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Abstract

Lung cancer is one of the common malignancies with high mortality rate and a poor prognosis.
Most lung cancer cases are diagnosed at an advanced stage either due to limited resources of
infrastructure, trained human resources, or delay in clinical suspicion. Low-dose computed
tomography has emerged as a screening tool for lung cancer detection but this may not be a
feasible option for most developing countries. Electronic nose is a unique non-invasive device that
has been developed for lung cancer diagnosis and monitoring response by exhaled breath analysis
of volatile organic compounds. The breath-print have been shown to differ not only among lung
cancer and other respiratory diseases, but also between various types of lung cancer. Hence, we
postulate that the breath-print analysis by electronic nose could be a potential biomarker for the
early detection of lung cancer along with monitoring treatment response in a resource-limited
setting. In this review, we have consolidated the current published literature suggesting the use of
an electronic nose in the diagnosis and monitoring treatment response of lung cancer.

1. Introduction

Lung cancer (LC) is one of the common cancer world-
wide with high mortality, accounting for 18.4% of all
cancer deaths [1]. Patients are often diagnosed at an
advanced stage, thereby limiting curative treatment
options. Timely diagnosis and appropriate treatment
remain critical for survival and improved outcomes
of patients with LC. The long-term prognosis of LC
is directly related to the stage of cancer at the time
of diagnosis, and 5 year survival rates can range from
5% for stage IV cancers to 80% for stage I cancers [2].
Therefore, improving the detection rate of early-stage
LC is essential for improving the prognosis of LC, and
prolonging survival.

According to a report published from AIIMS,
New Delhi, a vast majority of lower-income Indian
patients are staged with advanced disease at the time
of diagnosis [3]. It took around 4-5 months to reach
the diagnosis of LC, and even longer to start specific

© 2023 The Author(s). Published by IOP Publishing Ltd

therapy. A major cause of this delay was incorrect dia-
gnosis and subsequently inappropriate treatment for
TB, especially in low middle income countries. Other
challenges may include lag time from symptom onset
to the first visit to the primary care physician, delayed
investigation procedures, and delay between the dia-
gnosis and start of definitive therapy [4]. LC screen-
ing programs using low-dose computed tomogram
scans are ongoing in several countries for early dia-
gnosis of LC amongst high-risk individuals [5]. How-
ever, these may not be cost-beneficial in resource lim-
ited settings. A need is therefore, to develop and use
newer, innovative strategies for early detection of LC
with the aim of improving survival.

The addition of non-invasively obtained bio-
markers could provide much-needed value to these
efforts. With an increased understanding of the
mechanisms behind LC development and progres-
sion, a number of potential biomarkers have been
developed and some others are in various stages of
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development. The biochemical processes of diseased
organs get altered, which in turn results in the pro-
duction of new chemicals or altered consumption of
existing chemicals [6]. These abnormal changes alter
the composition of the body fluids resulting in an
altered gas mixture of volatile organic compounds
(VOCs) that may be analyzed in various specimens. In
this context, exhaled breath appears to be an attract-
ive option for non-invasive analysis of these biomark-
ers. Specific breath signatures can serve as potential
biomarkers for individual diseases and can be useful
not only for early disease detection but also to under-
stand their pathogenesis [7]. Among these, VOCs
and breath-print detection in the exhaled breath of
patients have been shown to be effective in respirat-
ory diseases, especially in LC.

2. Volatile organic compounds (VOCs)
and electronic nose (eNOSE)

VOC:s are small molecular mass compounds having
high vapor pressure and a low boiling point [8]. These
substances are produced by every living organism and
reflect the metabolic processes including inflamma-
tion and oxidative stress. They can be measured in
several body specimens such as exhaled air, blood,
urine, faeces, and pleural fluids. However, most stud-
ies have focused on the detection and measurement
of VOCs in the exhaled breath. VOCs get produced by
different metabolic activities and are associated with
different diseases. Interestingly, metabolic pathways
like glycolysis, apoptosis, and angiogenesis also get
activated during cancer progression. However, there
is a lack of evidence on describing interlink between
metabolic pathways influencing exhaled breath signa-
tures among the LC patients.

To identify individual VOCs, researchers have
used gas chromatography coupled with mass spectro-
metry (GC-MS) [9]. In this method, the gas sample is
transferred into GC-MS where it is analyzed accord-
ing to the time to elution in the chromatography
column and to the mass-to-charge ratio which is
an expensive and time-consuming process. However,
with the advancement of technology, researchers have
looked for new approaches like exhaled breath print
through cross-reactive sensors, aiming at defining
specific patterns of disease-related VOCs.

Recent evidence also suggests the role of VOCs
in cell-to-cell communication. Serasanambati and his
colleagues have reported that cancer cells can change
the phenotype of neighboring cells through the up-
regulation of VOCs [10]. The concentration of VOCs
in the LC cell culture was significantly augmented in
physically connected cells in comparison to physic-
ally unconnected cells. Hence, the authors concluded
that analyzing these VOCs would serve as a poten-
tial tool for LC diagnosis. New, highly sensitive nano-
array sensors for exhaled VOCs have been developed
using electronic nose technology which is coupled
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with powerful statistical programs [11]. An eNOSE
device consists of an array of gas/VOC sensors integ-
rated with artificial neural networks that has been a
promising non-invasive technology for detecting and
delineating targeted VOCs from the exhaled breath
resulting in early diagnosis of several diseases. These
sensors range from conducting polymers, metal oxide
semiconductors (MOS), piezoelectric, optical fluor-
escence, quartz crystal microbalance and amperomet-
ric gas sensors [12]. It has been designed to func-
tion as human nose and brain. The human nose
and brain are trained to detect several volatile com-
pounds, which interact with neuron cell receptors and
then send back signals to the brain for further pro-
cessing. Similarly, electronic nose detects the presence
of these volatile compounds by sensor signals and
processes them to detect various chemicals in vapor
form by artificial intelligence. Since the last decade,
researchers have focused on developing sensors which
are highly sensitive and specific. These sensors have
been developed to detect VOCs which could possibly
differentiate LC from healthy subjects and from other
respiratory diseases. After signal processing and fea-
ture extraction, the output of the sensors is coupled
with pattern recognition algorithm for training and
testing. This review highlights the published literat-
ure suggesting the utility of an electronic nose in the
diagnosis and monitoring treatment response of LC.

3. Diagnosis of LC using eNOSE

Various electronic nose devices have been used and
developed for detecting LC and discriminating from
healthy controls since the early 2000. Over the last
two decades several studies which have evaluated
the diagnostic utility of eNOSE device. With the
use of newer technology devices coupled with better
machine learning algorithms, the diagnostic accur-
acy has improved. McWilliams and his colleagues col-
lected breath samples from LC patients and high-
risk smokers without cancer using the cyranose 320
device [13] and were able to discriminate LC from
non-LC with 80% accuracy. Subsequently, Rocco and
his colleagues validated an artificial olfactory elec-
tronic nose system-bionote to detect LC with a sens-
itivity and specificity of 86% and 95% respectively in
high-risk individuals [14]. Shlomi and his colleagues
reported that they could discriminate LC from benign
pulmonary nodules with a sensitivity, specificity,
and accuracy of 75%, 93%, and 87%, respectively
[15]. Rodriguez Aguilar and colleagues have recently
shown the diagnostic accuracy of cyranose 320
devices in chronic obstructive pulmonary disease
(COPD) and LC patients. Despite the different causes
of disease development like smoking and household
pollution, there was no difference in the breath-prints
between COPD-smokers and COPD-household pol-
lution cohort [16]. Furthermore, the authors have
shown that they could discriminate between healthy
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COPD, LC and breast cancer groups with an accur-
acy of 91.35% [17]. Another study by Kort and
her colleagues have shown that non-small cell LC
(NSCLC) could be differentiated from suspected LC
by using different electronic nose device-Aeonose
which had a better sensitivity (94.4%) but lower spe-
cificity (32.9%) [18]. Recently, the same authors have
published a multicenter validation study concluding
that by combining exhaled breath data with clinical
variables, they could discriminate between NSCLC
from non cancer subjects [19]. Marzorati and col-
leagues have developed an artificial neural network-
based classification tool which could discriminate
healthy controls from LC with a sensitivity of 85.7%,
specificity of 100%, and accuracy of 93.8% [20]. Fur-
thermore, Cai and colleagues used ZNOSE4200 device
to differentiate LC from non-LC with an accuracy
of 82.8%, a sensitivity of 76.0%, and a specificity of
94.0% [21]. The details of the studies which looked at
LC diagnosis using electronic nose device have been
summarized in table 1.

4. Discriminating LC from other chronic
respiratory diseases using eNOSE

The ability of eNOSE to differentiate LC from other
respiratory diseases including COPD, idiopathic pul-
monary fibrosis (IPF) and pulmonary arterial hyper-
tension (PAH) has also been studied. In majority of
the studies, eNOSE demonstrated greater than 80%
accuracy in discriminating LC from other diseases. In
one study Mazonne and his colleagues [22] included
49 patients of NSCLC, 18-COPD, 15-IPF, 20-PAH,
and 20 patients of Sarcoidosis along with 21 healthy
controls and found that eNOSE could discriminate
LC from these respiratory diseases with a sensitivity
of 73.3% and a specificity of 72.4% (p = 0.01).

D’Amico and his colleagues were able to differen-
tiate LC from other lung diseases like interstitial lung
diseases, COPD, bronchitis, and pleurisy with a global
rate of success of 85.7% and sensitivity and specificity
0f 93% and 73% respectively [23]. Wang and his team
used surface acoustic wave (SAW) gas sensors to sep-
arate chronic bronchitis patients as well as healthy
controls with high accuracy [24].

This technology has also been used to distinguish
LC from other cancers, such as colon, breast, and
prostate with reasonable degree of success. Moreover,
the nano-sensor array could distinguish between the
breath patterns of different cancers irrespective of age,
gender, lifestyle, and other confounding factors.

Similarly, Hakim and his colleagues have ana-
lyzed the three binary data sets of LC, head and
neck cancer and healthy controls using NA-NOSE
developed by HAICK and were able to differentiate
between these groups with sensitivity of 100% and
specificity of 92% [25]. De Vries and his colleagues
were able to discriminate LC from asthma, COPD,
healthy controls with an accuracy of 87%, 68%, and
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88% respectively [26]. Rodriguez Aguilar and col-
leagues have recently shown have shown that they
could discriminate between healthy COPD, LC and
breast cancer groups with an accuracy 0of91.35% [17].
The summary of these studies is depicted in table 2.

5. Discriminating various LC
morphological types using eNOSE

Few investigators have also looked into distinguish-
ing various types of LC cases based on breath-print
signatures analyzed by eNOSE device. Barash and
his colleagues could discriminate adenocarcinoma
from squamous cell carcinoma lung using gold nano-
particle based sensors with an accuracy of 96% [27].
This was further supported by Shlomi et al, who
showed that eNOSE could discriminate patients of
adenocarcinoma lung with and without epidermal
growth factor receptor mutation with an accuracy
of 83% [15]. Peled and colleagues have reported
the use of eNOSE to discriminate LC nodules from
benign lung nodules and also to distinguish between
adenocarcinoma and squamous cell carcinoma [28].
Although all were single-center studies, preliminary
results of eNOSE show encouraging results in dia-
gnosing LC along with its sub types and also distin-
guishing from other chronic respiratory diseases.

6. Discrimination of various LC stages
using eNOSE

Peled and colleagues have also reported the use of
eNOSE to distinguish between early stage LC and
advanced stage LC [28]. Recently, Ke Chen and his
colleagues used eNOSE to differentiate LC from non-
LC, as well as between stage III and stage IV LC [29].
The authors used indigenously made electronic nose
device containing 11 gas sensors and were able to
detect the presence of LC with an accuracy of 93.6%,
a sensitivity of 95.6% and a specificity of 91.1%. In
the same study this eNOSE system could differentiate
stage III and stage IV LC with an accuracy of more
than 80%, although attempts to differentiate early
stage cancer from advanced cancer were not reward-
ing due to very few patients with early stage disease.

7. Prognostic value of eNOSE in LC

The prognostic utility of eNOSE in LC has been
evaluated in limited studies only. De Vries and col-
leagues have shown the accuracy of serial estim-
ation of VOC signatures in exhaled breath ana-
lysis line for assessing non-responders versus respon-
ders to anti-programmed death ligand-1 (anti-PD-
1) therapy for three months in NSCLC [30]. Based
on the immunohistochemistry analysis of anti-PD-
1 antibody, VOC signatures in exhaled breath were
able to differentiate non-responders from respon-
ders with a specificity of 81%, sensitivity of 50% and
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Table 1. Studies on electronic nose for early detection of lung cancer.
Sr.No.  Author/Year No. of participants Device Sensitivity  Specificity Accuracy
1 Natale et al LC (n = 42), Libranose — — LC—100%,
(2003) [34] controls (n = 18) Controls—94%
2 Machado et al LC (n = 28), Cyranose 320 71.4% 91.9% —
(2005) [35] controls (n = 135)
3 Chen et al LC (n=24), SAW based — — —
(2006) [36] other lung disease eNOSE
(n = 8), controls
(n=18)
4 Blatt et al LC (n = 43), MOS sensors 95.3% 90.5% 92.6%
(2007) [37] controls (n = 58) based eNOSE
5 Yuetal (2011) LC(n=09), Semiconductor  100% 88.9% 94.4%
[38] controls (n =9) & EC based
CN eNOSE
6 Mazonne et al LC (n=92), Colorimetric 70% 86% 81.1%
(2012) [39] controls (n = 137) sensor array
7 Peled et al LC (n = 53), Nanoscale — — 88%
(2012) [40] controls (n =19) NA-NOSE,
coupled with
GC-MS
8 Wang et al LC (n=47), MOS SAW 93.62% 83.37% —
(2012) [24] controls (n = 42) based eNOSE
9 Broza et al LC (n=12), Nanomaterial 100% 80% —
(2013) [41] controls (n =5) based eNOSE
10 Bikov et al LC (n=27), Cyranose 320 63% 78% 72%
(2014) [42] controls (n = 37)
11 McWilliams LC (n = 25), Cyranose 320 88% 81.3% —
etal (2015) controls (n = 166)
[13]
12 Rocco et al LC (n = 23), Bionote 86% 95% —
(2016) [14] controls (n = 77)
13 Gasparri et al LC (n=70), Libranose 81% 91% —
(2016) [43] controls (n = 76)
14 Nardi-Agmon LC (n=139) Nanoscale 93% 85% 89%
etal (2016) NA-NOSE
[44] coupled with
GC-MS
15 Shlomi et al LC (n = 89), Nano-material ~ 75% 93.3% 87%
(2017) [15] Benign patients based sensor
(n=130) array
16 Caietal (2017) LC(n=157), zNose4200 76% 94% —
[21] controls (n = 72)
17 Huang et al LC (n = 56), Carbon 75%-100% 86.2%-96.6%  85.4%-92.7%
(2018) [45] controls (n = 188) nanotubes
sensor array
18 Kort et al LC (n = 144), Aeonose 94.4% 32.9% —
(2018) [18] controls (n = 146)
19 Van de Goor LC (n=52), Aeonose 83% 84% 83%
etal (2018) controls (n = 93)
[46]
20 Marzoratietal LC (n=6), MOS Sensor 85.7% 100% 93.8%
(2019) [20] controls (n = 10) array
21 Saidi et al LC (n = 32), Chemical gas — — 98.6%
(2020) [32] controls (n = 12) sensor
22 Kort et al LC (n = 239), Aeonose 95% 49% —
(2022) [19] controls (n = 253)

an receiver operating characteristic-area under curve
(ROC-AUC) of 0.85 (CI, 0.7-0.96). The authors fur-
ther validated these results in an independent set of

patients with advanced stage NSCLC.

Recently, Alessandra Buma and colleagues have
also discriminated anti-PD-1 responders from non-
responders after 6 weeks of treatment in NSCLC

patients using SpiroNose device [31]. At the end
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Table 2. Studies on electronic nose for discriminating lung cancer from other chronic lung diseases.
Sr. No. Author Year No. of participants Device used Sensitivity ~ Specificity =~ Accuracy
1 Mazonne et al NSCLC (n = 49), Colorimetric 73.3% 72.4% —
(2007) [47] COPD (n = 18), sensor array
IPF (n = 15),
PAH (n = 20),
Sarcoidosis
(n=20),
controls (n = 21)
2 Wang et al LC (n=15), SAW based — — —
(2008) [48] other lung disease eNOSE
(n=7),
controls (n = 10)
3 Dragonierietal  LC (n = 10), Cyranose 320 — — 85%
(2009) [49] COPD (n = 10),
controls (n = 10)
4 D’Amico et al LC (n = 28), Libranose 93% 79% 85.7%
(2010) [23] other lung disease
(n=128),
controls (n = 36)
5 Peng et al LC (n = 30), Nanosensors — — —
(2010) [50] other cancers based GNP
(n = 66), coupled with
controls (n = 81) GC-MS
6 Tran et al LC (n=16), ENS-Mk3 — — —
(2010) [51] other lung disease
(n=11),
controls (n = 62)
7 Peng et al LC (n = 25), Nanoscale NA 100% 92% —
(2011) [50] HNC (n = 22), Nose
controls (n = 40)
8 Capuano et al LC (n = 20), QMB based — — 90%
(2014) [52] other lung disease eNOSE coupled
(n=10) with GC-MS
9 Hubers et al LC (n = 38), Cyranose 320 80% 48% —
(2014) [53] COPD (n = 39)
10 De Vries et al LC (n=31), Spironose — — 87%(a),
(2015) [26] COPD (1 = 31), 68%(b),
Asthma (n = 37), 88%(c)
controls (n = 45)
11 Tan et al LC (n=12), Chemiresistor 83% (a), 88% (a), —
(2016) [54] COPD (n=12), based alkane 86% (b), 80% (b),
controls (n = 13) eNOSE 80% (c) 93% (c)
12 Von Hooren LC (n = 32), Aenose 85% 84% —
etal (2016) HNC (n = 52),
[55]
13 Lietal (2017) LC (n=24), Different sensors 91.58% 91.72% —
[56] other lung disease
(n=5),
controls (n = 23)
14 Nakhleh et al LC (n = 45), Au Nanoparticles — — 86%
(2017) [57] other cancers & single walled
(n=1357), carbon
controls (n = 411) nanotubes
15 Tirzite et al LC (n=165), Cyranose 320 87.3% 71.2% 93%
(2017) [58] non-cancer
(n=091),

controls (n =79)

(Continued.)
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Table 2. (Continued.)

Sr. No. Author Year No. of participants Device used Sensitivity ~ Specificity =~ Accuracy
16 Tirzite et al LC (n = 252), Cyranose 320 95.8% 92.3% —
(2019) [59] controls (n = 223)
17 Binson et al LC (n = 40), MOS Sensor 91.3% 84.4% 94.4%
(2021) [33] COPD (n = 48), array
controls (n = 90)
18 Rodriguez LC (n = 30), Cyranose 320 — — 91.35%
Aguilar et al Breast Ca (n = 50)
(2021) [17] COPD (n = 50),

controls (n = 50)

of sixth week of treatment, patients with partial
response showed a distinct clustering of prediction
scores towards higher probabilities of an objective
response, while the patients with progressive disease
showed a distinct clustering towards lower probabil-
ities of an objective response. However, the patients
with stable disease showed an increased spread in pre-
diction scores, with the majority of scores falling back
to low probabilities of an objective response.

Authors from both the above studies concluded
that exhaled breath analysis by eNOSE could be
used in classifying responders and non-responders.
Electronic nose based on cross-reactive non-specific
sensor arrays could accurately identify true respon-
ders to anti-PD-1 therapy.

8. Use of eNOSE in LC patients in
developing countries

Most of the studies on eNOSE have been performed
in developed countries. However, few studies describe
the application of eNOSE in LC patients in develop-
ing low and middle income countries as well. Tarik
Saidi and his team observed differentiation of LC
patients from healthy controls using UV-irradiated
WOs; sensor array. Further, the authors could dis-
criminate between the NSCLC and small cell LC
with the accuracy of 84.5% and between squam-
ous cell carcinoma and adenocarcinoma with 77.5%
[32]. Recently, Rodriguez Aguilar and his colleagues
could discriminate LC from breast cancer and COPD
patients with the accuracy of more than 90% in
Mexican subjects [17]. The problem of air pollution
is of concern in developing countries which could
influence disease development and outcome. Rodrig-
uez Aguilar and his colleagues have shown that the
breath-prints between COPD-smokers and COPD-
household pollution cohorts were similar [16]. V
A Binson and his colleagues from India have used
MOS sensor based eNOSE to discriminate of LC from
healthy control with an accuracy, sensitivity and spe-
cificity of 91.3%, 84.4% and 94.4% respectively [33].

Exhaled breath analysis shows promising res-
ults as regards to diagnosing and monitoring treat-
ment response in LC patients. The main confound-
ing factors in breath-print analysis were related to the

6

type of device used, validation of the device, popu-
lation studied, age and ethnicity, smoking status and
sample size. However, in the resource limited settings
or areas with a high burden for endemic diseases like
Tuberculosis, the clinical use of eNOSE technology is
yet to be investigated further.

9. Conclusion

Electronic nose is emerging as a promising tool for
non-invasive diagnosis of LC and for differentiating
various LC sub-types. Currently, however, it remains
primarily a research tool since evidence in insuffi-
cient to qualify it as a point-of-care diagnostic test for
routine clinical practice. The available databases on
breath signatures are not universal due to either lack
of sensitivity, specificity, reproducibility and valid-
ity of various eNOSE devices. Thus, there is a need
of large scale validation studies in both developed
and developing countries which could help develop
eNOSE device as a potential non-invasive diagnostic
and prognostic tool for LC
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