Paper The following article is Open access

Characterization of phytase enzymes as feed additive for poultry and feed

, , and

Published under licence by IOP Publishing Ltd
, , Citation M Lamid et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 137 012009 DOI 10.1088/1755-1315/137/1/012009

1755-1315/137/1/012009

Abstract

One of the obstacles to utilizing rice bran as feed is the presence of antinutrition in the form of phytic acid which binds in minerals to form complex compounds with P, Mg, Mn, Fe, Zn, Ca. Phytic acid and its salts are the main forms of P, Mg, Mn, Fe, Zn, Ca deposits contained in cereals, legume and grains, about 60-90% of total minerals P, Mg, Mn, Fe, Zn, Ca in the form of phytic acid or phytate salts. Phytate is one of the enzymes belonging to the phosphatase group capable of hydrolyzing phytate compounds of myo-inositol (1,2,3,4,5,6) hexsa phosphatase into myo-inositol and organic phosphat. The aim of this study was to obtain characterization of phytase enzymes from isolate Actinobacillus sp., Bacillus pumilus, Bacillus vallimortis and IBR-1. Determination of phytase activity and the absorbance was measured using a UV-Vis spectrophotometer at a wavelength of 392 nm. The result of Actinobacillus sp, Bacillus pumilus, Bacillus vallimortis, IBR-1 each having optimum temperature were 50°C, 40°C, 45°C, 45°C, and optimum pH were 4, 4, 5.5. Bacteria especially Actinobacillus sp, Bacillus pumilus, Bacillus vallimortis, IBR-1 are proven capable of producing the high enough phytase enzymes required for mineral availability for livestock and fish.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.