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ABSTRACT. Some generalizations of spin Sutherland models descend from ‘master integrablé systems’
living on Heisenberg doubles of compact semisimple Lie groups. The master systems represent/Poisson—
Lie counterparts of the systems of free motion modeled on the respective cotangent bundles and their
reduction relies on taking quotient with respect to a suitable conjugation actiondof the compact Lie
group. We present an enhanced exposition of the reductions and prove rigorously for the/first time that
the reduced systems possess the property of degenerate integrability on theidense opén subset of the
Poisson quotient space corresponding to the principal orbit type for the pertinent group action. After
restriction to a smaller dense open subset, degenerate integrability ©On, the generic symplectic leaves is
demonstrated as well. The paper also contains a novel description of the reduced/Poisson structure and
a careful elaboration of the scaling limit whereby our reduced Systems turn'into the spin Sutherland
models.
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1. INTRODUCTION

It is well known that many important integrable Hamiltonian systems can be viewed as low dimensional
‘shadows’ of higher dimensional manifestly integrable master systems. The integrability of the master
systems is due to their rich symmetries, and their shadows result by projection onto the quotient space of
the pertinent master phase space with respect to the symmetry group. This is the essence of the methed
of Hamiltonian reduction and its variants [50]. For example, in the pioneering paper by/Kazhdan,
Kostant and Sternberg [34] the higher dimensional phase space was the cotangent bundle of the unitary
group U(n), and Marsden—Weinstein reduction at a specific moment map value for the Hamiltonian
action of U(n) by conjugations was applied to reduce the master system of free geodesic motion tothe
Sutherland model of n interacting particles on the circle. Several generalizations of this construction were
later investigated in which the group U(n) was replaced by other Lie groups or their symmetric spaces
[49, 51]. Tt turned out that reductions at generic moment map values often lead to many-body systems
possessing internal ‘spin’ degrees of freedom [27, 53]. Infinite dimensional master phase, spaces built
on loop groups [7, 31], and on spaces of flat connections on Riemann surfaces [5, 29] wére also utilized
for constructing integrable systems. Moreover, there appeared interesting applications of the reduction
method [23, 24, 25, 29, 41, 48] in which the nature of the underlying symmetry had been promoted
from Hamiltonian group actions to their generalizations based on Poisson=Lie groups'[10, 11, 62, 63] and
on quasi—Poisson/quasi-Hamiltonian geometry [3, 4]. The reviews [6,438, 47, 52] and the recent papers
[8, 9, 16, 17, 35, 55, 56] show that this subject possesses close connections te, important areas of physics
and mathematics, and enjoys considerable current activity.

The principal goal of the present paper is to complement and enhance our previous results [19, 21]
on the structure of Poisson—Lie analogues of those spin Sutherland models that result by reductions of
cotangent bundles of semisimple Lie groups via the conjugation action.Here, we consider these models
in association with every (connected and simply connected) compact Lie group G having a simple Lie
algebra. The relevant master system is a generalization of the Hamiltonian system on the cotangent
bundle T*G governed by the kinetic energy of a ‘free particle’ moving ®n G in the bi-invariant Riemannian
metric. The master phase space is obtained by replacing the/cotangent bundle by the so-called Heisenberg
double [62], which as a manifold is provided by the complexification G of the group G. This phase space
carries a symplectic structure for which a generalizatiomof the conjugation action of G on T*G represents
Poisson—Lie symmetry with respect to the standard multiplicative Poisson structure on G [36]. There
exist also Hamiltonians on the Heisenberg'double that generate ‘free motion’ in the sense that their flows
project on the geodesic lines on G.

The free motion modeled on T*G yields a degenerate integrable system!, and its reductions by the
conjugation action of G inherit the integrability properties on generic symplectic leaves of the quotient
space T*G/G [53]. The reduced systemis, are spin Sutherland models built on ‘collective spin variables’
belonging to the reduction of the duial space G* of the Lie algebra of G (or a coadjoint orbit therein)
with respect to the maximal torus Gy < G, at the zero value of the moment map. (For the spin
Sutherland Hamiltonian, see equatieq (6.35).) In the Poisson—Lie setting, the space of collective spin
variables becomes a similar reduction of the dual Poisson—Lie group (or a dressing orbit therein), which
is the Lie group G* = B whose Lié algebra B appears in the Manin triple [10, 63] displayed in equation
(2.2). The Poisson-Lieyanalogues. of the spin Sutherland models were first introduced in [19], where
Marsden—Weinstein type reductions of the Heisenberg double were studied employing the shifting trick
of symplectic reductions[50]. This means that the phase space was initially extended by a dressing orbit
of G in B, and then the reduction was defined by setting the relevant B-valued moment map to the
identity value. Théwresulting systems were further investigated in [21] using Poisson reduction, i.e., by
directly taking therquotient of the phase space by the action of the symmetry group G. Via restriction
to symplectic leaves after reduction, the two methods give the same models. The first method is better
suited for describing the reduced symplectic form, while the second one leads more directly to the reduced
Poisson algebra.:

In [194 21] we collected heuristic arguments in favour of the degenerate integrability of the reduced
systems that descend from the master systems of free motion supported by the Heisenberg doubles,
but have notrobtained a full proof. The main achievement of this paper is that we will establish in a
mathematically exact manner the degenerate integrability of the reduced systems after restriction to a
dense open subset of the Poisson quotient. This subset corresponds to the principal orbit type with
respect to-the G-action on the Heisenberg double. After restriction to a smaller dense open subset,
degenerate integrability on the generic symplectic leaves will be proved as well. Our proof of degenerate

1Degenera‘ce integrable systems are also called superintegrable, the notion as we use it is defined in Section 2.2.
2
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integrability was motivated by ideas that we learned from papers by Reshetikhin [53, 54]. It also relies on
techniques introduced in our joint work with Fairon [16] and on the recent note [22] dealing with reduced
integrability on T*G/G.

Besides the main achievement, the analyses of [19, 21] will be further developed in several othenrespects
as well. For example, we shall present two useful, alternative descriptions of the reduced Poisson brackets.
In the first one ‘particle positions’ and the Lax matrix are used as variables. The explicit formula, given
by equation (5.10) contains the dynamical r-matrix R(Q) (5.1) depending on the former. The second
formulation (given by equation (6.21)) relies on variables that may be interpreted as partiele positions,
their canonical conjugates and collective spin degrees of freedom. These ‘decoupled variables’»make'it
possible to view the reduced systems as Ruijsenaars—Schneider type deformations of the,standard spin
Sutherland models, and we shall present a detailed elaboration of the relevant ‘scaling’limit’:

Organization and results. In the next section, we collect the necessary background material concerning
Lie theory, degenerate integrability and Poisson—Lie symmetry. In Section 34 we first give a careful
presentation of the Heisenberg double, describing its Poisson structure in terms of three distinct sets of
variables; each have their own advantages as it turns out subsequently. Then, we expose the master
system of free motion and explain its degenerate integrability. The core of the paper is Section 4,
where we define the reduction of the master system and demonstrate the integrability properties of the
resulting reduced system. Our main new results, Theorem 4.6 with Corellary 4.7, and Theorem 4.9 can be
found in this section. Section 5.1 contains the derivation of the dynamical #-matrix form of the reduced
Poisson brackets. The result is given by Theorem 5.2, which cansbe considered as an improvement of
a previous result found in [21]. In Section 5.2, we describe the reduced Hamiltonian vector fields and
present a quadrature leading to their integral curves. Here, we @mploy. the partial gauge fixing associated
with the gauge slice M (5.4), which covers a dense open subset of theireduced phase space. Then, in
Section 6.1 we exhibit canonical conjugates of the position ceordinates and a ‘collective spin variable’
whereby the reduced Poisson bracket takes the ‘decoupled form’ displayed in Theorem 6.4. This result
appeared implicitly already in [19], and explicitly in the G/= U(m) case in the paper [26]. In Section
6.2, we utilize the decoupled variables to explain how our reduced systems are connected to the standard
spin Sutherland models in the so-called scaling limit characterized by Propositions 6.7 and 6.8. These
propositions strengthen and make more precise previous results of [19]. In the final section, we offer
a brief summary and an outlook towards open problems. »There are also three appendices developing
technical issues. Appendix A illustrates howsa,Poisson=Lie moment map generates a G-action, Appendix
B explains a connection with the paper [19]; and in'Appendix C the previous derivation [23] of the spinless
trigonometric Ruijsenaars—Schneider model [59)is,recovered from the formalism used in the present work.

The exposition of the material that follows is detailed and mostly self-contained, with the intention to
facilitate further studies of the subject.

2. BAGKGROUND MATERIAL

Here, we first summarize a few Liestheoretic facts for later use. More details can be found in [21] and
in the textbooks [12, 37, 60]. /Then; weaeview the notion of degenerate integrability, and recall crucial
features of Poisson—Lie groups and their actions.

2.1. Lie theoretic preparations. Let G be a complex simple Lie algebra with Killing form (—, —).
The choice of a Cartamssubalgebra G5 < GC and a system of positive roots leads to the triangular
decomposition

Gt =6t +65+¢¢. (2.1)
Then, the ‘realification’ gﬁ% of G€ (i.e. GC viewed as a real Lie algebra) can be written as the vector space
direct sum of two subalgebras

Gs =G +B, (2.2)
where G is'a compact:simple Lie algebra containing the maximal Abelian subalgebra Gy < G for which
Go = Go +iGo, (2.3)
and
B :=1iGy + GE (24)
is a“Borel’ subalgebra. We shall also employ the vector space decompositions
G =65 +6% with ¢ :=g%+gt, (2.5)
and
G=Go+G1, B=DBy+ B (2.6)

3
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with
GL=6nGS, By=iG, By=gS. (2.7)
Referring to (2.1) and (2.5), we may write any X € GS as
X=X_+Xo+X; =Xo+X4, (2.8)
or by using (2.2) as
X =Xg + X5, (2.9)

and can also further decompose Xg € G and X € B according to (2.6).
Let us equip Q]% with the invariant, nondegenerate, symmetric bilinear form

(X,Y):=3(X,Y), VX, Yeg" (2.10)

The decomposition (2.2) is a well known example of a Manin triple [10, 63], meaning that G and B are
isotropic subalgebras of GS. Consequently, the bilinear form gives rise to the following identifications of
linear dual spaces:

G"=B, B'=G, (By)"=6G1, (Bo)" =60, (Go)"= By (2.11)

For the simplest series of examples G& = sl(n,C), G§ is the standard [Cartan sa)algebra of traceless
diagonal matrices, G = su(n), B consists of the upper triangular elements of sl(n, €) with real diagonal
entries, and the Killing form (X,Y) is a multiple of tr(XY) by a positive constant.

Let G% be a connected and simply connected real Lie group whose Lie algebra is Qﬁ%, and denote G
and B its connected subgroups associated with the Lie subalgebras G .and 5. These subgroups are simply
connected and G is compact. We have the connected subgroup Gg < G% ¢otresponding to G5, as well as
the subgroups Gg < G, By < B, B, < B associated with Gy and the subalgebras By and B, of B.

The real vector space gﬁ% can be presented as the direct sum

Gt =G +ig, 3 (2.12)
and we let 6 denote the corresponding complex conjugation,
0(Y1 +1iYs) :=Y1 —iY, for Y3, Y, € G. (2.13)

This is an involutive automorphism of the real Lie algebranG<, which lifts to an involutive automorphism
O of the group G%. They are known as infinitesimaland global Cartan involutions, respectively. It is
customary to denote

zt=-0(2z), K=", VZegg VKeGE. (2.14)

The maps Z — Z' and K — KT are antiautomorphisms. For the classical Lie groups one can choose the
conventions in such a way that dagger-eoincides with the matrix adjoint [37].
The compact subgroup G < G% is the fixedrpoint set of ©. The closed submanifold

0 Bi=exp(ig) C G (2.15)

is diffeomorphic to iG by the exponéntiallmap and is a connected component of the fixed point set of the
antiautomorphism K — K. Thegroup B also admits global exponential parametrization, and the map

v:B =P, wvb):=bb (2.16)

is a diffeomorphism.
Next, we describe a chain of diffeomorphisms between the manifolds

M:=GE, M:=GxB and M:=G xP. (2.17)

We start by récalling that every element K € M admits unique (Iwasawa) decompositions [37] into
products of elements of G and B,

K =gpbg' =brgyp' with gr,9r € G, by, bg € B. (2.18)
These decompositions induce the (real-analytic) maps Z;,Zr : M — G and A, Ar : M — B,
EL(K):=gr, Er(K):=gr, AL(K):=0by, Ar(K):=bg. (2.19)
Besides the pairs (21, Ar) and (Eg, AL), also the pair (Eg, Ar) yields a diffeomorphism,
my := (Eg,Ar): M — M, m1(K) = (gr,br). (2.20)
In addition to this, we need the diffeomorphism

mg @ M — M, ma(g,b) == (g,v(b)). (2.21)
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The map v (2.16) intertwines the so-called dressing action of G on B with the obvious conjugation
action of G on B. That is, we have

Dress, (b)(Dress, (b))T = nbbin~1, VneG,be B. (2.22)

It follows that any element of B can be transformed into By = exp(iGy) by the dressing action.. The
relation (2.22) can be taken as the definition of the dressing action. More explicitly, one has

Dress, (b) = Ar(nb), Vne G, be B, (2.23)

and the corresponding infinitesimal action

dressy (D) : Dress v (b) = b(b"'Yb)s, VY €G. (2:24)

" dt],
Remark 2.1. The notation used on the right side of (2.24) ‘pretends’ that our Lie groups are groups of
matrices. Such symbolic matriz notations are adopted throughout the paper. If desired, ome may rewrite
all of the relevant equations in equivalent abstract form (which is often longer), or cantemploy faithful

matriz representations.

For a real function ¢ € C*°(B), we define the G-valued left and right derivatives; Py and D'y, by

o™X, VheB, X, X! € B. (2.25)
t=0

(X, D)1 + (X', D'p(b))r := —
In general, these obey the relation Dp(b) = (bD'(b)b~1)g. If the function is invariant with respect
to the dressing action, ¢ € C®(B)%, then (D'¢(b),(b"1Yb)g)m= 0,WY € G, and from this we get
De(b) = bD'¢(b)b~1. Equivalently, we have

(b~'Dy(b)b)s = 0, Vo € C®¥(B)Y, be B. (2.26)

By (2.24), this means that Dy(b) belongs to the Lie algebra of the, isotropy group Gy < G of b with
respect to the dressing action. Even more, this derivative belongs the center of the isotropy Lie algebra,
because the derivative of an invariant function is,equivariant:

Dy (Dress, (b)) = nDp(b)y=", YmeG,be B. (2.27)

The isotropy subgroup Gy is generically a maximal\torustef G, and the elements for which this holds
constitute the dense open subset B™® C BwThe derivatives of the invariant functions actually span the
center of the isotropy Lie algebra at any b € B. This'¢an be seen, for example, with the aid of the natural
isomorphisms

C™(Go) i C(G)% 2 C(P)“ +— C=(B)“, (2.28)
where C>°(Go)" denotes the Weyl invariant smooth functions on Gy. The isomorphisms are induced by
the maps

Go —=5 G 2 - B, (2.29)

where ¢ : Gy — G is the inclusion, e\pi(X) := exp(iX), and v is defined in (2.16). These maps also
relate the dense open subsets Gy™® 48 @3 ¢ and B 8. It is well known that the gradients (with respect
to the Killing form of G) of thesnvariant functions on G span the center of the corresponding isotropy
subalgebra. The dimension of the 'span of the derivatives of the invariant functions does not change
under these maps, since the derivatives are equivalent to the ordinary exterior derivatives (for example,
Dp(b) € G ~ B* encodes dg(b) € T; B).

2.2. Degenerate integrability. The notion of degenerate integrability of Hamiltonian systems on sym-
plectic manifoldstis'due to.Nekhoroshev [46]. Degenerate integrable systems have more first integrals
(constants of motion) than half the dimension of the phase space, which characterizes Liouville integra-
bility. In the extreme case the trajectories are completely determined by fixing the constants of motion,
as is exemplified by, the classical Kepler problem that possesses 5 independent constants of motion. A
closely related coneept of non-Abelian or non-commutative integrability was introduced by Mischenko
and Fomenko [44]) and this is especially fitting for systems whose basic constants of motion form a
finitesdimensional, non-Abelian Lie algebra.

A systematic exploration of natural quantum mechanical Hamiltonians with many conserved quantities
having specifi¢ form was initiated by Winternitz and collaborators in 1965 [30], and later this has become
a very active research subject [45]. The systems studied in this field are nowadays called superintegrable,
a term that apparently goes back to Wojciechowski [64]. The adjective superintegrable is now often used
to charaeterize both quantum and classical mechanical systems [18, 45, 55, 56]. We prefer to stick to
the original terminology of Nekhoroshev, which highlights the important feature that in comparison to

5
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classical Liouville integrability the dynamics takes place on lower dimensional submanifolds of the phase
space (typically, degenerate tori when compact). The extensive literature on the subject of integrability
(see e.g. [33, 38, 57]) contains several variants of the basic notions. The definition that we find the most
convenient is presented below.

Definition 2.2. Suppose that M is a symplectic manifold of dimension 2m with associated Poisson
bracket {—, —} and two distinguished subrings $ and F of C°(M) satisfying the following conditions:

(1) The ring $ has functional dimension r and § has functional dimension s such that r4s = dim(M)
and r < m.

(2) Both $ and § form Poisson subalgebras of C*>°(M), satisfying $H C § and {FyH} = 0 for_all
Feg, HeH.

(8) The Hamiltonian vector fields of the elements of $ are complete.

Then, (M, {—,—1},9,5) is called a degenerate integrable system of rank r. The rings$ and.F are referred
to as the ring of Hamiltonians and constants of motion, respectively.

Recall that the functional dimension of a ring R of functions on a manifeld M is d if the exterior
derivatives of the elements of R generically, that is on a dense open submanifold; span a d-dimensional
subspace of the cotangent space. Condition (3) above on the completeness ‘of.thie flows is superfluous if the
joint level surfaces of the elements of § are compact. Degenerate integrability of a&ingle Hamiltonian H
is understood to mean that there exist rings ) and § with the above properties.such that H € §. Observe
that § is either equal to or can be enlarged to the centralizer of § in the Poisson algebra (C*° (M), {—, —}).
In the literature the definition is often formulated in terms of functiomns. fis..., fr, fr41,-.., fs so that
they generate § and the first r of them generate §). If the definitionhis modified by setting » = s = m
and $) = §, then one obtains the notion of Liouville integrability.

The concepts of integrability can be extended to Poissonsmanifolds [38] beyond the symplectic class.
In fact, we shall construct a series of examples that satisfy the requi‘ements of the next definition.

Definition 2.3. Consider a Poisson manifold (M,{—,—}) whose Poisson tensor has mazimal rank
2m < dim(M) on a dense open subset. Then, (My{—, —},935) is called a degenerate integrable system
of rank r if conditions (1), (2), (3) of Definition 2.2, hold, and the Hamiltonian vector fields of the
elements of $ span an r-dimensional subspace of the tangent space over a dense open subset of M.

The integrable systems of Definition ‘2.2 arerintegrable in the sense of Definition 2.3, too, since in
the symplectic case the condition on the span of the Hamiltonian vector fields of $ holds automatically.
Liouville integrability in the Poisson case results by imposing r = m instead of » < m in the definition.
In that case, our definition implies that § is an Abelian Poisson algebra (in [38] this condition appears
in the definition).

In a degenerate integrable system, the evolution equation associated with any H € $) can be integrated
by quadrature (see, e.g., [33, 46, 57]). A description of ‘action-angle and spectator’ coordinates in the
Poisson case can be found in[38]. “Under further conditions, it can be shown [33] that degenerate
integrable systems are integrable also in\the Liouville sense. However, in general there is no canonical
way to enlarge $) by elements of § to obtain an Abelian Poisson algebra of the required functional
dimension. This freedom can beused to manufacture very different Liouville integrable systems out of
a given degenerate integrable'system. For spin Calogero—Moser type systems, and their generalizations
that we are interested in, $iis distinguished by its group theoretic origin [21, 53, 54].

2.3. Poisson—Lie symmetry. Poisson—Lie groups are the quasi-classical analogues of quantum groups
introduced by Drinfeld {10511]. Their role in classical integrable systems was pioneered by Semenov—
Tian—Shansky|[62],vhosé review [63] is highly recommended as a general reference.

By definition,a Poisson—Lie group is a pair (G, {—, —}&), where {—, —} is a Poisson bracket on the
smooth (of holomerphie etc) functions on the Lie group G such that the group product G x G — G is a
Poisson map. A Pgisson action of (G, {—, —}¢) on a Poisson manifold (M, {—, —}) is an action for which
the action map A: G x M — M is Poisson. In these definitions, G x G and G x M are equipped with
the gespective product Poisson structures. Take arbitrary points g € G, p € M and for any F € C*(M)
define F,; € @°°(M) and F? € C*>(G) by

Fy(p) = FP(g9) = F(Aq4(p)) (2.30)
using, A, (p) := A(g,p). The Poisson property of the map A means that
{F,H}(Ag(p)) = {Fy, Hg}(p) + {F", H }c(p), ~ VF,H € C*(M). (2.31)

6
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The Poisson tensor of every Poisson Lie group vanishes at the unit element e € G. Thus, the lineariza-
tion of the Poisson bracket {—, —}¢ yields [10, 63] a Lie bracket [—, —]« on the dual space G* = T*G
of the Lie algebra G = T,G. For any X € G, let X denote the infinitesimal generator of the (left)
G-action on M, such that X — X is an antihomomorphism, and let Lx, F = dF(Xa) denote the
derivative of the function F' € C*°(M). Pick a basis {T,} of G with dual basis {T*} of G*, and define
Cr € C°°(M, G") by

Cpi=Y T'dF((Ta)pm),  VF € C®(M). (2.32)

Then, the Poisson property (2.31) implies the identity
[’XM{F7 H} - {‘CXMF7 H} - {Fv‘C’XMH} - ([CFaCH]*vX) =0, (2‘33)

for all X € G, F,H € C*(M), where in the last term the pairing between G* and G is used. Indeed,
(2.33) follows by putting g = exp(¢X) in (2.31) and taking derivative with respect-to ¢ € R at t = 0. It
is also worth noting that

Cr(p) = (daF?)(e) and  [(r(p), Cu(p)l« = (da{F”, H” }a)(e), (2.34)

where dg denotes the exterior derivation of functions on G. ~

We assume that G is connected, and then (2.33) is equivalent to the Poisson property of the G-action.
Two consequences of the identity (2.33) are important for us. First, if both F' and H are G-invariant,
then so is their Poisson bracket, i.e., C°°(M)% is closed under the Poisson bracket. The statement holds
because Lx,,{F,H} = 0 in this case. Second, if F € C>(M) igwarbitrary and H € C°°(M)%, then
(2.33) becomes

Lx {F,H} —{Lx, F,H} =0 (2.35)
Defining the Hamiltonian vector field Vi by {F, H} =: Ly, {F), the identity means that
(X, V] =0, VX € GFH &O0=(M)“. (2.36)
This entails that the corresponding flows, denoted X and @F comglute
Y SYHEY (2.37)

Since G is supposed to be connected, this in turn impliés.that the Hamiltonian flow ¢ is G-equivariant.
In favourable circumstances, e.g. if the group G is eompaet, one may identify C>°(M)% with the ring
of smooth functions on the quotient spac@wMd := M /G. In this way, C>(M™?) becomes a Poisson
algebra, and the Hamiltonian flows generated. by its'élements are the projections of the flows ! living
upstairs. The process of descending to the quotient space M™¢ is known as Poisson reduction, or
Hamiltonian reduction if a G-invariant Hamiltonian is also specified. It should be noted that the quotient
space M™4 is usually not a smooth Poisson manifold, but a so-called stratified Poisson space [50, 61].
In the theory of Poisson actions of (G, {=p—}¢) the G*-valued Poisson—Lie moment map plays an im-
portant role [39, 40]. Here, G* is the dual Poissen—Lie group [10, 39, 63], whose Lie algebra is (G*, [—, —].)
mentioned above and the linearization of the/Poisson bracket on G* reproduces the Lie algebra of G. The
precise notion of the moment /map will be recalled in Section 4 focusing on the groups our interest. The
Poisson-Lie moment map can bedised for finding Poisson subspaces of M™¢ quite in the same way as
for the standard G*-valiiled moment map [50]. For compact semisimple Lie groups, there is a direct link
between ordinary Hamiltonian G-actions and their Poisson—Lie analogues. One can be converted into the
other by means of a modification of the symplectic form, without changing the reduced structure [1].

3. . INTEGRABLE MASTER SYSTEM ON THE HEISENBERG DOUBLE

In the first subsection we'give a terse overview of the Poisson geometry of the standard Heisenberg
double of the compaet Lie group G. The second subsection is devoted to the description of a degenerate
integrable system/on this phase space.

3.1. Three models of the Heisenberg double. We recall [62, 63] that the group manifold M = G%
carries the following two Poisson brackets:

{(I)l, (I)Q}i = <V<I’1,pV<I>2>H + <V/(I>1, pv/q)2>]1, V(I)l, (I)g S COO(M) (31)

Here, p := % (mg — m5) with g and 75 denoting the projections from G onto G and B, which correspond
to the direct sum in (2.2). For any real function ® € C°°(M), the GS-valued left and right derivatives
V& and V'® are defined by

(X,VO(K))1+ (X', V'®(K)) := 4 (X KetX'), VK e M, X, X' €GS. (3.2)
t=0
7
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The minus bracket makes M into a Poisson—Lie group, of which G and B are Poisson—Lie subgroups, i.e.,
(embedded) Lie subgroups and Poisson submanifolds. Their inherited Poisson brackets take the form

{x1,x2}a(9) = —(D'x1(9), 9~ (Dx2(9))9)1, (3.3)
and
{1,021 B(b) = (D'@1(b), b~ (Depa(b))b)1- (3.4)
The derivatives are B-valued for x; € C*(G) and G-valued for ¢, € C*°(B). Concretely,(we use the
definition (2.25) for any ¢ € C*°(B), and

(Y, Dx(g))r + (Y, D'x(g))r : X(eVge™), Vge G, VY €g] (3.5)

dt],—o

for any x € C°°(G). The Poisson manifolds (M, {—, —}_) and (M, {—, —};) are known, respectively, as
the Drinfeld double and the Heisenberg double associated with the standard Poigsenrstructures of B and

G. The Poisson bracket {—, —} is nondegenerate. The corresponding symplectic form was found in [2],
but we shall not use its formula here. It is also known that the maps

(ALaAR) :M — Bx B and (EL7ER)1M—>GXG ~ (36)
are Poisson maps with respect to (M, {—, —}+) and the direct productPoisson structures on the targets
obtained from (B, {—,—}p) and from (G, {—, —}a), respectively.

Below we focus on the Heisenberg double (M, {—, —}), and transfer its Poisson structure to 9 and
M (2.17) by the diffeomorphisms m; (2.20) and mqy (2.21). As was proved in [21], the usage of m; results
in the Poisson bracket {—, —}o on 9 having the following explicitsform:

{£: h}on(g,0) = (D3f, b~ (Dah)b)y = (D1 f, 9~ (Drh)gy + (D1 fiDoh)y — (D1h, Daf)y (3.7)

for functions f,h € C°°(9M). The derivatives on the right=hand side are taken at (g,b) € G x B, with
respect to the first and second variable, according to the definitions’ (3.5) and (2.25), respectively. In
particular, D, f is B-valued and D, f is G-valued.

For any real function F € C* (%), define its G§-valued derivative DF as follows:

d 5
(X.DF(L)1:= & F(e¥me X, vX eB, (3.8)
t=0
with XT given by (2.14), and
d
(Y, DF@)r = — F(MLe™™), Wy eg. (3.9)
t=0

Referring to (2.9), the first equationsdetermines (DF(L))g and the second one (DF(L))g. (These two
equations could be ‘unified’ since —¥ = YT for'’¥ € G, but we prefer to display them separately.) Because
the natural action of B on P is transitive?, all information about DF is contained in the G-component.
This is clear from the next lemma, too.

Lemma 3.1. Let F € C*°(P) and ¢ €/C>(B) connected by the diffeomeorphism v (2.16), i.e.,

F(bb') = p(b), VbeB. (3.10)
Then their derivativesiSatisfy
(DED)g = Dp(b) = (bD'p(b)b~")g,  (DF(bb'))5 = (bD"p(b)b™ "), (3.11)
and consequently
DF(bb') = bD'o(b)b~ L. (3.12)

Proof. Takesds=Dbb and consider the curve ¢! for X € B. Since v(e!Xb) = !X Le!X" | we obtain
d d '
(X, 0D o(b)b" N = (X, Dp(b)); = 7 R 7 F(eX L™ ) = (X, DF(L))1,  (3.13)
t=0 t=0
which implies the first equality in (3.11). Next, take any Y € G and consider the curve Dress :v (b). Using
(2.24) we get

4 @(Dress.ev (b)) = (D' p(b), (b'Yb)s)1 = (bD'@(b)b™*, Y ). (3.14)

t=0

2The corresponding action map is B x 9 € (b, L) — bLbt € .
8

Page 8 of 32



Page 9 of 32

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-120444.R1

Due to the identity v(Dress.iv (b)) = €'Y Le™ 'Y, this is equal to

d
—| F(™Le™™) = (DF(L))s, Y )i (3.15)
dt|,_o

Consequently, the second equality in (3.11) holds, too. |

We use the map v (2.16) to transfer the Poisson bracket {—, —}p (3.4) from B to 8. With/the aid of
Lemma 3.1, this leads to
{F H}p(L) = (DF(L))s, (DH(L))g); = — ((DF(L))g, (DH(L))s)y, VF,H&C™(B), (3.16)
The Hamiltonian vector field generated by H € C*°(B) on ‘B yields the evolution equation
L =[(DH(L))g, L]. (3.17)

The identical vanishing of the right-hand side characterizes the elements of the-eenter,of the Poisson
bracket (3.16). The elements of the center are constant along all Hamiltonian flows, and this gives
their equivalent characterization: (DH(L))sp = 0. This holds if and only A is G-invariant, that is, for
H € O (P)%. As one can verify, the derivative of every invariant functionds’equivariant,

-~
DH(nLn™Y) =nDH(L)n™t,  Vne G, LeR, HeC=P)°. (3.18)

Similarly to the relation between B and 93, we can transfer the Pdisson bracket (3.7) from 9 to M
(2.17) via the map mg (2.21). To display the result, for F € C*°(M) let D1 F(gyL) € B and D1 F(g,L) € B
denote the usual derivatives with respect to the first variable, andPsF (g, L)€ Qﬁ% denote the derivative
with respect to the second variable defined according to equations,(3.8)rand43.9).

Proposition 3.2. Via the map ms (2.21), the formula (3.7) lof the Paisson bracket on M is equivalent
to

{F, Him(g, L) = (DaF, (DaH)g); — <9DI1]'—971,D1'H>H + <D1]:‘D2H>u —(D1H, Do F)y, (3.19)

where the derivatives of F,H € C°(M) are evaluated at (gfL) e M= G x B.
Proof. We simply substitute the following relations‘into (3.7):

le(gab) :Dl]:(gaL)v bDIQf(g7b)b_1 :DQF(g7L)7 D2f(gab) = (DQ]:(97L))Q (320)
Using also the corresponding relations fordu=.H oma, we get (3.19) from (3.7). Note that (D1F, DaH); =
(D1 F, (DaH)g)1, because D1 F(g, L) € B. O

Remark 3.3. For the alert reader,a word on ‘tricky signs’ is in order. Using the identifications B* = G
and G* = B in (2.11), the linearization_of the Poisson bracket (3.4) on B gives the Lie bracket on the
subalgebra G < GE, and the linearization of the opposite of the Poisson bracket on G gives the Lie bracket
on B < GY. In standard terminolagy, this means that (G,(—1){—,—}c) and (B,{—,—}p) form a pair
of mutually dual Poisson Lie groupssThe dual group of (G,{—,—}q) is obtained from (B,{—,—}p) by
keeping the Poisson structure on the%anifold B but replacing the group product by its opposite, defined
by by * by = baby, which also changés the corresponding Lie bracket on B to its opposite.

3.2. The integrable master system of free motion. By the projection
mo: M — B, m(g,L)=1L, (3.21)
we can pull-back thelelements of € (B)“ to M (2.17). Since 73 is a Poisson map, this yields Poisson

commuting Hamiltonians on M. We next describe the flows and the constants of motion for these
Hamiltonians.

Proposition 8.4. Let Hi—m§(¢) for a function ¢ € C=(P)E and pick an initial value (g(0), L(0)) € M.
The corresponding integral curve of the Hamiltonian vector field of H, defined by means of {—,—}m
(3.19), is provided by

(9(t), L(t)) = (exp (tDB(L(0))) 9(0), L(0)) . (3.22)
The map. WM —B x B defined by
U(g,L):=(L,L) with L:=g 'Ly (3.23)

is comstant along the integral curves (3.22). The map ¥ is Poisson with respect to (3.19) and the direct
product Poisson structure on P x P obtained from {—, —}q (3.16) on the second P factor and its opposite
(multiple by —1) on the first B factor.®

3When we wish to emphasize its Poisson structure, we denote this space as B_ x L.
9
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Proof. For the Hamiltonian H at hand, D1H (g, L) = 0 and DoH(g, L) = Dp(L) € G. Therefore we have
{7 Himlg, L) = (D1F (g, L), DH(L))1, VF € C(M). (3.24)

Hence, H generates the evolution equation

9= (Do(L))g,  L=0, (3:25)

which is solved by (3.22). The statement that L is constant along the flows is then verified by/usingthat
[L,D¢p(L)] =0 for all ¢ € C=(P)“.
To see the Poisson map property of ¥, consider the diffeomorphism

m:=mgomy: M — M, (3.26)
based on (2.20) and (2.21). From (2.18), we have
gr'br =07 'g9r, VK € M. (3.27)
Using also (2.16), this implies the equality
Vom=(vo(AL) ", voAg). (3.28)
The Poisson property of ¥ is then a consequence of the facts that (Ap, Ag) : M== Bx B is a Poisson
map, where B x B carries the product Poisson structure with {—, —} 5 on thetwo copies, and that taking
the inverse is an anti-Poisson map on every Poisson—Lie group. ]

It is worth noting that the map ¥ is not surjective and its image

C:=U(M)CPxP (3.29)
is not a smooth manifold in any natural way. However, the dense subset €,.; C €, given by
Creg i= U(my ' (P8)), 75 (PE)= G x P, (3.30)

is an embedded submanifold of 3¢ x P*°8 of co-dimension r. (Recall that 3¢ contains those elements
of P whose isotropy groups in G are maximal tori.) | In fact, @, is also a Poisson submanifold of
P x Pre8 since it can presented as the interseetion of Y38 x M*°¢ with the joint zero set of Casimir
functions F; € C*°(P_ x P) of the form

Fi(L1, L) = Ci(L1) — CilL2), WY (L1, L2) € P x B, (3.31)

where the differentials of the functions Gff&€>(P)¥\(i = 1,...,r) span an r-dimensional subspace of
the cotangent space of at every point of S3*8, For example, one may obtain the C; out of independent
invariant polynomials on G using the exponentiabparametrization, 8 = exp(iG).

Next, we verify an important consequence of Proposition 3.4.

Corollary 3.5. The two subrings ofsC°(M) defined by
=3 (C°(P)°) Vand F:= T (C®(P_ xP)) (3.32)

engender a degenerate integrablé systempondhe symplectic Poisson manifold (M, {—, —}m). The rank of
this integrable system is equal to the rank r = dim(Gy) of the Lie algebra G.

Proof. The elements of#§ are constant along the flows of the elements of ), because VU is constant along
those flows. Since ¥ is aPoisson map, § C C°*°(M) is a Poisson subalgebra, and we only have to establish
the functional dimensions,of $ and4§. To this end, let us denote r := dim(Gy), and note that the exterior
derivatives of the elements of C*("B)¢ span an r-dimensional space at every point L € 3*&. Thus, the
same is true for their o pullbacks, at every point of 75 L(spre#), which is a dense open submanifold of M.
Hence, the functiemal dimension of §) is 7.

One can verify by/an easy,inspection that the derivative DW¥ has constant rank, equal to dim(M) — r,
at every pointiof G'x P'¢8. Asa result, the transpose (DWU)* satisfies

dim (Im (D%(g, L)*)) = dim(M) — r, Y(g,L) € G x PB*5. (3.33)

This implies immédiately that § has functional dimension dim(M) — r. If ps : P x P is the projection
onto the second factor, then my = oo ¥ (with 75 in (3.21)). Thus, $ C §, which completes the proof. O

Remark 3.6. We refer to the system of Corollary 3.5 as the integrable master system of free motion on
the Heisenberg double. The presentation of the Heisenberg double via its model Ml = G x exp(iG) highlights
the closeramalogy with the standard degenerate integrable system on the cotangent bundle TG ~ G X G
associated with the invariant functions C>(G)%. Of course, we can transfer the master system to the
models’ M and M (2.17) by means of the diffeomorhisms m : M — M and mo : M — M. We shall make
use of all three models in what follows.

10
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4. HAMILTONIAN REDUCTION OF THE MASTER SYSTEM

We consider the reduction of the master system relying on an action of G on the Heisenberg double.
The degenerate integrability of the reduced system will be proved after restriction to a dense open subset
of the reduced phase space. It will be convenient to start with the model M in the first subsection, but
utilize the model M for the proof of reduced integrability given in the second subsection.

4.1. Actions of G and Hamiltonian reduction. We begin by recalling the concept of Poisson—Lie
moment map for G-actions [39, 40, 63], adapted to our case. Let (M, {—, —}) be a Poissondmanifold and
A : M — B a Poisson map with respect to the Poisson bracket {—, —}p (3.4) on thétarget spaee. Such
a map can be used to generate an (infinitesimal) Poisson action of the group (G, {—, <}a) (3.3) o, M.
This works by associating a vector field X s on M, i.e. a derivation of C*°(M), to every X € G via the
following formula:

df (Xp) == =(X AN fImA ™D, Ve CF(M). (4.1)
To explain the meaning of this formula, note that, for any zy € M, we have
d
(A, Fim(zo) = o Ala(t), (4.2)
t=0 ~

where x(t) is the integral curve of the Hamiltonian vector field of f satisfying x(0) = z¢. This yields an
element of T ;) B, which is then translated into B = T, B via right multiplication by A(z0)~t. According
to the general theory [39, 40], the so-obtained map G 3 X +— X € Vect(M) 1s an antihomomorphism
satisfying the key relation (2.33). If this G-action can be integrated.to an action of G, then it is auto-
matically a Poisson action. The map A is called the Poisson-Liesmoment map for the pertinent action.*
It enjoys G-equivariance with respect to the dressing action (2:23) of G .on B and the action that it gen-
erates on M. The construction can be applied in two ways. AEither one starts with a Poisson action and
searches for a corresponding (equivariant) moment map, or.ene starts with a Poisson map A and looks for
a G-action that integrates the vector fields X . Since GG is connected and simply connected, a G-action
results from the infinitesimal action whenever the vector, fields X nq are complete. As an example, one
may check that the dressing action (2.23) is a Peisson action of (G,{—,—}¢) on (B,{—,—}p5) with the
identity map from B to B being the moment map.

The Heisenberg double (M, {—, —}) supports three natural Poisson maps into the Poisson-Lie group
(B,{—,—}B). These serve as moment maps generating corresponding Poisson actions of (G,{—, —}¢)
on M. In fact, A, and Ar (2.19) are{the’moement maps for the G-actions given by left and right
multiplications of the elements of M = G’g by the elements of the subgroup G, and their pointwise
product

A=A, Ap:M — B (4.3)
is the moment map for the so-called guasizadjoint action of G on M. As was shown by Kliméik [36], the
moment map (4.3) generates a global G-action,whose action map is given explicitly by

AM G x MMy A (K) = AM (0, K) = nKZR(nAL(K)). (4.4)

The map A is equivariant with respect.to this G-action on M and the dressing action on B. Since
the center Z(G) of G is contained in the center of GS, we obtain the equality Zg(nAz(K)) = n~* for
n € Z(G). By using this| it is easily seen that Z(G) acts trivially, and the action of G descends to
an effective action of adjoitygroup G := G/Z(G) on M. Since we have a Poisson action, i.e. AM is a
Poisson map with respéct to,the product of the Poisson structures on G and on M, the ring of G-invariant
functions, C*° (M) is closed under the Poisson bracket on M. The same is true for the functions of the
moment map; and ‘the Poisson algebras

(C>(M)% {-,=}1) and (A*C®(B),{-,—}) (4.5)
are the centralizers of each other in (M, {—,—}1). If one defines the reduced phase space by
M= M/G, (4.6)

then the identificition C>°(M™4) = C>(M)% equips C™ (M) with a Poisson bracket. In this way,
one obtaingithe reduced Poisson space (M™4, {—, —}1¢d). The pullbacks by A of the dressing invariant
fungtions on B engender Casimir functions on the reduced phase space, because

A*(C>=(B)Y) c C=(M)C. (4.7)

4The equivalence of our moment map condition (4.1) to the original one introduced by Lu [39, 40] follows from Remark
3.3 since the right-invariant Maurer—Cartan 1-form (db)b~! on the group B, which features in (4.1), becomes the left-
invariant Maurer—Cartan form b—! xdb on B equipped with the opposite multiplication, by * bo = baby. Agreement between
(4.1) with its counterpart (5.20) in [63] is seen by additionally noting that X, corresponds to —X used in [63].
11
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The joint level surfaces of these Casimir functions are unions of symplectic leaves. The reduced phase
space M™9 is not a smooth manifold, but is a disjoint union of smooth strata. However, like in the
smooth case, the Hamiltonian vector fields of the smooth functions on M*? can still be obtained as
projections of the Hamiltonian vector fields of the corresponding elements of C°°(M)¢.

We are mostly interested in the ‘big cell’ of M*9 that results by restriction to the principal orbititype

[12, 43, 50] for the G-action. The principal orbits fill the dense open submanifold
M, ={zxe M| G, =Z(G)}, (4.8)

where G, denotes the isotropy group of the point z. Three important features of the restrietion to M.
are as follows. First,

Mt = M, /G (4.9)
is a smooth manifold, and is a connected, dense open subset of M™4. Second, the restriction of the
moment map to M, is a submersion, i.e., its derivative DA(x) : T, M, — Ty, B+is surjective at every
x € M,. Third, M, is invariant with respect to the Hamiltonian flows of all the elements of C°°(M)G.
These statements are immediate consequences of well known general results! \For example, the third
property is a consequence of the fact that the flow ¢ of any invariangfunction H € C>(M)% is
equivariant, =

./47];4 o @fl = @fl o A7]7V[a vn € G, (4.10)
which implies that the isotropy group Gg,{;(x) is constant in t for every x &M
In order to transfer the action A (4.4) to the alternative models M and Miof the Heisenberg double
(2.17), we use the relations (2.18) and (3.27) that lead to the identities

AL(K) = AL(brgr') = Ar(by'gr) ™" = AL(@r br)TL=BL(gr. br). (4.11)
The last equality is the definition of the map Sr, : G x B —“B, which can also be written as
Br(g,b) = (Dress,—1 (b)) ", 4 Y(gsb) e’G x B. (4.12)

Combining this with the diffeomorphisms m; (2.20) and»mg (2.21), we see that the Poisson action AM
acquires the following form in terms of the modéls O and M

Anm(g,b) = (Er(1BL(9,0)) " 9Zr(MBi(g, b)), Dressz . (45, (g.0)-1 (b)) , (4.13)
and
Ay(ng) = (ﬁgﬁ_lvﬁl/fl—l) 9 with ﬁ = ER(”BL(Q» V_I(L)))_la (414)
where we applied the inverse of the diffeomorphism v (2:16). For any fixed (g,b), the map
n = Er(nBr(g,0) " (4.15)

yields a diffeomorphism of G. Consequently, the Poisson actions (4.13) and (4.14) are orbit equivalent
(have the same orbits) as the simpler G-actions given on 9t and on M by the formulae

A (9:0) = (agn, Dressy (b)), Ay(g, L) := (ngn™"nLn™"), (4.16)
for all n € G, (¢9,b) € M and (g, L) € M. These simpler actions are not Poisson action of G, but for
taking the quotients of the respective model phase spaces they can be used in the same way as their
parent Poisson actions.

In Proposition 3.4, welintreduced the Poisson space B_ x B3, which is P x P equipped with the Poisson
bracket (—1){—, —}p X {=y—Fqwith (3.16). We may write the elements (L1, L2) € P_ x P in the form

(L1,L2) = (v(b7 "), v(b)) with (by,b2) € B x B, (4.17)
and then we obtaifita Poisson’map A : PB_ X P — B by the definition
A : (ﬁl,ﬁg) — blbg. (418)

As a momentymaps. A génerates a Poisson action of G. The action map A : G x (P- xP) = P_ xP
operates for n € Gaby

AW : ([,1,£2) — (ER(nbl)_1£1ER(7’]b1),ER(T]bl)_lﬂgER(’I}bl)) 5 (419)

using by = (v Y(L£1))~!. It is an instructive exercise to verify this statement, which we do in Appendix
A. The Poisson action (4.19) possesses the same orbits as the alternative G-action having the action map

Ay (Ly, L2) = (L™ nLan™"). (4.20)
ThePoisson map ¥ : M — PB_ x P (3.23) relates the relevant moment maps according to

Aom ™t =AoU, (4.21)
12
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where we used A in (4.3) and m : M — M in (3.26). It also satisfies the equivariance properties

\IJOAIXHZAWO\IJ and \I/oAﬁﬂzflno\I/7 Vn e G. (4.22)
Our construction implies that
O (P x P)C € C(P_ x P) (4.23)
is a Poisson subalgebra, and this entails that
¢ = U (O (P x P)Y) c o (M)“ (4.24)

is also a Poisson subalgebra.

Remark 4.1. Let us take the opportunity to clarify a potentially confusing point that occurs’in our earlier
paper [21]. Namely, it was verified in Appendixz C of [21] that the identity A§,41 ol ol o A},ﬂ does not
hold for certain G-invariant Hamiltonians on M. This is not surprising since AIT\;H (4.16)nis not a Poisson
action (in fact, the failure of the identity proves this), and the analogous identity holds ifsone uses the
original action A" (4.14).

4.2. Reduced integrability. Now we use the model M of the Heisenberg double\(2.17), whereby M,
(4.8) and M4 (4.9) get replaced by M, and M4, respectively. That is, with the map m (3.26), we have

M, = m(M,), MEed = M, /G. (4.25)

In Section 3.2, we described the master integrable system (M, {—, —}u, $, §)pwhose Hamiltonians and
constants of motion (3.32) were constructed relying on the Poisson map ¥ (3.23). Eventually, we shall
demonstrate that the quadruple (M, {—, =}y, 9, F), with ¢ in(#4:24), engenders a degenerate integrable
system on the Poisson manifold M™4. However, it will be advantageous to first deal with a restriction
of the reduced system on a certain dense open subset of MEd, which will be found to satisfy stronger
conditions than those required by Definition 2.3.

Let A : M — B be the moment map A (4.3) transferred to M andg/l, its restriction to M, i.e.,

A=Aom7}, A, & Ay (4.26)
Lemma 4.2. The inverse image A 1(B™®) is a dense open subset of Ml.. Then,
A7 (Bre) )G M (4.27)
is a dense open subset, which consists of symplectic leaves of co-dimension r = dim(Gp).

Proof. The map A, is continuous. Since the actionof G/Z(G) is free on M., A, : M, — B is a submersion,
and thus it is also an open map. The inverse image of a dense set under an open map is dense, and the
inverse image of an open set under a eontinuous map is open. Therefore, A (B™8) C M, is dense and
open.

Let (M=, {—, —}*d) denote the reduced Paisson manifold obtained by taking the quotient of M, by
the action of G. The general reduetiontheory [40, 50, 63] says that the symplectic leaves of this Poisson
manifold are the connected components of the sets of the form

A71(08)/6, (4.28)

where Op C B is a dressing orbit eontained in A,(M,). The dressing orbits of maximal dimension are
those that lie in B™8, and.their.co-dimension is 7.

The symplectic leaves (4.28) can also be identified as the connected components of the level surfaces
of the Casimir fungtions on ME¢? that arise from A*(C°(B)%) restricted on M,. By using that both A,
and the projection.a : Ml, — M®? are submersions, it is easily seen that the differentials of the Casimir
functions span &n r-dimensional space at every point of A;1(B™8)/G. Hence, the dressing orbits lying in
A (M) N B**8 yield symplectieileaves of co-dimension r, which are the leaves of maximal dimension. O

Remark 4.3. [t istknown [19] that A : Ml — B is a surjective map. Because A is continuous and its
restriction A, (4.26) is an open map, we see that

B*¢tNA,M,) CB (4.29)
is dense andfopen. We suspect that B 8 is contained in A, (M), but have not proved this.

We previeusly introduced the ‘space of constants of motion’ € (3.29) and its dense subset €,y (3.30),
which is a Poisson submanifold of "% x P 8. Explicitly, €,e consists of the pairs (L1, L) € P8 x P8
for which £, and L5 belong to the same G-orbit:

Crog == {(g7'Lg,L) | L € P"8, g € G}. (4.30)
13
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The group G acts by componentwise conjugations on P8 x P8 and this restricts to the submanifold
Creg. Now we introduce €, C €,qy, which by definition is the dense open subset given by the principal
orbit type for the G-action on €,es. It is easily seen that

¢, = {(gingaL) € Creg ‘ G(g—ng,L) =Z(G)}, (4'31)

where G(g-11,4 1) is the isotropy group. We observe that C>(¢,)% gives rise to a Poisson structure on
the smooth manifold
¢red = ¢, /G. (4.32)
Then, we define the following subset of M:
M., = T7H(C,). (4.33)

It is clear from the G-equivariance of ¥ that M., is mapped to itself by the G-action. After some
preparation, our goal is to show that the restriction of the master system of free motion omM.,, descends
to a degenerate integrable system on the corresponding quotient space.

Lemma 4.4. The inverse image M. (4.33) is a dense open subset of M, @ ﬂgl(‘ﬁreg).
~

Proof. The G-equivariance of the map W (3.23) implies that G, < Gy(,) holds for all z € M. It follows
that G, = Z(G) for all z € M,,, i.e.,

M, C M, Nyt (Pres). (4.34)
We know from the proof of Corollary 3.5 that the restricted map
Uy (PE) = Cre (4.35)

is a surjective submersion. In particular, it is both continuous and open, and therefore the inverse image
of the dense open subset €, C €, enjoys the claimed property. (]
L

Remark 4.5. It is an easy consequence of what we proved ghat in the chain
M, @M, c M (4.36)

every subset is dense and open in the one that contains it, including M., C M. Now we explain a few
properties of these sets, including that M. C M, is @ proper subset.

First, by choosing both g and L to bé the wnitselement of G%, we see that M, is a proper subset of
M. Neat, let us recall that the center Z(G) isithe intersection of all mazimal tori of G, and for a fized
mazximal torus Gy one can find (see e.g. [42]) anather one, Gy, such that

GoNGlh = Z(G). (4.37)

Clearly, one can choose (E,L) = W(g, L) inrsuch way that the isotropy subgroups with respect to the
conjugation action of G on P are Gp.= Go and G; = G,. Then, the isotropy group G(i L with respect
to the diagonal conjugation action oh 18 Z(G). Consequently, (ﬂ, L) e ¢, and (g,L) € M,..

For concreteness, considery G = SU(m) and choose a pair (g, L), where L is a diagonal matriz with
distinct positive eigenvalues and g is amultiple of the matriz of cyclic permutation, i.e.,

n—1
g=C(En1+ Z Eiiv1), (4.38)
i=1

with a constant C such. that det(g) = 1. In this case, one can verify that G4 1y = Z(G), while Gy (g 1) is
the standard magimal torus-0f G. This implies that (g, L) € M, \ M. We can generalize this example
to other group$ by picking a regular L whose isotropy group is the maximal torus Go, and taking g € G
to be a representative ofla Cozxeter element of the Weyl group with respect to Go. By using that [42] the
fized pointdSet of thesaction of the Coxeter element on Gq is the center Z(G), it is easy to verify that for
this choige Gy (g, L= Z(G) and (g,L) € M, \ M,..

Consider._an arbitrary pair (g}, Lo) for which g € G{, an Lo € exp(iGo) are regular elements, i.e.,
theirfisotropy groups in G are G{, and Gy, respectively, which are subject to (4.37). The G-orbit through
(965 Lo) belongs to M., and from this one sees that

G™8 C my(M,) and SP™E C mo(M), (4.39)

since the reqular elements of G (and P ) are those elements whose isotropy subgroups under the conjugation
action of G are mazimal tori, and all maximal tori are conjugate to each other. We also note that
o (ML) = P8, but it is not clear at present if in the relations (4.39) one has equalities or not.
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The Abelian Poisson algebra $) (3.32) gives rise to the reduced Abelian Poisson algebra $),eq of Hamil-
tonians defined on M™ = M/G. Similarly, §“ (4.24) descends to a Poisson algebra of functions on M4,
which we denote §.eq and call the the Poisson algebra of reduced constants of motion. Resulting from
(4.36), we have the chain of dense open subsets

MEed © wmrred ¢ Mred, (4.40)

and we let 5, and §oy denote the restrictions of $req and Freq on Miid, respectively. Analogously, we

denote by $*_; and §* , the corresponding restrictions on M. These Poisson algebras enjéy the natural
isomorphisms

Drea =9y Srea =%, and Do = e, Frea = F s (4.41)

Since M., was defined by placing constraints on the constants of motion, the flows of all Hamiltonians

H € 9 (3.32) preserve this dense open submanifold of M. Taking into account that M. is also preserved

by the G-action, we can consider the simultaneous reduction of the pertinent Hamiltonian systems after
restriction on M,,. This leads to the ‘restricted reduced system’ denoted

(Mred R iid7'6** )a ~ (442)

*k 9 red

where the Poisson structure on Mffkd = M..../G results from the identification
(C®M), {= 1) = (C™ (ML) {—, =) (4.43)

The commutative diagram of maps displayed in Figure 1 will bewtilized for proving Theorem 4.6
below, which represents our first main result. Here, p; and p, are the canemical projections, ¢ := Wy,
and

Prea : M — €1 = € /G (4.44)

is induced by the G-equivariance of the map . All these maps are gmooth, surjective submersions and
are Poisson maps. In fact, p; and py are projections 'of principal fiber bundles, with structure group
G/Z(G). Since the map W : m, ' (P"°8) — €, isf@surjective submersion, this property is inherited by its
restriction . Then, one sees by tracing the diagram that 1,4 18 also a smooth submersion. The Poisson
property of the maps follows immediately from the definitions. Of course, the Poisson structure on ¢4
is defined by the isomorphism

O (T O (€.)C. (4.45)
Below, we shall first use the Poisson algebra
§ o = Uha(C(€)). (4.46)

Its relation to §iry (4.41) will be clarified later,(see Lemma 4.8).

N
(0
M* * Q:*
P P2
Mred wred Q:red

FIGURE 1. The setssand maps used in the proof of Theorem 4.6. All sets are smooth
Poisson‘manifolds and all maps are smooth Poisson submersions. €, is the subset of
principal orbit type for the G-action on €,e; C € (4.30). The map v is the restriction
of ¥ (323) to M, = ¥~1(€,), p1 and py are projections of principal fibre bundles.

The r = licase, i.e. the case of G = SU(2), is excluded in the subsequent theorem, since in that case
the reduced system is ‘only’ Liouville integrable. The proof given below is similar to the proof of an
analogous.statement® concerning Poisson reduction of the cotangent bundle T*G.

5Incidentally, in our work we first considered the Heisenberg double; the reduced integrability for the cotangent bundle
was presented in [22] in order to expound the ideas in a simpler context.
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Theorem 4.6. Suppose that r = dim(Gy) # 1. Then, the restricted reduced system (4.42) is a degenerate
integrable system of rank r with constants of motion provided by the ring of functions Sgcd (4.46), that
is, the quadruple (M9, —,—}1id,ﬁ;;d,$§ed) satisfies the stipulations of Definition 2.3. The reduced
Hamiltonian vector fields associated with 2y span an r-dimensional subspace of the tangentispace at
every point of M4, and the differentials of the elements of Sfed span a co-dimension r subspace ofithe
cotangent space.

Proof. By the definition of the reduction, every element H,cq € 95y obeys the relation

Hyeqa 0 p1 = H|m,, with some H e H=mn} (COO(‘B)G) , (4747)

and every integral curve y(t) of H;eq in M can be presented as the projection p; (@(t)) of an integral

curve z(t) of H in M,,. Since the map ¢ is constant along z(t), we see from Figure 1 that ¢;eq is
constant along y(¢). This implies immediately that the elements S&ed (4.46) are.comstants,of motion for
every Hred € 9iay- The fact that i.q is a Poisson map entails that 3’§ed forms a Poisson subalgebra
of C*® (M), Recalling that 1.cq is a submersion, we obtain that the dimension of the span of the
differentials of the elements of Sfcd is equal to dim(€**d) at every point of Ml Because G/Z(G) acts
freely on €, and on M., we have

dim(¢X*?) = dim(G) —r and dim(M™?) = dim(G), (4.48)

which confirms the statement concerning the differentials of the eléments of gfcd.

Next, we verify the claim about the dimension of the span of.the reduced Hamiltonian vector fields.
To do this, we pick an arbitrary point y := p;(z) € M4, with ome @= (g, L) € M,.. We know that the
values of the reduced Hamiltonian vector fields at y result by applying the tangent map Dp;(z) to the
values of the original Hamiltonian vector field at x. It follows from (3.22) that the latter are the tangent

vectors of the form S
(Vg,0) € T,M,., =T,G@& TrB, (4.49)

where V € G is given by the G-valued derivativé of some function ¢ € C=(P)¢ at L € B. Since L is a
regular element, these derivatives span a maximal\Abelian subalgebra of G, and thus the linear space of
the tangent vectors (4.49) is r-dimensional. We have,to verify that this linear space has zero intersection
with Ker(Dpy(z)), consisting of the elements

(W, g], W L)€ .M., VW eg. (4.50)

Now, if two tangent vectors having the respective forms (4.49) and (4.50) coincide, then so do their images
in T(E,L)C* obtained by the map D)(x)» But the image of the tangent vector in (4.49) is zero, while the
image of the one in (4.50) is

(W, L], W, L])iTw(@e* CT;POTLP, with L =g 'Lg. (4.51)

Since G/Z(G) acts freely €,,fthe véetor.in (4.51) vanishes only for W = 0, and then the vector (4.50)
also vanishes. In conclusion, the Dp;(x) image of the tangent vectors in (4.49) has dimension r.
The differentials of theelements of 77 span an r-dimensional subspace of T MEed at every y € Mred

since their Hamiltonian ¥eetor fields span an r-dimensional subspace of T, M:¢d. That is, the functional
dimensions of 7, and $ are the:same. It is obvious that 7, is contained in Sge q
Lemma 4.2 implies that a dense open subset of M4 is filled by symplectic leaves of maximal dimension,

which have co-dimension r. If 7 # 1, then we have
1 1
r<j; (dim(G) —r) = §(dim(Miid) —r). (4.52)

red

*k 9

This means'that 7 is strictly smaller than half the maximal dimension of the symplectic leaves in M
and thus/our restricted reduced system satisfies all conditions of Definition 2.3.

In the'excluded = 1 case, that is for G = SU(2), the reduced system is Liouville integrable, but there
is nofroom foridegenerate integrability in this case. O

Next, we prove an important consequence of Theorem 4.6.

Corollary 4.7. The restriction of the system (M, {— —}red ;‘;d,g” ) of Theorem 4.6 to any sym-

* %k K%k ) red
plectic leaf of MY of co-dimension r (where r > 1) is a degenerate integrable system in the sense of
Definition 2.2.
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Proof. Choose r functions C1, . ..,C, € C®(P)% that are functionally independent at every point of J378.
The restrictions of the functions C; o A, on M,, descend to Casimir functions C; € C'*® (Miid). These
functions belong to Sge 1> and any symplectic leaf of co-dimension r in M, is (a connected component of)
a joint level surface thereof. Now, we consider a symplectic leaf S of co-dimension r and fix an arbitrary

point y € S. Then, we can select additional (dim(€%?) — ) elements of Sged, say fq, so that

Ci, fas i=1,...,r, a=1,...,dim(¢*) —r (4.53)
are functionally independent at y. We can also find further r functions, say zi,...,z.So that the
functions

Cis fa> zi (4.54)

yield local coordinates on an open set U C M4, containing 3. It follows that the resfriction of the func

tions f,, 2z; to the level surface S of the Casimirs gives local coordinates on S around4p&€ S. Consequently,
the differentials of the restrictions on S of the elements of gﬁed span a dim(S) —rdimensional subspace
of the cotangent space TS at every y € S. This is all what we needed to prove, since we know from
Theorem 4.6 that the Hamiltonian vector fields of $**, span an r-dimensional space at every y € M4,
They are tangent to the every symplectic leaf, and give the Hamiltonian yector ﬁe\lds of $;%, restricted

onto the leaf. 0

Incidentally, for any generating set C; (i = 1,...,r) of C®(0)%,“he functions H; = C;om € H
are independent at every point of 7, '(*8) C M, and their restrictions on M, descend to functions
Hied € ¢ (M), which are independent at every point of (M, N4y (7°8))/G.

Finally, we wish to prove the reduced integrability on the ‘bigscell” Mi*? 6f the reduced phase space.
We begin by recalling that €, (4.30) is a regular (embedded) submanifold of P& x PB**& and €, is a
dense open subset of €,q,. It follows that €, is also a regular submanifold of 3 x 3. With the tautological
embeddding

L: € =P XL, . (4.55)
we obtain
(C (P xP/)Y) C 02(e,)C. (4.56)
It is easy to see that this is a proper subset, since onéxcan construct® smooth invariant functions on Creg
that blow up when approaching limit points of €.cg\lyingroutside B¢ x PB*°e. The maps in Diagram 1
give
Pi(§rea) = " (@ (C* BB Mmand  pi (§h,) = ¢7(C(2.)9), (4.57)
where we used (4.41) and (4.46). Then, since py and 1 are surjective submersions, we may conclude from
(4.56) that
§ila € Bhea (4.58)
is a proper subset. Nevertheless, the following, crucial lemma holds.

Lemma 4.8. At each point y € Mﬁ‘gﬁhe differentials of the elements of §iky (4.41) span the same linear
subspace of the cotangent space T;MEE™ as'do the differentials of the elements of Sﬁcd (4.46).

Proof. For any point p € €,, define the vector spaces

V(p) := span{dF(p) | F € C=(P x B)“} < T, (B x P) (4.59)
and
W(p) := span{dK (p) | K € C=(¢,)°} < T, ¢,. (4.60)
Relying on (4.57), ‘we observe that the claim is equivalent to the equality
(Du(p))"(V(p)) = W(p). (4.61)

Because of (4.56), ve have

(Du(p))*(V(p)) < W(p). (4.62)
Thus, it is enoughsto demonstrate that these vector spaces have the same dimension. To show this, we
recall that\for any/smooth action of a compact Lie group on a connected manifold M the dimension of
the span of the.differentials of the smooth invariant functions at any p € M belonging the principal orbit
type is equaltto the co-dimension of the orbit through p. (For a proof of this well known result, see the
Appendix of [22].) In our case, this implies that

dim(V(p)) = dim(W(p)) + r, (4.63)

8For eXample, for P8 = exp(iu(n)) take the function 1/f, where f(L,L) := H?;ll()\i — Xit1) with the A\; denoting the

ordered eigenvalues of L € Preg.
17
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since dim(V(p)) = dim(G) and dim(W(p)) = dim(€™*?). Now, we notice that the kernel of (Di(p))* is the
span of the differentials dF;(p) (i = 1,...,r) of the functions F; € C™(P x )¢ defined in (3.31). This
follows since p € €, has a coordinate neighbourhood U, C B x 8 whose intersection with €, is the joint
zero set of the functions F; in U,. Here, we used the description of €, outlined after (3.30) andythat
€. C C,eq is an open subset. The kernel lies in V(p) and is of dimension r. By putting these arguments
together, we find that

dim((De(p))*(V(p))) = dim(W(p)), (4:64)

which implies the claim of the lemma. [

Now we are ready to state the principal new result of the present paper.

Theorem 4.9. Suppose that r = rank(G) > 1 and consider the restriction of the unaster system of
free motion (described in Section 3.2) on the dense, open submanifold M, C MTof prineipal orbit type
with respect to the G-action (4.16). Then, this system descends to the degenerate integrable system
(M, {—, —Ypgea, s Treq) 0on the Poisson manifold Mi*d = M, /G, where the Poisson subalgebras 7,
and Fr.q of C= (M) ~ C®(ML)C arise from the restrictions of $ (3.32) and FEN@241) on M, C M,
respectively.

Proof. The statement follows by combining Theorem 4.6 with Lemma 4.8 Indeed, $;,; and §7,, satisfy
the conditions of Definition 2.3 on M because of the properties of their restrietions Hryy and Fixy on the
dense open subset M4 ¢ M4, In particular, Theorem 4.6 and Lemma 4.8 imply that the differentials
of the elements of §*_, span a co-dimension r subspace of the cotangent spacé at every point of M4, [
Remark 4.10. The full reduced phase space M™4 = M/G ‘s not a smooth manifold, but it still carries
the Poisson algebra of smooth functions descending from @®(M)%s Moreover (see [50, 61]), M4 can be
decomposed into a disjoint union of symplectic leaves, each of which®nherits an Abelian Poisson algebra
from $ (3.32) and a Poisson algebra of constants of motion from & (4.24). We conjecture that the
reduced system is integrable on every such symplectic leaf. Wt is worth noting that the derivation [23]
of the trigonometric Ruijsenaars—Schneider modelb.by Hamiltonian reduction of the Heisenberg double of
SU(n) (see also Appendic C) provides examples in whichhM:? contains symplectic leaves of dimension
2(n—1), smaller than the dimension of the.generic symplectic leaves if n # 2, and the reduced system on
these leaves is ‘only’ Liouville integrable.

5. DYNAMICAL 7"-MATRIX FORMULATION OF THE REDUCED SYSTEM

Here, we first derive an explicit formula for the reduced Poisson bracket based on a convenient partial
gauge fixing. The ‘gauge slice’ My (5.4) intersects every G-orbit contained in the dense open submanifold
Wfl(Greg) of M, where 71 : M -G8 .the projection onto the first factor of M = G x . The formula
(5.10) characterizes the reducéd Poisson bracket since every invariant function F € C°°(M) can be
recovered from its restriction F on My.! Then, we describe the reduced dynamics induced on the gauge
slice.

Consider the set of elements, Gi® = Gy N G™8, whose centralizer in G is Go. Since Gy < G, the
adjoint action of the elements of Gg is well-defined on GS. As is easy to see, for any Q € G the linear
operator (Adg — id)(€ End(GS) is invertible on G = GS + G (2.1). Thus, one can define the linear
operator R(Q) € Bad(GS) by

R(Q)(X )= %(AdQ +id) o (Adg —id) gt (X1),  VQEGH™, VX = (Xo+X1) € G, (5.1)
where X, €1G§ and X4 € QE according to (2.5). One can check that R(Q) maps B to B and G to G,
and (writing R(Q)X = R(Q)(X)) it enjoys the identities

(RQ)X, V)i =—(X,R(Q)Y)1, VXY € G, (5:2)
and
<R(Q)X, Y>]1 = <R(Q)X97YB>H - <X33R(Q)Yg>ﬂa VXa Y e gﬁ% (53)

With the aid of the exponential parametrization of ¢ and restriction to a linear operator on G, R(Q)
yields the standard trigonometric solution of the modified classical dynamical Yang—Baxter equation [15]
for the pair Gy C G. This dynamical r-matrix features in Theorem 5.2 below.
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5.1. Reduced Poisson brackets. Let us introduce
Mo = {(Q.L) € M| Q € Gi¥}. (5.4)
The G-orbits that intersect M fill the dense, open, G-invariant submanifold
7 H(G™8) = G™8 x P C M. (5.5)
The intersection of My with a G-orbit is an orbit of the normalizer
N:= Ng(Go) = {n € G| nGon~" = Go}, (5.6)

which acts on Mly. Here, we are referring to the action of the group elements n €)M < G determined
by equation (4.16). Colloquially, we may call 91 with this action the ‘residual gauge group’. Then, as is
easily seen, the restriction of functions gives rise to the following isomorphism:

C>(G™8 x P)Y +— C°°(My)™. (5.7)

The next definition relies on this isomorphism.
Definition 5.1. Let F,H € C=(My)™ be the restrictions of F,H € C(Gx& xR, Then, we define
{(FHNNQ.L) = {F Hu(Q, L), _V(Quk) € My. (5.8)

On the right-hand side of (5.8) the restriction of {—, —}y (3.19) to, the open submanifold (5.5) is
used. The ring of functions C>°(Mg)” becomes a Poissori algebra when equipped with the ‘reduced
Poisson bracket” {—, —}}9. We shall express {—, —}j5¢ in'ferms of the derivatives D1 F(Q, L) € By and

Dy F(Q, L) € GS, where D1.F(Q, L) is defined by 4
_ d _
<%3D1‘F(Qa L)>H = % F(etYOQ’L)a v}/0 € gOa (59)
=0

and the derivative Do F with respect to the second variable is determined according to (3.8) and (3.9).

Theorem 5.2. The definition (5.8) and equation (3.19) imply the following formula:

{F 1} (Q, L) = (Do F, DaH)r — (BaH, DoF)1 + (R(Q)(D2H)g, (P2 F)s)1 — ((D2H) 5, R(Q)(D2F)g)1-

(5.10)
Here, the derivatives D1F € By and Do F € G§. are taken at (Q, L), and R(Q) is given by (5.1).
Proof. Let F € C>(Mj)™ be the'testriction'of F € C=(G™8 x P)“. To begin, note that
(D1F(Q.L))g, =Dy F(Q, L) and DoF(Q,L) =D F(Q,L), Y(Q,L) € M. (5.11)
Then, we take the derivative at ¢t =0 of
F(e¥Qe Y Y Le ) = F(Q,L), VY €, (5.12)
and from this obtain
DF(Q,L) = D1 F(Q, L) = (D2F(Q, L))s, (5.13)
which implies
(Adg-1 —id) D1 F(Q, L) = (D2 F(Q, L)) (5.14)
Thisdn turn entails that
(D:F(QL)s, =0 and (DF(Q L)s, = —(5id +RQNDF@L)s,  (5.19)

where the subscripts refer to the decomposition of B in (2.6), Thus, at (Q,L) € My, we expressed
the derivatives of F in terms of the derivatives of F. It remains to insert these expressions, and their
counterparts for H, into the right-hand side of (5.8) given by (3.19).
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Regarding the third term of (3.19), we have (QD{F(Q,L)Q ", D1 H(Q, )> = 0, since B is stable
under Adg. We now use (5.11) and (5.15) to write the last two terms of (3.19), at (Q, L), as follows:

(D1F, DyH); — (D1 H, Do F); =(D1.F, DoH)1 — (D1H, D2 F )
— (2P}, (D)) + 3 (DA, (D2F)g)s

— (R(Q)(D2F), (D2H)g)1 + (R(Q)(D2H) 5, (D2F)g)1
=(D1F, DoH)1 — (D1H, D2 F)1

1 — _ 1 — _ _ (5.16)
— §<'D2]:, (DgH)g>]{ + §<D2]:, DoH — (DQH)Q>]I

+ {(D2F)5, R(Q)(D2H)g)1 + ((D2F)g, R(Q)(DaH)5)1
=(D1F, DoH)1 — (D1H, D2 F )1

Do, (DyF) ) + (DT, R(Q) (Do) %wgﬁ DTl

By adding also the first term of (3.19), we get .

{F, ’H}red (D1 F, DaH)1 — (D1H, Do F)1 + (D2 F, R(Q)(DoaH )i += <’D2]-' Do) (5.17)

Since the L.H.S. is antisymmetric with respect to the exchange of F and H, and the sum of the first three
terms of the R.H.S. is also antisymmetric, we must have (DyF, DaH); = 0 (as is confirmed by (3.16)),
and the the claim (5.10) follows on account of the identity (5.3) O

Observe that the first term of (5.10) contains only (DyH)gysince (D1 F)y € Bo. The third term depends
only on (DyH)g, and on (D2F )5, , because R(Q) vanishes on'Gy. Here, we refer to the decompositions
n (2.6). Of course, similar remarks hold for the second and fourth terms.

There are two alternative ways of dealing with the residual 9t ‘gaﬁge freedom’ that remains after the
restriction to Mg (5.4). The first is based on the fact that Gy is a normal subgroup of 0N, with the factor
group being the Weyl group

Wa =N/G. (5.18)
This leads to the isomorphisms
7 HGTEY G = Mgyt & (M /Go) /W, (5.19)

i.e., one may first take the quotient of My by Ggrand then divide by the Weyl group. We shall proceed
in this way in the description of a'specific example'in Appendix C. The second possibility is to take
into account that G{® is disconnected, and its connected components are permuted by the Weyl group.
Therefore, one may restrict to a cofmected @emponent, a so-called Weyl alcove in G(®, and then there
remains only the residual Gy gauge symmetry. Denoting a fixed Weyl alcove by G¢®, one introduces the
new gauge slice N

Mo {(Q,L) e M| Q € G}, (5.20)
which induces the isomerphism

C> (Mg)” «— C>°(M)“o. (5.21)

On the other hand, sineeiMy (5:4) i§ disconnected and its connected components are permuted by W, it
is clear that the expression (5:10) defines a Poisson algebra structure on the larger ring C>°(Mj)%°, too.
In fact, the Poissofisbracket on C°°(M)™ represents a Poisson structure on the quotient space My /N,
and this lifts to itstWg ecovering space My/Gy, giving rise to a Poisson bracket on O (M)%o.

5.2. Reduced dynamics on the gauge slice M. The Hamiltonian vector fields associated with the
commuting Hamiltonians from $) (3.32) are projectable on the reduced phase space M/G, and the pro-
jected vegctor fields are Hamiltonian with respect to the reduced Poisson structure. Restricting to the
dense open submadnifold of 7 '(G™8) € M, we describe the vector ﬁeldb on My (5.4) whose projections
on M/ eoincide with the reduced Hamiltonian vector fields on 77 *(G*8)/G. Then, we present a
construction of the corresponding integral curves on M.

Below, we use the terms reduced Hamiltonian vector fields and reduced dynamics on M. This is a
slight abuse/of terminology, since the true reduced dynamics lives on M/G, of which M/ is a dense
open subset.

Avvector field V on My = G® x P can be presented as

V(Q,L) = (VY(Q,L),V*(Q, L) with VY(Q,L) € ToGo, V*(Q,L) =TLP. (5.22)
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Let us consider a Hamiltonian H € C°°(M)”" which is the restriction of H = 75¢ € $. This means that
H(Q,L) = ¢(L) where ¢ e C=(P)°. (5.23)

For the derivatives of H, we have
D1 H(Q,L) =0 and DyH(Q,L)=Dé(L) €G. (5.24)

See equations (3.8) and (3.9) for the definition of D¢. Now, using (5.10), we associate with H the ‘reduced
Hamiltonian vector field’ V; on My by imposing the following condition:

{F, H}d = Vg7, VF € C*(My)™, (5.25)

where Vy[F] denotes the derivative of F along the vector field. There is an ambjguity in Vigubecause
of the invariance property of F. It is convenient to require (5.25) for all F € C>°(Mg)<°, and then the
residual ambiguity in Vj; is the addition of an arbitrary vector field that is tangent to the Go-orbits,
representing an infinitesimal Gy gauge transformation.

Proposition 5.3. The ‘reduced Hamiltonian vector field’ Vi defined aboué has the\followmg form:
Vi(Q,L) =Do(L)oQ,  Vi(Q,L) = [R(Q)Do(L)sL], (5.26)
up to the ambiguity of adding an arbitrary vector field tangent to the Gy-orbits/fin M.

Proof. On account of (5.10), the equality (5.25) can be spelled out as

(DiF(Q, L), DH(L)o)1 + (D2F(Q, L)s, R(Q)PH(LNw = V[ FI(Q, L). (5.27)

The definition of the derivatives D;F implies that (5.27) is equivalent to the claimed formula (5.26), up

to the ambiguity of Vy; discussed above. ]
L

The vector field V5 can also be derived by first taking the original Hamiltonian vector field of H €
on M then restricting it to My, and adding a vector field tangent to the G-orbits in a such a way that
the result is tangent to M. The original Hamiltonian vector field is provided by (3.25), and one can
verify that

VUQ.L) = DO()Q + [R(Q)DS(L) ~GDBIRQ), WVA(Q. I) = [RQDA(L) ~ 5DH(L), L], (525)

where the Lie brackets define an element of T{ ryM that is tangent to the G-orbit through (@, L) € M.
Note that [D¢(L), L] = 0 because of the G-invariance of ¢, and also [D¢(L)o, Q] = 0.

Next, we present a quadrature fordinding the integral curves of the vector fields (5.26), which govern
the dynamics induced on the gauge slice My (5.4).

Proposition 5.4. For a fized fuictiop.g € O (P)“ and a point (Qo, Lo) € Mo, let 11 (t) be a G-valued
smooth function on an interval (—efe) CR such that n1(0) = e and

Q(t)gs=mit) exp(#Dp(Lo))Qom (t) ' € Gy, Vt € (—e,e). (5.29)
Furthermore, let no(t) €‘Go with 1o(0) = e be the unique solution of the differential equation
. = 1 _ . _
io(t)mt) " = —5Po(m(t)Lom (t) Do = (i (®)m(6) ™ o- (5.30)

Then, Q(t) and D)= ga()m (t) Loni (t) " 1no(t) ™1, defined on the interval (—e,€), gives an integral curve
of the vector field Vg (5.26), with initial value (Qo, Lo).

Proof. Afterssetting L. (#) := n1 () Lomi (t) ™", a simple calculation gives Q(t) = D(L (£))oQ(t) and
Li (t) = [R(Q(D)DS(L1 (1)) + (i ()m (£) "o + %%(Ll(t))o, Ly (t)]. (5.31)
To get this, one uses that 7 (£)D(Lo)ni (t)~F = Dp(L1(t)) and that Q(t)Q(t)~"' € Gy implies
((Om ), = (RIQ) - 3 ) DolLa(o)-. (5.32)
Conjugation by 7o(t) does not change Q(t), and the result follows since DH(L(t)) = 1o(£)Dp(L1 ()0 (t) .

]
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The first step of the above quadrature is the construction of 7 (¢) in (5.29), which is a purely (linear)
algebraic problem. The subsequent construction of 1 (t) requires the calculation of an integral,

w0 =esp (= [ (momn) "+ 0L ar). .33

This second step can actually be omitted, since the conjugation by 7(¢t) does not affect theseventual
projection of the integral curve on the reduced phase space.

Remark 5.5. The Hamiltonian vector field of any H € $ on M, and consequently also its projection on
the full reduced phase space M/G, is complete. However, the vector field Vi (5.26) issnot complete on
My in general. This is a consequence of the fact that not all unreduced integral curves (3.22) startingvin
G*°8 x B stay in this dense open submanifold.

6. DECOUPLED VARIABLES AND THE SCALING LIMIT

Our first goal here is to recast the reduced Poisson bracket (5.10) in terms of new variables consisting
of canonically conjugate pairs ¢;, p; (i = 1,...,r) and a ‘decoupled spin yariable’ A\. This is described
by Theorem 6.4, which generalizes a similar result presented in [26] for the G = U(n) case. At an
intermediate stage, we shall also recover the form of the reduced Poisson bracket given in [21]. Then,
based on Theorem 6.4, we shall elaborate the connection between our reduced systems and the well known
spin Sutherland models obtained by reduction from the cotangent bundles T*G.

6.1. Canonically conjugate pairs and ‘spin’ variables. Let us begin by/noting that in terms of the
alternative model 91 (2.17) of the Heisenberg double the gaugé slice M (5.4) turns into
gﬁo = GBEg x B (61)
The connection between 9y and M is given by the difféeomorphism ms, which is the restriction of the
map ms (2.21), Y
Mg My — Mo, o ma(Q,b) = (Q,bd"). (6.2)
The map mo is M-equivariant with respect to the restrictions of the actions (4.16), and therefore it induces

an isomorphism
C>(M)™t .0 (M) ™. (6.3)
Proposition 6.1. For functions f,h € C(IM) % Sthe isomorphism (6.3) converts (5.10) into the fol-
lowing equivalent formula of the reduced Poissomybracket:
{f, h}ss (Q,b) = (D1 faP2h); — (D1h, Dy f)1 + (R(Q)(bD5hb™"), 6D fb~ )1 (6.4)
Here, the derivatives are evaluated dt (Q,b)pawith D1 f € By defined similarly to(5.9) and Dof, Dyf € G
defined by applying (2.25) to the sécond variable, and R(Q) is given by (5.1).
Proof. For functions F and f relatea%y f= F o1my, one has
DiF =Df and DoF =bDyfb !, (6.5)

at the corresponding arguments, similarly to (3.12). Furthermore, Dof = (bDyfb~1)g = (DoF)g. The
formula (6.4) is obtained frem, (5.10) by direct substitution of these relations, and their counterparts for
‘H = h o mq. More preciselyywe also used the identity (5.3). O

The formula (64) was obtained previously in [21] starting from the Poisson bracket (3.19) on the
model M (2.17).ofrthe Heisenberg double. Its equivalence with the claim of Theorem 5.2 provides a
good consistency check on our considerations. According to the discussion at the end of Section 5.1, the
formula (6.4) yield$ a Poisson bracket also on C>°(91)%.

Now, ourgoal is to re¢ast the Poisson bracket (6.4) on C°°(9)“° in terms of convenient new variables.
To do this, we shall use that any b € B can be decomposed uniquely as

b= epb+ with pE 807 b+ S B+, (66)

and'that the subgroups By = exp(By) and By = exp(B.) of B admit global exponential parametrization.
Our construction relies on the map

C: My =Gy® x B— Gy® x By x By (6.7)
defined. by the formula

C:(Q,€ePby) = (Q,p,N) with X\ :==b7'Q 'b,Q. (6.8)
22
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We remark that A can also be written as A = b=1Q~1bQ. The definition (6.8) comes from [19], where a
‘spin variable’ (denoted there S, ) given by the same formula as our A, but restricted to the intersection of
an arbitrary dressing orbit of G with B, was used. The geometric origin of the definition is expounded
in Appendix B.

Lemma 6.2. The map ¢ (6.7) is a diffeomorphism. It is equivariant with respect to the Go-actions for
which no € Go sends (Q,b) to (Q,nobno_l) and (Q,p, A) to (Q,p, 770/\770_1). Consequently, ¢ finduces.an
isomorphism

O (M8 0 s C(Gy® x By x By)C°. (6.9)

Proof. The properties of the map ¢ were analyzed in Section 5.1 of [19], from which the statement follows.
(Incidentally, this paper contains an explicit formula for the inverse of ¢ in the G = SU(n) case.) See
also the proof of Proposition 6.8 below. ]

Let DoF, d,F and DyF, D\ F denote the derivatives of any real function F € C>(Gy €% By x By)
with respect to its three variables, respectively. We have DoF € By, dpF € 'Gy and DyF,D\F € G, .
Here, Do F and d,F are defined by o

F(Qe™, p+ tXogA), WXy € By, Yo € Go, (6.10)
t=0

<YE)aDQF(Qapa )‘)>]I + <X0aDpF(Qap7)‘)>]I =

dt

using that Qe'¥o € G® for small t. Recalling the decompositions (2.2) and(2.6), G, is taken as the
model of the dual space of By. Then, DyF and D) F are defined by

F(Qup, e XeX), VX, X' € B (6.11)
t=0

Lemma 6.3. Consider two functions f € C™(My) andF € OFX(G5? x By x By) related by f = Fo(
with the diffeomorphism (6.8). Then, their derivatives are connectecﬁ according to

<Xa DXF(Qap7 )‘)>H + <X/7D/)\F(Q7pa )‘)>H - %

DLf = d,F + @DAFQ — AD\EA )¢ (6.12)
and
Dif = DgF — (bQD;FQ—lb—l)BO : (6.13)

where the derivatives on the left and right sides aretakem,at (Q,b) and at (Q,p, A) = ¢(Q,b), respectively.
The subscripts G and By refer to the decompositions (2.2) and (2.6).

Proof. Taking any X € B, and inspecting the derivatives along the curve (Q,bexp(tX)) in My and its
(-image in Gy x By x By, we get

(X, D3f(Q.b))1 = (X, QDYF(Q, p, NVQ™" — (ADAF(Q,p, A" g - (6.14)
Inspection of the derivatives along the curve (Q,bexp(tXp)) in My, with Xy € By, gives
(X0, Dy f@Q D)) = (X0, dpF(Q,p, A) — (ADSF(Q, p, )A™H)go )1 (6.15)
Together, these imply the equality (6.12). To derive (6.13), we use the identity
FQel " b)="F(Qe",p, A\Q™'b~ e bQe"™), VY, € Gy, (6.16)
and note that
% ~ (Q'b e ™0bQe™) = (Yo — Qb 'Y0bQ) € By (6.17)

Consequently, ‘at the arguments'related by ¢, we get
<Yba D1f>]1 = <)/07 DQF>]I + <Y0 - Q_lb_lyon7D3\F>]I = <}/07 DQF - (bQD/)\FQ_lb_l)BO>]Ia (618)

which completes the proof. O
Since any two functions F, H € C®(G® x By x B, )% are related to unique functions f, h € C> (M) o
by
Fo(=f, Ho(=h, (6.19)
Wercan define {F, H}i*d € C(G® x By x By)% by the requirement
{F, H}y" o ¢ :={f, h}s5.. (6.20)
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Theorem 6.4. In terms of the new variables introduced via the map ¢ (6.8), using the definition (6.20),
the reduced Poisson bracket (6.4) acquires the ‘decoupled form’

(F, HY?Y(Q,p, \) = (DoF,dyH); — (DoH, d,F); + (\D\FA~', DyH)y, (6.21)

where the derivatives of F, H € C™(Gy® x By x B4)¢° are taken at (Q,p,\). The functions of theform
F(Q,p,\) = p(\) with p € C(B)Y are in the center of this Poisson bracket.

Proof. The formula (6.21) follows from the direct substitution of the relations of Lemma 6.3 into (6.4).
The required tedious manipulations leading from (6.4) to (6.21) are omitted, since they essentially coincide
with the calculation presented in [26], where the G = U(n) analogue of the formula‘was_derived.

If F depends only on A\ and is the restriction of ¢ € C>(B)%, then we have

D\F =D'p(\) — Xo with X = (D'p()\))o. (6.22)
In this case, since AD'o(AM)A~™! € G by (2.26), we can write
{F HY5(Qp, A) = (Xo — AXoA™!, DyH)r. (6.23)
Notice that Y := Xy — AXoA~! belongs to B and
% Y= p et X0 \e X0, < (6.24)
t=0 t=0

This identity and the fact that H is Gy-invariant imply

d
(Y,D\H)i= —| H(@Q,p,e™\)=—| H(Q,pjere ) =0, (6.25)
dt|—g dt],_g
which completes the proof. Incidentally, an alternative proof ¢an be ebtained starting from the reduced
symplectic form derived in [19]. O

Remark 6.5. As it was discussed around (5.20), the variable @umag.be restricted to a Weyl alcove G’Beg.
By using (5.21) and the relevant restriction of the map|C (647), we obtain the isomorphism

O (M)™ +— C°(M)92 +— C(GEE x By x By)° (6.26)

with My = égeg x B. This may be a preferred way, to proceed, since we do not have an explicit formula
for the action of the group M on G® x By x By. Sueh an aetion is determined by transferring the action
(4.16) of M < G on My via the diffeomorphism C, bubrits explicit form is not easy to find. According to
Theorem 6.4, the additional restriction of thewariabledk to the intersection of By with a dressing orbit can
be achieved by fixing Casimir functions. In fact, this leads to a Poisson subspace of (Ggeg X By x By)/Gy
and the Poisson bracket on this subSpace corresponds to the reduced symplectic form exhibited in [19].

Remark 6.6. With very small modifications, all results of the paper are valid for non-Abelian reductive
Lie groups, too, and the simply conmectednesswof G is also not essential. In the paper [20] we dealt with
the important example for which

G = t}n), G® = GL(n,C), B =B(n), (6.27)
where B(n) consists of those upper triangular elements of GL(n,C) whose diagonal entries are real,
positive numbers. The bilinear form.on the real Lie algebra gl(n,C) can be taken to be

(X, Y) =Str(XY), VX,Y €gl(n,C). (6.28)

In this case G = u(n)), and Py=exp(iu(n)) is the set of positive definite, Hermitian matrices, which is
an open subset ofdthe vector space iu(n) of Hermitian matrices. The vector spaces iu(n) and u(n) are
in duality with respect to. bilinear form (6.28). Thus, for any function F € C*®(P), one can define its
u(n)-valued differential dF by the requirement

(Z,dF (L)) = 7 F(L+1t2), VZ € iu(n), (6.29)
=0
since (LHtZ) belongs to P for sufficiently small t. Relating F € C(P) to p € C°(B) by
FbbT) = @(b),  Vbe B(n), (6.30)
one can verify the following identity:
2LdF(L) =bD' ()b~ for L =bb'. (6.31)

By applying the counterpart of this identity to related functions defined on M and 9 (2.17), and on My
(5.4) and My (6.1), the formulas (3.7) and (6.4) are converted into those derived in [20], which served
as the starting in the joint paper with Marshall [26].
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6.2. Connection with spin Sutherland models. It is easily seen from the formula (3.3) that Go < G
is a Poisson—Lie subgroup on which the Poisson bracket vanishes. This entails that the restriction of
the dressing action of G on B yields a classical Hamiltonian action of Gy. This action operates by
conjugations,

Dressy, (S) = 105, ', VYo € Go, S € B, (6:32)

and is generated by the classical moment map S +— log Sy € By =~ Gj, which is defined by applying
the decomposition S = SpA with Sy € By and A € By. A particular reduction of the Poisson space

(B,{—,—}pB) is obtained by setting this moment map to zero. Identifying the smooth functions on
B, /Gy with C*°(By )%, the third term of the Poisson bracket (6.21) represents precisely the rédiiced
Poisson structure arising from (B, {—, —}5) in this way.

The Poisson—Lie group (B, {—, —} 5) is a nonlinear analogue of (G*, {—, —}g+) equipped with the linear
Lie—Poisson bracket. Using the pairing (2.10), B can be taken as the model of the dual space G*, and
its reduction with respect to Gy at the zero value of the moment map givesfa Poissomistructure on
C>(By)%. This is a building block of a linear counterpart of the Poisson bracket (6.21). Denoting the
elements of G® x By x By by (Q,p, X), the Poisson bracket at issue has thesform

{f, h}in(Q, p, X) = (Do f, dph)s — (Doh, dyp f)1 + (X, [dx f, dgh]Vi, (6.33)

where the derivatives of f,h € C®(G;™® x By x B, )% are taken at (Qyp, X), and dx f € G, ~ (B,)*
denotes the differential of f with respect to its third variable.
We recall (see e.g. [53]) that the Poisson algebra

(C®(Gy® x By x B1)“°, {—=Yim) (6.34)

encodes the reduced Poisson structure obtained by takingthe quotient of the cotangent bundle T*G
with respect to the conjugation action of G. More pregisely; this is true for the dense open subset
T*G™8 /G C T*G/G, after further restricting the variablé @ to aWeydalcove G® C G (or considering
only those functions that are invariant with respect tolthe mormalizer M (5.6)). The cotangent bundle
T*G carries the degenerate integrable system whose main Hamiltonian is the kinetic energy corresponding
to the bi-ivariant Riemannian metric on G. The reduction of the kinetic energy yields the spin Sutherland
Hamiltonian [14, 53], represented by the following element of the Poisson algebra (6.34):

. 1 |X 2 .
Hpin—su lq; 7X E ST RUISY th X = E XJE, € B.. 6.35
pin=suth (€, P X) = |a[2 sin®(a(q)/2) W + ( )
aedt aedt

Here, &+ denotes the set of positivexoots of G€, se'that B, is the complex span of the root vectors E,
for o € ®+. We employ a Weyl-Chevalley basis [60] of G©, for which E_, = —0(E,) with the Cartan
involution # (2.13), and (E,, E_,) & 2/|a|?sholds. Tt is worth stressing that in (6.35) B is taken as the
model of G*.

The next result clarifies the connection between the Poisson algebras of the spin Sutherland models
and our models.

Proposition 6.7. Forany realé # 0, let us define the Gy-equivariant diffeomorphism
He chg X BO X B+ — chg X BO X B+7 e * (Qaan) = (Q?Epv exp(eX)). (636)
Then, the ‘linear Poisson structure’ (6.33) is related to the nonlinear one (6.21) according to the formula

{f, hhin = hm effonut hop Y5 o pe. (6.37)

Proof. To keep the formulae short, let us focus on functions that do not depend on @ and p. Choosing
a basis {T*} of G4, we may use the components

X¢=(X,T%1 and o0 := (0,7 with A=¢€% € By (6.38)

as coordinates on the respective spaces B4 and B. Both formulae (6.21) and (6.33) define bi-derivations
(biveetor fields); which can be used to calculate the brackets of arbitrary smooth functions (not only
Gosinvariantiones). Adopting the usual summation convention, we can write

{f, hhin = 11} o fOch, (X)) = (X, [T, T, (6.39)

lin
where. 0, denotes partial derivative with respect to the coordinate X®. On the other hand, we obtain

{F,HY =T15°0,FO.H,  TI3°(0) = I (a) + P@“(0), (6.40)
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where P%¢(0) is a polynomial in the components of o, whose lowest order terms are quadratic. Here,
the partial derivatives are with respect to the coordinates o®. The formula (6.40) follows from (6.21) by
means of a simple calculation of

(o) := (AD\G*A™*, Dro“)1. (6.41)
The point is to notice from (6.11) that the derivatives of the coordinate functions ¢® have the form
Dyo® =T"+P*o), Dio*=T*+P"o0), (6.42)

with certain G -valued functions P%(o) and P’*(c) whose components are multivariable polynemials /in
the coordinate functions, without constant terms. By using the chain rule, and notingsthat the partial
derivatives of the components of ! give e !-times the unit matrix, (6.40) leads to

(f ot o Jirt o i) (X) = - (Te(eX) + P(eX)) () ()G, (6.43)

This implies the claim (6.37) for functions f, h that depend only on X € B.. /The possible dependence
on @ and p is taken into account effortlessly. O

In view of Proposition 6.7, we say that the ‘linear structure’ (6.33) is the scaling¥imit of the nonlinear
one (6.21). Notice that in (6.37) the bracket {—, —}:°d has also been rescaled.by ¢. We put ‘linear Poisson
structure’ in quotation marks, since we are dealing with Poisson brackets,of Gg-invariant functions, and
no linear function of X € B, is Gy-invariant.

Finally, we explain how the spin Sutherland Hamiltonian (6.35) ¢an.be recovered from specific Hamilto-
nians of our reduced system obtained from the Heisenberg doubleFor this purpose, we take an arbitrary
finite dimensional irreducible representation p : G — SL(V), and introduce an inner product on the
complex vector space V in such a way that we have,

p(KY) = p(K)t,  ¥KeGS, (6.44)

where KT is defined in (2.14) and p(K)' denotes adjoint with respec?to the inner product. This ensures
that G and 3 are represented by unitary and by positive Hermitian operators, respectively. Then, the
character of the representation gives the element ¢Prc C (B)S;

¢°(L) == tr,(L) :=eptrp(L), VL € p. (6.45)
Here, ¢, is a (positive) normalization constant.chosenin such a way that the trace taken in the represen-
tation reproduces the Killing form, i.e.,

(X,Y) = c,tr(p(X)p(Y)),  VX,Y €, (6.46)
where the Lie algebra representation is also denoted by p.

Now, let us express L in terms offthe decoupled variables (Q,p, A) introduced in equation (6.8), with
A € By written as A = exp(o). This yields the Hamiltonian

H(Q,p,0) := tiplE(Qspy0)). with L(Q,p,0) = ePby(Q,0)b.(Q, o) e?, (6.47)
where b, (Q, o) is determined by the relation
b'Q T Q =, (6.48)
Proposition 6.8. The.spin Sutherland Hamiltonian (6.35) is the scaling limit of HP (6.47) as follows:
.1 .
Hpin—Suth = ll_r)% E(HP o fre — cpdimy). (6.49)

Here, we use thefmap pe :@Q5p, X) — (Q, ep, eX), which is just (6.36) written in terms of the exponential
parametrization of B .

Proof. The.proof'is based on calculations that appeared in [19] (without the interpretation as a scaling
limit). Let us employ the parametrizations

bp =exp(B), A=exp(o) with B= > BaFa, 0= Y 0aFa (6.50)
aedt acedt

and spell out the relation (6.48) as

exp(~B+Q71BQ + 51Q7BQ,B] + ) = explo), (6.51)

which results from the Baker—-Campbell-Hausdorff formula. The dots denote higher ‘commutators’, of
which there appear only finitely many, for By is nilpotent. Since the exponential map from By to B,
26
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is a diffeomorphism, one may use (6.51) to establish the form of the dependence of 3 on o and @ = e'?.
With the aid of induction according to the height of the roots, one finds [19] that

Oq

Pa = e—iaa) — 1 +Ta(e,0), -
where I', has the form

Z Z fW17 780k )0.501 ce Ugak' (653)

k>2 @10k
The sum is taken over the unordered collections 1, ..., ¢ of positive roots, withpossible repetitions,
such that a = @1 + - - - 4 ¢g. The coefficients f,, . ,, are rational functions in e‘o‘l(q), . e‘ar(q), where

aq, ..., are the simple roots. By substituting (6.52) of 3, into (6.47), and expandingf(b+ ) =.exp(p(5))s
one obtains the formula

oal?
HP(e'9,p,0) = cptr ( ( + - Z | s|1n )(/2) a) +02(J,a*)>) . (6.54)

a€¢+

Here, 02(0, 0*) stands for a finite number of terms that have total degree 3 and higher in'the components
of o and their complex conjugates. These terms depend also on @ = exp(ig), and 1y, denotes the identity
operator on the representation space V. To get (6.54), we used that te(p(By,)p(EL,)e? ) = 0 unless
v = a. Then, by expanding e2*(?) as well and noting that tr(p(p)) = 0 becauseG® is simple, the claim
(6.49) follows from (6.54). O

Remark 6.9. The standard spin Sutherland Lax matriz candbehrecovered as the scaling limit of our
Laz matriz L(Q,p,0) (6.47). It can be shown that the Hamiltonians HP (6.47) corresponding to the r
fundamental highest weight representations of G© are functionally independent on a dense open subset.
Motivated by the presence of the factor €2P in (6.54) andtheselation (6.49), H? (6.47) may be called a
Hamiltonian of spin Ruijsenaars—Schneider type. We egplain in Appendiz C that a special case of these
Hamiltonians for G = SU(n) reproduces the standard' (spinless) trigonometric Ruijsenaars—Schneider
Hamiltonian [59] on a symplectic leaf of the rediced phase space:

7. DISCUSSION

In this work we continued our previous investigations [19, 21] of Poisson—Lie analogues of spin Suther-
land models. We solved an important openhquestion regarding the integrability of these models, and
further developed various aspects of the earlier results.

Reduced integrability was arguedsin [19, 21] by exhibiting a large set of constants of motion, but
the precise counting and other technicalhdetails were missing. Our principal new results are given by
Theorem 4.6 with Corollary 4.7 and Theorem 4.9. Theorem 4.9 states the degenerate integrability of
our models on the Poisson manifold M, which is the smooth component of the reduced phase space
corresponding to the principal-orbitstype for the underlying group action on the Heisenberg double.
Theorem 4.6 establishes even' strouger properties of the restricted reduced system on the dense open
subset M4 c Md associated with the subset €, (4.31) of principal orbit type in the space of unreduced
constants of motion. Cérellary 4.7.deals with the generic symplectic leaves in M9,

In addition to the thorough analysis of reduced integrability, we also presented a novel description
of the reduced Poisson’ bracketsa, This is given by Theorem 5.2, which was derived utilizing the model
M = G x ‘B (2.15) of|the Heisenberg double developed in this paper. Then, in Theorem 6.4, we expressed
the reduced Poisson brackets in terms of canonically conjugate pairs and decoupled spin variables, and
subsequently used this te.déepen the previously found [19] connection between our models and the
standard spin Sutherland.models. The latter models are recovered via the scaling limit characterized by
Propositions 6.7.and 6.8.

Turning o opemproblems, we wish to stress that further work is required to clarify the integrability
properties of the restrictions of the reduced systems on arbitrary symplectic leaves of the full reduced
phase space. This is true concerning both the spin Sutherland models and their Poisson—-Lie deformations.
Other challenging problems concern the quantization and the construction of elliptic counterparts of our
trigonometri¢isystems. It is well known that the spin Sutherland models can be quantized by combining
harmenic analysis on the underlying Lie groups with quantum Hamiltonian reduction [14, 28], and it
should bepossible to generalize this to our systems.

Throughout the paper, we strove for a careful exposition of the nontrivial technical issues in the hope
that theresulting text may serve as a useful starting point for future studies of open problems of the
subject. The auxiliary material of the appendices is included having the same goal in mind.
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APPENDIX A. THE POISSON ACTION ON ‘P_ x B

Here, we sketch the derivation of the Poisson action (4.19) of G on P_ x P. Welproceed by first
deriving an equivalent action on B X B, which we then transfer to f_ x B by means of the Poisson
diffeomorphism p: B x B — P_ x P given (with v in (2.16)) by

s (br o) > (v(by ), v(bo)). (A1)

Our reasoning illustrates how one may find the action starting from a Poisson+Lie moment map.
To begin, we note from (3.4) that the Hamiltonian vector field, Vi, associated with # € C>°(B x B)
by means of the product Poisson structure reads N

Vi (b1,b2) = (b1(by "D1F (b1, b2)b1)5, ba(by " Do F (Bisb2)b2)5) (A.2)

where Dy F and D> F are the derivatives with respect to the first and second variable, respectively. Next,
we define the Poisson map J : B x B — B by J(b1,bs) := b1be, and from {F,J} = —Vp[J] find

(X AF, Iy pxp(p)J(p) ™)1 = (b7 ' Xb1)s, DL F(p))1 + (b5 ' (bytXb1)gb2) 5, DLF (p))1, (A.3)

at any p = (b1,b2) € B x B, for any X € G. This means that the vector field Xpxp generated by the
moment map J has the form
- 4

Xpxp(b, b)) = (dressx(bl), dress ,-1x,,), (bg)) . (A.4)
We claim that this is the infinitesimal form of the G=action on'B x B defined by the maps
Ay (b1, bz) = (Dress, (b1), Dressz , (mopy— (b2)) , Vn € G. (A.5)
The action property A,, o A,, = A, is provedsby. using that Dress,, o Dress,, = Dress,,,, and that
Er(mna2b1) " = ZrmDress,, (b1)) ' Er(n2b1) " (A.6)
The last equality is verified by substituting
Er(in2b1)Th= (Dressy,n, (b1)) ™ minbs, (A7)

and similarly rewriting the two factogon the/right side of (A.6). Having verified that (A.5) is a G-action,
it remains to ascertain that

d
Xpxp(b,b2) = 7 Agex (b, b2). (A.8)
tli—o
The first component of this equality is obvious from (2.24), and second one is seen from
d d _
= ErESo) = 2 ((Dressetx(bl)) ! etXbl) = — (b7 Xby)p + b7 Xby = (b7 Xby)g. (A.9)
tli=o dt |~

The final step'is to convert the action (A.5) on B x B into the action A, (4.19) on _ x P by means
of the map p (A.1)¢ The|desired result, A, oy = p 0 A,, follows immediately from the identity

(Dress,(b1)) ™" = Dressz,, (yb;)-1 (b, (A.10)

because ¥\ (2.16) intertwines the dressing action (2.23) on B and the conjugation action on ‘B. The
identitys(A.10) itself is obtained by applying Ar (2.19) to both sides of the equality

(Dress, (b1)) ™" = Zgr(nby) by 'nt (A.11)

The moment maps A (4.18) and J above are related by A o = J, and thus we have indeed established
the form of the Poisson action on P_ x P generated by A.
Incidentally, the formula (4.4) of the quasi-adjoint action can be verified following a train of thoughts
similar to the one presented in this appendix.
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APPENDIX B. POISSON REDUCTION VIA THE SHIFTING TRICK

We now explain the origin of the defining equation (6.8) of the ‘spin variable’ A by utilizing the so-
called shifting trick of Hamiltonian reduction [50]. In the context of Marsden—Weinstein type reductions,
the shifting trick means that one first extends the phase space by a coadjoint orbit or dressing orbit,
and then reduces the extended phase space at the trivial moment map value. Under mild conditions, the
outcome is equivalent to the result of the corresponding ‘point reductions’ based on taking/a moment
map value from the ‘opposite’ orbit.

In our case, we may start with the extended Heisenberg double

My :=M x B={(K,S)| K € M, S € B}, (B.1)

and equip it with the direct product Poisson structure {—, —}ext built from {—, —} (3.1) on M and
{—,—}B (3.4) on B. This extended phase space carries the extended moment map‘Aext : Moxs — B,

Aet(K, ) = AK)S = A (K)Ap(K)S, (B.2)
which generates a Poisson action of (G, {—,—}g) (3.3) on Meyx. Then, we reduce the extended phase
space by imposing the moment map constraint
Aot (K, S) = e. = (B.3)
By using that on the ‘constraint surface’ S = A(K)~!, one arrives at thesidentification
AL(e)/G ~ M/G. (B.4)

Moreover, for every G-invariant function on A_}(e) one can define a Geinvariant function on Me; in such

a way that the extended function does not depend on S. In this wayyone obtains the identification

C>® (A (e) = C=@d)°. (B.5)
Essentially because (B.3) represents first class constraints in Dirae’s sense [32], the identification (B.5)
holds at the level of reduced Poisson algebras as well. &

On the other hand, coming to the crux, we may introduce a convenient partial gauge fixing in the
moment map constraint surface (B.3) by imposingithe conditionthat Zr(K) € Go. Then K € M can be
presented as

K=Q W 1'QQ '=Q %! with, Q=Er(K) e Gy, b=Ar(K) € B. (B.6)
On this ‘gauge slice’, applying the parametrizationsb.= ePb, (with p € By, by € By ), we get
A(K) = Qb3 Qb = Q 'b7' Qb (B.7)
Consequently, the moment map condition (B.3) becomes
b 'Q Q= S. (B.8)

This relation enforces that S € By, and after re-naming S to A we recognize the formula (B.8) as
equation (6.8) that we started with in Section 6.1. By imposing the additional condition @ € G™¢, one
may ensure that the residual gaugedransformations of the partial gauge fixing (B.6) are associated with
the normalizer 91 of Gy (which meéans that 7 in (4.4) is restricted so that Zg(nAL(K)) belongs to ).

The shifting trick wasiapplied in.[19] working in the symplectic framework, by restricting the variable
S in (B.1) to a dressingorbit,of G in B throughout the procedure.

APPENDIX, C."DERIVATION OF THE TRIGONOMETRIC RS MODEL

It is known [23] that the standard (real) trigonometric Ruijsenaars—Schneider (RS) model [59] can be
derived by a spécifiec Marsden—Weinstein type reduction of the Heisenberg double of the unitary group
U(n). The goal of this appendix is to explain how this result can be recovered in the framework of the
present paper. Here, we take G:= SU(n), and obtain the model in the ‘center of mass frame’. In this case
the groupdB eonsistsiof the upper triangular matrices in G¢ = SL(n, C) having positive diagonal entries.
The diagonal elemients of the matrices in By < B are equal to 1. The crucial point is that we restrict
the variable A (6.8) to a minimal dressing orbit, of dimension 2(n — 1), which leads to a symplectic leaf
in the reduced phase space. There exists a one parameter family of such orbits, and their parameter will
appear as the coupling constant of the RS model.

The minimal dressing orbits at issue admit representatives of the form

A(x) := exp (diag((n — 1)z/2, —2/2,--- ,—x/2)), for xe€R", (C.1)
where the cigenvalue e=%/2 of A(z) has multiplicity (n — 1). Let O(z) denote the dressing orbit through

A(z). The only redundancy of these representatives occurs for n = 2, in which case A(z) and A(—z) lie
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on the same orbit. Another representative of the orbit O(x) is the upper-triangular matrix v(z) € By,
whose diagonal entries are equal to 1 and

v(z)jr=(1—e"")exp((k—j)z/2), Vi < k. (C.2)
This matrix satisfies the equality
v(—z) =v(x)" " (C3)
More importantly, as was shown in [23], one has
O(x)N By = {Tv(x)T ™ | T € Gy}, (Ci4)

where G is the standard maximal torus of G = SU(n). Thus, (O(z) N By)/Go consists of aisingle point.
The defining equation (6.8) entails that A belongs to the subgroup B. < B, and we knew from
Theorem 6.4 that A can be restricted to the intersection of B, with any dressing orbit., Now we choose
to restrict it to the orbit O(—x) with a fixed z € R*. On account of the relations (C.3) and (C.4), we
then obtain a complete fixing of the residual Gy ‘gauge freedom’ by imposing the condition
A=b'Q 70 Q =v(x) (C.5)
~
The paper [23] analysed the symplectic reduction of the Heisenberg doubledbased jon the moment map
constraint

A(K) =v(x) (C.6)
with A in (4.3). After diagonalizing gr = Zr(K) (2.18), i.e., by settingygr = Q = diag(Q1,...,Qn) € Go,
K € SL(n,C) takes the form

K=Q ', withsomesb=e"b,, (C.7)
where p € By and by € By. Then the constraint (C.6) leads precisely to equation (C.5). It was proved in
[23] that (C.5) implies that Q € G’® and b, in (C.5) can be expressed in terms of @ € G as follows:

-k

(0+ )kt = Q@ H

m=1

e 2 Q€2 Qrim—1
Qk N Qk+m ’
where Qj, = Q;l. Of course, (b4 )rr = 1 and the matrix elements below the diagonal are zero. (The
correspondence between our notations and thoseyn. [23).is explained in the subsequent Remark C.1.)
We have taken the quotient by the Gg-symmetry, but there still remains a residual S, = 9/Gy
redundancy in our description. Consequently, thewvariables () and p parametrize an S,, covering space

of a Poisson subspace of the full reduced phase space. Since A became a constant by the gauge fixing, it
follows from (6.21) that the Poisson bracket on this covering space is given by the formula

1<k<l<n, (C.8)

{F.HY(Q,p) ={DqF,dyH)1 — (DoH, dy F)r, (C.9)
which corresponds to the symplecticﬁbrm
Wied = Str(dp A Q71dQ). (C.10)
The elements of S,, permute the midiagonal entries of the matrix ). However, a careful analysis [24]
shows that their action_on p = diag(pi,...,pn) has a complicated form, and what are permuted in the
obvious manner are the entries of the traceless diagonal matrix 9 given by the following formula:
1 h?(z/2) h?(z/2
ﬂkzzpk—ZIn{urw} 5> In [ M . k=1,...n.  (C.11)
2 = sin?(qx — ¢ 2 = sin?(qr — qm)
Here, we use the parametrization
Q = exp(2iq) with ¢ =diag(q,...,qn), tr(g)=0. (C.12)
Equation (C.11) yields a canonical transformation, since in terms of ¢ and ¥ one has
Wred = tr(dd A dq). (C.13)

This means that @ and 9 are the natural variables on T*G®.

We arealso reducing the ‘free Hamiltonians’ given by the dressing invariant functions of bp = b = ePb,..
The main Hamiltonian of the reduced system is

1
Hgs = 5(Hyrs + H-rs), with Hygs = tr(bb'), H_gs = tr(bb)~". (C.14)
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By using (C.8) and the canonical transformation (C.11) to express p in terms of ¢ and ¥, one finds

- sinh?(z/2 H
Hi,RS (q,ﬁ) = Zeiﬂk H [1 + 81n2((—/>) ; (Cl5)
k=1 m;ﬁk qk Qm

and Hgs(q,?) is just the standard trigonometric Ruijsenaars—Schneider Hamiltonian introduced in [59].
In conclusion, we have shown that the reduction of the Heisenberg double gives the trigonemetrie, RS
system on a symplectic leaf of the reduced phase space, which is symplectomorphic to (7*G™®)/ S, It
is worth noting that this system is Liouville integrable, but is not superintegrable [53].

Remark C.1. It follows from the results of [23] that the isotropy group of the elements A= (O(z)) is
the center of G = SU(n), i.e., A=Y(O(x)) is a subset of M, (4.8). In that paper the variablesb;, and gg
constituting K = bngl (2.18) were used, while here we mostly worked with b = bgrand g = gp. After
bringing gr into Gy, the relation of the variables becomes by, = Q~1b=1Q. In [23}.br Was parametrized
as by, = Na with N € By and a € By. These are related to our variables by and p by N=h= Q~1b,Q
and a = e~ P. Finally, for readers interested in a detailed comparison with [23,24], we also note that the
notations Ty, and ( = Inay in [23] correspond to Qr and —py as used in the present paper; and what is
denoted by py in [23] corresponds to ¥ (C.11). N
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