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Abstract

The identification of bacteria by their volatilomes is of interest to many scientists and clinicians
as it holds the promise of diagnosing infections in situ, particularly lung infections via breath
analysis. While there are many studies reporting various bacterial volatile biomarkers or
fingerprints using in vitro experiments, it has proven difficult to translate these data to in vivo
breath analyses. Therefore, we aimed to create secondary electrospray ionization-mass
spectrometry (SESI-MS) pathogen fingerprints directly from the breath of mice with lung
infections. In this study we demonstrated that SESI-MS is capable of differentiating infected
versus uninfected mice, P. aeruginosa-infected versus S. aureus-infected mice, as well as
distinguish between infections caused by P. aeruginosa strains PAO1 versus FRD1, with
statistical significance (p < 0.05). In addition, we compared in vitro and in vivo volatiles and
observed that only 25-34% of peaks are shared between the in vitro and in vivo SESI-MS
fingerprints. To the best of our knowledge, these are the first breath volatiles measured for

P. aeruginosa PAO1, FRD1, and S. aureus RN450, and the first comparison of in vivo and

in vitro volatile profiles from the same strains using the murine infection model.

1. Introduction

Bacteria produce unique combinations of volatiles that can
be used to identify the genus and species, and in many cases
the strain or serovar [1-3]. The ability to identify bacteria by
their volatilomes has generated great expectations for rapid and
non-invasive clinical tests that are able to diagnose and identify
infections in situ, particularly for diagnosing lung infections
via breath analysis [3—7]. However, the development and
implementation of clinical tests based on volatile biomarkers
have been limited due to the historical reliance on small
numbers of volatile compounds for detection. Tests that rely on
few biomarkers suffer from poor sensitivity and/or specificity
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because of variations in human metabolism, infectious
species and strains, and the patient’s environment [8—10].
An individual’s breath contains hundreds of compounds,
with a small fraction (an estimated 10%, or less) of these
volatiles being universal, i.e. found in all human breath
[10-12]. The majority of breath volatiles are low-frequency
compounds present in combinations that are distinctive to
an individual, thereby increasing the complete human breath
volatilome (positive and negative alveolar gradients) to an
estimated 4000-6000 compounds [6, 12]. This high degree of
variability in the composition of human breath underscores the
difficulty inherent to choosing a small number of biomarkers
for diagnostic purposes.

The detection of Pseudomonas aeruginosa, a common,
opportunistic Gram-negative bacterium that frequently infects
the cystic fibrosis (CF) lung, has been attempted via the use
of several single biomarkers in breath [4, 13—15]. However,

© 2013 IOP Publishing Ltd  Printed in the UK & the USA


http://dx.doi.org/10.1088/1752-7155/7/1/016003
mailto:jane.hill@uvm.edu
http://stacks.iop.org/JBR/7/016003
http://creativecommons.org/licenses/by-nc-sa/3.0
file://creativecommons.org/licenses/by-nc-sa/3.0

J. Breath Res. 7 (2013) 016003

J Zhu et al

these studies and others have concluded that both external and
environmental factors can confound the reliability of single
biomarkers. For instance, 2-aminoacetophenone (2-AA) is a
bacterial metabolite specific to P. aeruginosa [4, 16, 17] and
is a sensitive biomarker of P. aeruginosa infections [4, 18].
However, this compound is also found in the breath of
uninfected subjects shortly after eating certain foods [4, 19].
Hydrogen cyanide (HCN) is present in statistically-higher
concentrations in the breath of children with CF-related P.
aeruginosa lung infections versus uninfected CF controls [15],
but the relative abundance of HCN in the clinical environment
[13] and the oropharyngeal cavity [20], and the wide range
of background concentrations in adults [20, 21] negatively
impact the selectivity and specificity of this biomarker. While
confounding factors such as diet or environmental background
concentrations of putative biomarkers can be controlled for
when known, identifying all potential interferences for single
biomarkers is a labor-intensive approach.

Additional problems arise when translating volatile
biomarkers from the lab to the clinic, as many of the hallmark
bacterial volatiles have been identified in vitro, but are absent
in vivo or below the limits of detection in breath. Using in vitro
analyses, Syhre and colleagues identified putative volatile
biomarkers from Mycobacterium tuberculosis, but only one
of the four major biomarkers have been identified in the breath
of M. tuberculosis-infected subjects [22, 23]. Lastly, methyl
thiocyanate has been observed in the in vitro headspace of 78%
of P. aeruginosa clinical isolates, yet is not statistically more
abundant in the breath of P. aeruginosa-infected CF patients
versus non-infected CF patients, nor versus healthy controls
[9]. Because of the lack of success in developing breath
diagnostics from selected in vitro volatile biomarkers, several
techniques are being explored that capture more complete
breath volatilomes for the diagnosis of infectious disease.
This approach, typically referred to as volatile profiling
or fingerprinting, is being developed on chemical sensor,
gas chromatographic (GC), and mass spectrometric (MS)
platforms [3, 6, 14, 24-32]. Combining more than a dozen
GC or GC-MS breath biomarkers has proven to be a reliable
strategy for diagnosing P. aeruginosa lung infections [6, 14].
Other technologies that capture simultaneous information on a
range of compounds, such as the electronic nose, are selective
and specific for diagnosing respiratory diseases [3], and are
being expanded toward detecting bacterial lung infections,
such as tuberculosis [33, 34].

One fingerprinting technology we are developing for
bacterial identification is the secondary electrospray ionization
mass spectrometry (SESI-MS) [1, 35], which is able to detect
volatile molecules that can be protonated or deprotonated
during the analysis (i.e., contains O, N, or S heteroatoms).
Previous studies have demonstrated the capabilities of SESI-
MS for real-time detection and identification of VOCs, with
a limit of detection as low as parts per trillion [36]. Using
SESI-MS volatile fingerprinting we can distinguish bacteria
to the strain/serovar level and in mixed cultures when
grown aerobically to stationary phase in vitro [1]. However,
because flask fingerprints and biomarkers may not translate to
the goals of detecting human or animal pathogens in vivo, we

aimed to create SESI-MS pathogen fingerprints directly from
breath. For the experiments described herein, we established
murine lung infections using two species of bacteria that
we have previously characterized in vitro, P. aeruginosa and
Staphylococcus aureus, and compared the in vivo SESI-MS
fingerprints, or ‘breathprints’, to the bacteria’s in vitro volatile
fingerprints. We observed that there are characteristic changes
to the SESI-MS breathprint that indicate the presence of
infection as well as allow for the identification of the infecting
species and strain. We also report that the similarity between
the in vivo and in vitro bacterial volatile fingerprints ranges
from about one quarter to one-third of the total volatiles
produced.

2. Materials and method

2.1. Bacterial strains and growth condition

The strains used in this study were P. aeruginosa PAO1-UW,
P. aeruginosa FRD1 and S. aureus RN450 (courtesy of
Professor G L Archer, Virginia Commonwealth University).
For in vivo test preparation, strains were incubated aerobically
in tryptic soy broth (TSB; 16 h, 37 °C, 200 rpm; final ODggg >
3.0). For in vitro test preparation, strains were incubated
aerobically in TSB (16 h, 37 °C, 200 rpm) whereafter 50 uL
was used to inoculate 50 mL TSB for 24 h (16 h, 37 °C,
200 rpm, OD600 > 30)

2.2. Mice

Six- to eight-week-old male C57BL/6J mice were purchased
from The Jackson Laboratories (Bar Harbor, ME). All
mice were housed in the Association for Assessment and
Accreditation of Laboratory Animal Care-accredited animal
facility at the University of Vermont (Burlington, VT). The
protocol for animal infection and respiratory physiology
measurements was approved by the Institutional Animal Care
and Use Committee, in accordance with Association for
Assessment and Accreditation of Laboratory Animal Care
guidelines.

2.3. Microbial airway exposure protocol

An acute airway exposure model was applied in this study.
Briefly, overnight cultures of PAO1, FRD1 and RN450 were
measured for ODgq, centrifuged at 13000 rpm for 1 min,
washed twice with phosphate buffer solution (PBS), and
resuspended to give the desired concentration of bacteria
(5 x 10% CFU for PAO1, 1 x 107 CFU for FRDI and
1 x 10® CFU for RN450) in 40 puL PBS. Mice were
briefly anesthetized (isoflurane by inhalation) and infected
by oropharyngeal aspiration as described previously [37, 38].
Uninfected mice were exposed to 40 uL. PBS as a negative
control. Five mice per group were exposed and testing was
conducted on two different days. After breath collection,
the lungs were harvested and homogenized, and the lung
bacterial cell counts were obtained by plating on selective
media, yielding averages of 1 x 10> CFU/lung for PAOI,
5 x 10° CFU/lung for FRD1 and 2 x 10° CFU/lung for
RN450.
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2.4. Mice ventilation and breath sample collection

The mice were anesthetized with pentobarbital 24 h after
infection and their tracheas were cannulated. The mice were
placed on the ventilators (Flexivent, SCIREQ, Montreal,
QC, Canada) and paralyzed with intraperitoneal pancuronium
bromide (0.5 mg kg~'), and an ECG was applied to monitor
heart rate to ensure proper anesthesia. Breath coming out of the
ventilator was collected in Tedlar bags (SKC, Eighty Four, PA)
at 180 breaths min~! with a positive end-expiratory pressure
(PEEP) of 3 cm H,O for 1 h.

2.5. Secondary electrospray ionization mass spectrometry
and breath sampling

Breath volatiles analyses were performed using secondary
electrospray ionization mass spectrometry (SESI-MS). The
instrumental setup has been previously described [1, 35, 39].
Briefly, the original ionization source of an API 3000
mass spectrometer (SCIEX, Concord, ON, Canada) was
replaced with a stainless steel SESI-MS reaction chamber
equipped with an electrospray capillary and a gas transfer line
through which the breath volatiles are introduced into the
reaction chamber (for a detailed schematic of the SESI-MS
system, please see reference [35]. Gas flow of 5 L min~! was
driven by a mechanical pump that connected to the sampling
gas outlet of the SESI-MS reaction chamber. The breath sample
was introduced into the reaction chamber for 30 s at a flow rate
of 3 L min~!, supplemented with 2 L min~! CO; (99.99%)
at ambient temperature. Formic acid (0.1% (v/v)) was used
as the electrospray solution, delivered at a flow rate of
5 nL s~! through a non-conductive silica capillary (40 pm
ID) with a sharpened needle tip. The operation voltage was
~3.5kV. Spectra were collected within 30 s as an accumulation
of 10 scans in positive-ion mode. The system was flushed
with CO, between samples until the spectrum returned to
background levels.

2.6. Data analysis and statistics

Analyst 1.4.2 software (Applied Biosystems) was used for
spectra collection and raw data processing. Mass spectra
shown in each figure are the average spectra of all replicates
in each group. Full scan spectra shown in the figures have
been blank-subtracted (for in vitro tests, the blank spectrum
is the spectrum generated by sterile media; for in vivo
tests, the blank spectrum is humidified room air collected
using the same procedure as for mice breath) and normalized
to the peak of greatest intensity. To evaluate the reproducibility
of breathprints in each group, we used the Spearman rank
correlation. Then we applied the multivariate analysis method
principal component analysis (PCA) to establish statistical
evidence for the uniqueness of breathprints from different lung
infections. PCA is a statistical tool used to compress complex
information and is typically applied when the measurements
have a large number of observed variables (e.g., m/z from
the mass spectra). Peaks between 20 and 200 m z~' (mass-
to-charge ratio) and greater than 1% relative intensity (after
blank subtraction) were used as variables, with their absolute
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Figure 1. SESI-MS breathprints of mice with P. aeruginosa PAO1,
P. aeruginosa FRD1, or S. aureus RN450 lung infections, or
uninfected lungs. Each spectrum is the average of breath from five
mice after a 24 h lung infection.

intensities used for the calculations in PCA. All experimental
replicates were used as observations. SAS version 9.2 and JIMP
version 9 (SAS Institute Inc., Cary, NC, USA) were used to
generate Spearman rank correlation coefficient, conduct PCA,
as well as to determine the statistical significance of observed
PCA score differences.

3. Results and discussion

3.1. Analysis of mice breathprints

Breath was collected for 1 h from 15 mice infected with
either P. aeruginosa PAOI1, FRDI1, or S. aureus RN450
(five per group), and from five uninfected controls. The
breath volatile compounds were fingerprinted using SESI-
MS (figure 1), yielding 32 peaks from mice infected with
P. aeruginosa PAO1, 61 peaks from mice infected with
P. aeruginosa FRD1 and 63 peaks from the S. aureus-infected
mice. Qualitative analysis of these spectral breathprints shows
that P. aeruginosa infections generate a different volatile
fingerprint compared to S. aureus, and both lung infections
have different breathprints compared to the uninfected control.
In order to check the biological reproducibility of our data,
Spearman rank correlation coefficients were calculated and
the average values between the biological replicates of each
infection group ranged from 0.60 to 0.84 (with standard errors
less than 0.09). The first important question to address in
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Table 1. SESI-MS breathprint signals of infected and uninfected mice.

Ab Ab
Peak UN* PAOl FRD1 RN450 Peak UN" PAO1 FRDI RN450
(m/z) Previously reported® (m/z) Previously reported*
26 X X XX 89 # [14, 18, 24, 46-52]
27 X X X 91 # # # [24, 46]
30 # # 92 #
31 # [52] 93 +
37 # 94 # #
38 # # 95 # [18, 24, 46, 47, 49, 50, 52-55]
39 XX XXX XXX 97 +
40 # # 99 # #
41 XX XXX XXX 101 +
42 X XX [1, 49, 55] 103 X [18, 24, 47]
43 # # 105 #
44 # # 107+
45 X XX XX [24, 52-54, 56] 108+
46 # # 109 # # [1, 18, 46]
47 # # [1, 24,49, 51-57] 110 #
48 # 111+
49 X [24, 52, 53, 55, 56] 114 X
51 # 115 +
52 # 117 # # [24, 52]
53 X X XX 119 #
54 # # # 121 +
55 XX X XX 122 +
56 # 123 +
57 # [1, 24] 128+
58 # 131 +
59 # # [1, 24, 53-55, 57, 58] 132 #
60 X XXX XXX [52] 134 # [46]
65 # # # 135 #
66 # # 136 # # [1,4,6,16, 18, 19, 46, 57]
67 # # 137+
68 # # [24, 46, 49, 52] 139+
70 # # # [24] 141 +
72 # # # 146 #
73 X XX XX [6, 24, 4648, 50, 52, 55, 56] 147 XX X
74 XXX XXX XXX [9,46,47,57] 148 XX X
75 X X [18, 24, 46, 47, 49, 50,52] 150 X
76 X 151 X X
77 # [56] 157 #
78 # 159 #
79 X X X 169 #
80 # 170 XX
81 X 171 #
85 + 174 # #
87 # [1, 24, 46,47, 51, 52, 56] 183 #
88 # # [6] 184 #

2 Peaks that were only measured in the breath of uninfected mice, indicated by +.
b Fold change over uninfected mice: X less than two fold; XX 2—4 fold; XXX more than four fold; # present in infected mice breath but

not in uninfected mice breath.
¢ Previous reports of bacterial VOCs with matching m/z.

diagnosing lung infections is whether or not healthy lungs
can be distinguished from infected lungs, regardless of the
infectious species. We applied PCA to assess group separation
based on the spectra in figure 1. By using only the first
principal component, the breathprints of the infected mice
are statistically different from the uninfected mice (p <0.005).
There are, additionally, important chemical nuances embedded
in this analysis. Five measurable peaks (m/z = 54, 65, 70,
72 and 91; table 1) can only be measured in the breath of

infected mice. In addition, there are 16 peaks (table 1) that
are only observed in the breath of the uninfected controls.
In combination, the presence and absence of these 21 peaks
may serve as breathprint markers of bacterial infection, but
breathprints from additional lung pathogens will be required
to validate the universality of these putative markers.

Next, we explored the possibility of identifying the
infectious species with SESI-MS breathprinting. As seen from
figure 1, the breathprint from mice infected with P. aeruginosa
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is different from those infected with S. aureus, including
18 peaks that are unique to the breath of mice infected with
S. aureus, which are not present in the breath of uninfected
mice or mice infected with P. aeruginosa (table 1). Both strains
of P. aeruginosa are statistically separated from S. aureus using
only the first principal component (p < 0.005). We also found
that SESI-MS breathprinting provides enough information to
differentiate between the two strains of P. aeruginosa used in
this study: PAO1 (an acute infection isolate) [40] and FRD1
(a chronic infection isolate) [41]. PAO1 and FRDI1 share
19 peaks in their breathprint, but there are 10 unique peaks
that distinguish between PAO1 and FRD1 (one peak, m/z =
92, belongs to PAO1 and nine belong to FRD1), as seen in
table 1. These 10 peaks are not produced by uninfected or
S. aureus-infected mice. The PCA showed that the volatile
breathprint from the three bacteria-infected mice groups and
the uninfected control group can all be separated with two
principal components (p < 0.05). Therefore, for the strains
investigated in this study, SESI-MS analysis of the breath of
mice can distinguish between infected and uninfected animals,
and identify the infectious species to the strain level.

To our knowledge, this is the first report profiling
the breath volatiles of mice infected with P. aeruginosa
or S. aureus. However, there have been publications
characterizing the volatiles produced by several strains of
P. aeruginosa and S. aureus, and the SESI-MS peaks we
report here are consistent with volatile biomarkers that have
been previously reported for these species. A summary of
previously published data on protonatable P. aeruginosa and
S. aureus volatiles from both in vitro and in vivo studies is
provided in table 1.

3.2. Comparison of in vitro volatile fingerprints to in vivo
breathprints

The majority of published studies that propose to use
volatile organic compounds (VOCs) to diagnose infectious
disease utilize in vitro data and assume that these data translate
to the host-pathogen VOC fingerprint, and comparison of
in vivo data to in vitro VOCs is rare [4, 22, 23]. We hypothesize
that some VOCs produced in the headspace during in vitro
experiments will be present in the breath of an infected host,
but that there will also be VOCs that are unique to the
host-pathogen interaction. To test this hypothesis, we grew
P. aeruginosa PAO1, FRD1 and S. aureus RN450 in tryptic soy
broth (TSB) and analyzed the in vitro headspace volatiles by
SESI-MS (figure 2) for comparison to the in vivo data collected
for mouse lung infections. When comparing the in vivo and in
vitro data side by side (figure 1 versus figure 2), it is obvious
that the SESI-MS fingerprints are strongly influenced by the
growth conditions. For example, the three most abundant peaks
from the breath of P. aeruginosa PAO1-infected mice are peaks
m/z="73,53 and 147, while the dominant peaks of flask-grown
PAOI1 are m/z = 109, 118 and 82. However, we also observed
some shared peaks between these two experimental conditions
for each bacterial strain. To quantify the relatedness of the
mouse breath and flask-grown volatile fingerprints, the in vivo
and in vitro SESI-MS data were pooled together to generate
a SESI-MS volatilome for the three bacterial strains in this
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Figure 2. SESI-MS spectra of P. aeruginosa PAO1, FRD1 and S.
aureus RN450, grown in vitro in TSB (24 h, 37 °C)

Table 2. Relationship between SESI-MS fingerprints of in vivo and
in vitro bacterial volatiles.

Peaks observed

Strains Invivoonly Invitroonly Incommon
P. aeruginosa PAO1 19 (37%) 20 (38%) 13 (25%)
P. aeruginosa FRD1 40 (51%) 17 (22%) 21 (27%)
S. aureus RN450 18 (14%) 68 (52%) 45 (34%)

study, which yielded a total of 52 peaks for PAO1, 78 peaks
for FRD1 and 131 peaks for RN450 (table 2). For these three
strains, only one quarter to one-third of the total metabolome
is shared between the in vitro and in vivo conditions we
tested. In addition, less than half of the total SESI-MS volatile
metabolome for FRD1 can be captured in vitro.

The high degree of variation we observe between in vitro
volatile fingerprints and in vivo breathprints could be attributed
to a combination of factors. First, bacterial metabolism will
change in response to a new environment [42], particularly
when infecting a new host [43, 44]. For example, FRDI,
a chronic lung infection isolate of P. aeruginosa, has
acquired several mutations to become better suited to the host
environment. Among these FRD1 adaptations are the loss of
catabolic repression control (i.e. looser metabolic regulation)
[45], which may account for the large number of in vivo-
specific peaks it produces. In addition, hallmark volatiles that
are present in vitro may not be measurable in breath. For
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instance, our data show that S. aureus RN450 loses almost
two-thirds of its in vitro SESI-MS fingerprint when compared
to the murine lung infection breathprint (table 2). A second
set of factors influencing the in vivo breathprint of infection
are the volatiles the host produces in response to the pathogen,
which are challenging to predict based on in vitro bacterial
data alone.

4. Conclusions

To the best of our knowledge, these are the first breath volatiles
measured for P. aeruginosa PAO1, FRD1 and S. aureus
RN450, and the first comparison of in vivo and in vitro VOC
fingerprints from the same strains using the murine infection
model. We have demonstrated that SESI-MS breathprinting
can be used to diagnose the presence of lung infections,
and can identify the pathogen down to the strain level. The
in vivo breathprints, however, poorly reflect the pathogens’
in vitro volatile fingerprints, with only 25-34% of shared
peaks between them. Our in vivo breathprinting study adds
to the growing body of literature advancing the promise of
successful breath-based diagnostics for infectious diseases; but
also underscores the challenges of in vitro models to predict
in vivo responses.
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