Paper The following article is Open access

Matching energy targets, stakeholders' needs and modelling choices in developing urban energy scenarios

, , and

Published under licence by IOP Publishing Ltd
, , Citation D Maiullari et al 2022 IOP Conf. Ser.: Earth Environ. Sci. 1078 012087 DOI 10.1088/1755-1315/1078/1/012087

1755-1315/1078/1/012087

Abstract

In order to meet greenhouse gas reduction goals, cities need to develop robust energy transition strategies relying both on the local capacity of combining social, economic and environmental perspectives in the decision-making process and on the collaboration between different actors to achieve knowledge and data integration. Scenarios are well-established methodological instruments to guide decisions in energy and spatial planning and have been employed to compare possible future pathways and envision the consequences of implementing decarbonization measures. However, qualitative and quantitative scenarios approaches are often disconnected. With the primary goal of supporting the implementation of the energy plan, this study develops for the City of Gothenburg a participatory method to support the alignment of qualitative and quantitative scenarios approaches. Decarbonization actions and drivers of change were discussed and prioritized in workshop sessions with representatives from the energy supplier(s), municipal administrations (city planners, environmental department), and researchers to develop relevant qualitative scenarios descriptions. Based on this, a list of requirements for quantitative scenarios analysis is developed to be, in a next step, translated and integrated into urban building energy models. Findings indicate the importance of early knowledge integration from different fields and highlight the lines of advancement in urban energy modelling to facilitate decision-making towards successful implementation of decarbonization targets.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1755-1315/1078/1/012087