30 43.07 59.14 13.78 28.12     

high 

scenario 

14.60 28.30 43.07 59.14 13.78 28.12 42.28 58.07 

medium 

scenario 

14.60 28.30 43.07 59.14 13.78 28.12 41.60 57.16 

low 

scenario 

14.60 28.30 43.07 59.14 13.78 28.12 40.91 56.25 

NMMP true 

value 

21.80 51.60 81.44 115.54 22.68 51.79     

high 

scenario 

21.80 51.60 81.44 115.54 22.68 51.79 76.62 108.26 

medium 

scenario 

21.80 51.60 81.44 115.54 22.68 51.79 75.37 106.47 

low 

scenario 

21.80 51.60 81.44 115.54 22.68 51.79 74.12 104.67 

RCCP true 

value 

13.80 28.40 41.66 55.90 13.53 25.88     

high 

scenario 

13.80 28.40 41.66 55.90 13.53 25.88 35.79 47.94 

medium 

scenario 

13.80 28.40 41.66 55.90 13.53 25.88 35.29 47.26 

low 

scenario 

13.80 28.40 41.66 55.90 13.53 25.88 34.78 46.58 

Industry true 586,108 1,331,052 1,857,221 2,737,401 674,161 1,360,6
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value 95 

high 

scenario 

586,108 1,331,052 1,857,221 2,737,401 674,161 1,360,6

95 

1,968,654.

3 

2,874,27

1.1 

medium 

scenario 

586,108 1,331,052 1,857,221 2,737,401 674,161 1,360,6

95 

1,935,224.

28 

2,846,89

7.0 

low 

scenario 

586,108 1,331,052 1,857,221 2,737,401 674,161 1,360,6

95 

1,899,937.

08 

2,819,52

3.0 

5. Conclusion 

Based on the big data technology, a system about energy, electricity, economic forecasting and 

warning system is constructed, and a new predicting models of the industrial electricity consumption 

is established for orienting to Energy Internet. According to the estimates results, there are some 

conclusions: 

⚫ An integrated energy, electricity, economy forecasting and warning system is established, 

which might offer a more multivariate data to do more accurately predict.  

⚫ The new forecasting model is more suitable to predict the electricity consumption of the 

industry in the New Normal economic environment. 

⚫ The electricity consumption of the energy-intensive industries is 242.25*108 kWh, the growth 

rate of which is -4.6%. The decrease of the electricity consumption might be attribute to the 

strictly environmental supervision.  

⚫ Based on the more precisely electricity consumption prediction, overcoming the intermittent 

problem of renewable energy power generation would become much easier. Moreover, Energy 

Internet will become more stable. 
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