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Abstract
Let P := Pm×n denote the quantized coordinate ring of the space of m× n
matrices, equipped with natural actions of the quantized enveloping algebras
Uq(glm) and Uq(gln). Let L and R denote the images of Uq(glm) and Uq(gln)
in End(P), respectively. We define a q-analogue of the algebra of polynomial-
coefficient differential operators inside End(P), henceforth denoted by PD ,
and we prove that L ∩PD and R ∩PD are mutual centralizers inside PD .
Using this, we establish a new First Fundamental theorem of invariant theory
for Uq(gln). We also compute explicit formulas in terms of q-determinants for
generators of the algebrasLh ∩PD andRh ∩PD , whereLh andRh denote
the images of the Cartan subalgebras of Uq(glm) and Uq(gln) in End(P),
respectively. Our algebra PD and the algebra Pol(Matm,n)q that is defined
in (Shklyarov et al 2004 Int. J. Math. 15 855–94) are related by extension of
scalars, but we give a new construction of PD using deformed twisted tensor
products.
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1. Introduction

The First Fundamental theorem (FFT) is one of the pinnacles of invariant theory with a history
as old as HermannWeyl’s influential book, The Classical Groups [Wy39]. In its original form,
the FFT for the group GLn describes the generators of the subalgebra of GLn-invariants in the
polynomial algebra P(V⊕k⊕ (V∗)⊕l), where V := Cn denotes the standard GLn-module.

It was pointed out by Howe [Ho95, section 2.3] that the FFT has an equivalent formulation
as a double centralizer property, which we now recall. Let Matm×n denote the vector space
of complex m× n matrices. Then Matm×n has a natural GLm×GLn-module structure by left
and right matrix multiplication. We equip the algebra P := P(Matm×n) of polynomials on
Matm×n and the algebra PD := PD(Matm×n) of polynomial-coefficient differential operators
onMatm×n with their canonical GLm×GLn-module structures. Recall thatP is aPD-module.
The (infinitesimal) actions of the Lie algebras glm and gln onP are given by certain differential
operators of order one, which are usually called polarization operators. It follows that there
exists a homomorphism of algebras φ : Um,n →PD, where Um,n := U(glm)⊗U(gln) is the
tensor product of the universal enveloping algebras of glm and gln, such that the diagram

commutes. The operator commutant version of the FFT, according to [Ho95, theorem 2.3.3],
states that the subalgebraPDGLm of GLm-invariants inPD is generated by the image ofU(gln).
Since PDGLm = PDU(glm), the latter assertion is equivalent to the following: the images of
U(glm) and U(gln) in PD are mutual centralizers.

In [LZZ11, section 6] the authors extend the original form of the FFT to the quantized envel-
oping algebra Uq(gln) by considering a q-analogue of P(V⊕k⊕ (V∗)l) that carries a Uq(gln)-
action, and then describing the generators of the subalgebra of invariants. It is then natural to
ask if the operator commutant version of the FFT also has a q-analogue. It turns out that in
the quantized setting, the situation for the operator commutant FFT is more subtle than in the
classical case. One major issue is how to quantize theWeyl algebraPD and, more importantly,
the map φ : Um,n →PD. Indeed we provide some justification that the latter map cannot be
fully quantized (see proposition 3.14.4). Nevertheless, our first main result (theorem A) is a
positive answer to the above question.

From now on let k := C(q) be the field of rational functions in a parameter q. For the
operator commutant FFT in the quantized setting we need a quantized Weyl algebra PD :=
PDm×n. The k-algebra PD that we consider is closely related to the algebra Pol(Matm,n)q
of [SSV04, BKV06] (see corollary 3.16.1). We give a different construction of PD as the
deformed twisted tensor product of P := Pm×n, the quantized coordinate ring of Matm×n,
andD := Dm×n, the quantized algebra of constant-coefficient differential operators onMatm×n

(see section 3 for precise definitions). The construction of P and D is analogous to the FRT
construction [KS97, section 9.1]. Concretely, the algebra PD is generated by 2mn generators
ti,j and ∂i,j, where 1⩽ i⩽ m and 1⩽ j⩽ n, modulo the relations that are described in section 3
(see definition 3.7.3). From now on we set

UL := Uq (glm) , UR := Uq (gln) , ULR := UL⊗UR.
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Both P and PD are ULR-module algebras (the explicit formulas for the ULR-action on gen-
erators are given in remark 3.6.2). Furthermore, P is naturally a PD-module. In particular,
we have homomorphisms of associative algebras

φU : ULR → Endk (P) and φPD : PD → Endk (P) .

Since P is a faithful PD-module (see proposition 3.11.4), we can identify PD with
φPD(PD). Using the latter identification, we set

L := φU (UL⊗ 1) , R := φU (1⊗UR) , L• := L ∩PD , R• := R ∩PD .

Note that in general we have L• ⊊ L and R• ⊊ R. In fact if m⩽ n then the restriction of
φU to UL⊗ 1 yields an isomorphism UL

∼= L but one can show that φ−1
U (L•) is properly

contained in the locally finite part of UL (see proposition 3.14.3 and example 10.2.2). Set

Li,j :=
n∑

r=1

ti,r∂j,r for 1⩽ i, j⩽ m and Ri,j :=
m∑
r=1

tr,i∂r,j for 1⩽ i, j⩽ n. (2)

The Li,j and the Ri,j are natural analogues in PD of the polarization operators of the (non-
quantized)Weyl algebraPD.We have Li,j ∈ L• andRi,j ∈ R• (see corollary 6.1.6). Of course,
similar inclusions hold in the non-quantized case. However, the situation with the preimages
of the Li,j and the Ri,j in UL and UR is more complicated. For example, the root vector Eεi−εj
of UL (respectively, UR), where i< j, does not lie in the preimage of Li,j (respectively, Ri,j).

Henceforth we adopt the following notation: for subsets Y,Z of an algebra X , we set

YZ := {y ∈ Y : yz= zy for all z ∈ Z} . (3)

Our first main theorem is the following.

Theorem A. Let L , R, L•, and R• be the subalgebras of Endk(P) defined above. We
identify PD with φPD(PD)⊆ Endk(P). Then the following statements hold.

(i) PDR• = PDR = L•. Furthermore, L• is generated by the Li,j for 1⩽ i, j⩽ m.
(ii) PDL• = PDL = R•. Furthermore, R• is generated by the Ri,j for 1⩽ i, j⩽ n.

Let us elucidate the relation between theorem A and the literature on Howe duality and
the FFT in the quantized setting. Quantized analogues of (glm,gln)-duality have been estab-
lished in [Zh02] and [NYM93], but these works do not consider the double centralizer prop-
erty inside a quantized Weyl algebra. To compare our results with those of Lehrer–Zhang–
Zhang [LZZ11], we briefly explain their formulation of the FFT for Uq(gln). In [LZZ11,
section 6] the authors define a q-analogue of the algebra P(V⊕k⊕ (V∗)⊕l), which they call
Ak,l (this algebra tacitly depends on n as well). The algebra Ak,l is isomorphic to a twisted
tensor product of Pk×n and Dl×n, but the twisting is only with respect to the universal R-
matrix of Uq(gln). In particular, in the special case k= l the relations on the generators of
Ak,k are not symmetric with respect to their indices. Because of this asymmetry, Ak,k does
not appear to be the desired object for proving a double centralizer statement. The twisting
that we consider to define PD uses the universal R-matrices of both UL and UR. In addition,
unlike Ak,l whose relations are homogeneous, the relation (R6) of PD is not homogeneous.
From this viewpoint, PD resembles the classical Weyl algebra more than Ak,k. We remark
that recently, Jakobsen [Ja23] considered an embedding of the quantized enveloping algebras
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into what is called the Hayashi-Weyl algebra [Ha94]. This is different from our approach, in
that the Hayashi-Weyl algebra quantizes the (localization of the) enveloping algebra of the
Heisemberg Lie algebra, whereas our algebra quantizes the usual Weyl algebra.

Our second main result (theorem B below) is a new FFT for Uq(gln), in the spirit of the
aforementioned result of [LZZ11], for a family of algebras Ak,l,n where k, l,n are positive
integers. The latter algebras generalize PD and indeed we have Am,m,n = PDm×n. An expli-
cit presentation of Ak,l,n by generators and relations is given in proposition 3.9.2. To state the-
orem B, we need some notation. For integers 1⩽ a⩽ m and 1⩽ b⩽ n there exists an embed-
ding of associative algebras

e= em×n
a×b : PDa×b ↪→ PDm×n (4)

that is defined as follows. We relabel the generators of PDa×b by setting

t̃i,j := ta+1−i,b+1−j and ∂̃i,j := ∂a+1−i,b+1−j for 1⩽ i⩽ a, 1⩽ j⩽ b. (5)

We relabel the generators of PDm×n similarly, with a and b replaced by m and n respectively.
The map e of (4) is uniquely determined by the assignments e(̃ti,j) := t̃i,j and e(∂̃i,j) := ∂̃i,j (see
proposition 3.9.4). Concretely, the map e identifies the a× b matrices [ti,j] and [∂i,j] formed
by the generators of PDa×b with the intersections of the lowest a rows and the rightmost
b columns in the analogous m× n matrices formed by the generators of PDm×n. Now fix
integers k, l,n⩾ 1 and set m :=max{k, l}. We define Ak,l,n to be the subalgebra of PDm×n

that is generated by the t̃i,j and the ∂̃i ′,j, where 1⩽ i⩽ k, 1⩽ i ′ ⩽ l, and 1⩽ j⩽ n. The UR-
action on PDm×n leaves Ak,l,n invariant and thus Ak,l,n is a UR-module algebra. The standard
degree filtration of Ak,l,n (corresponding to setting deg t̃i,j = deg ∂̃i ′,j = 1) is UR-stable, hence
the associated graded algebra gr(Ak,l,n) is also a UR-module algebra. Let εR be the counit of
UR and denote the subalgebra of UR-invariants in Ak,l,n by (Ak,l,n)(ϵR), that is,

(Ak,l,n)(ϵR) := {D ∈ Ak,l,n : x ·D= εR (x)Dfor x ∈ UR} .

We denote the subalgebra of UR-invariants in gr(Ak,l,n) by
(
gr(Ak,l,n)

)
(ϵR)

as well. For 1⩽
i⩽ k and 1⩽ j⩽ l we define elements L̃i,j ∈ Ak,l,n by the formula

L̃i,j :=
n∑

r=1

t̃i,r∂̃j,r =
n∑

r=1

tm−i+1,r∂m−j+1,r. (6)

By the same formula we can define analogous elements in gr(Ak,l,n). By a slight abuse of the
symbol gr(·), we denote these elements of gr(Ak,l,n) by gr(L̃i,j).

Theorem B. The algebras (Ak,l,n)(ϵR) and
(
gr(Ak,l,n)

)
(ϵR)

are generated by the L̃i,j and the

gr(L̃i,j) respectively, for 1⩽ i⩽ k and 1⩽ j⩽ l.

It would be interesting to relate theorem B to the quantized FFT of [LZZ11, theorem
6.10] for example by a deformation argument. However, we are unable to establish such a
connection.

Our third main theorem (theorem C below) explicitly describes the images in PD =
PDm×n of the Cartan subalgebras of UL and UR. To state theorem C we need to define cer-
tain elements of PD that are constructed using q-determinants. Let i := (i1, . . . , ir) and j :=
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( j1, . . . , jr) be r-tuples of integers satisfying 1⩽ i1 < · · ·< ir ⩽ m and 1⩽ j1 < · · ·< jr ⩽ n.

Define quantum minors Mi
j ∈ P and M

i
j ∈ D by

Mi
j :=

∑
σ

(−q)ℓ(σ) tiσ(1),j1 · · · tiσ(r),jr and M
i
j :=

∑
σ

(
−q−1

)ℓ(σ)
∂iσ(1),j1 · · ·∂iσ(r),jr , (7)

where the summations are over permutations in r letters, and `(σ) denotes the length of σ (in
the sense of Coxeter groups). For a,b,r⩾ 1 define D(r,a,b) ∈ PDa×b by

D(r,a,b) :=
∑
i

∑
j

Mi
jM

i
j, (8)

where the summation indices i := (i1, . . . , ir) and j := ( j1, . . . , jr) satisfy 1⩽ i1 < · · ·< ir ⩽ a
and 1⩽ j1 < · · ·< jr ⩽ b. We also set D(0,a,b) = 1. For 0⩽ r⩽ n and 1⩽ k⩽ n we define
Dk,r ∈ PDm×n by

Dk,r := em×n
m×k (D(r,m,k)) .

Similarly, for 0⩽ r⩽ m and 1⩽ k⩽ m we define D ′
k,r ∈ PDm×n by

D ′
k,r := em×n

k×n (D(r,k,n)) .

Note that Dk,r = D ′
k,r = 0 when r>min{k,m,n} and Dk,0 = D ′

k,0 = 1. Set

Ra :=
a∑

r=0

(
q2 − 1

)r
Da,r for 1⩽ a⩽ n and Lb :=

b∑
r=0

(
q2 − 1

)r
D ′
b,r for 1⩽ b⩽ m. (9)

Furthermore, let Uh,L and Uh,R denote the Cartan subalgebras of UL and UR, respectively (see
section 3.1). We set

Lh : = φU (Uh,L⊗ 1) , Lh,• := PD ∩Lh, Rh := φU (1⊗Uh,R) ,

Rh,• : = PD ∩Rh. (10)

Theorem C. The following statements hold.

(i) Rh,• is generated by R1, . . . ,Rn.
(ii) Lh,• is generated by L1, . . . ,Lm.

In the proofs of our theorems we borrow at least two key ideas from [LZZ11]. First, we
use the bialgebra structure of Pn×n to define a map Γk,l,n from Pk×l onto the subalgebra of
UR-invariants in gr(Ak,l,n) (assuming n⩾max{k, l}). The map Γk,l,n, given in definition 7.1.3,
is similar to the map introduced in [LZZ11, lemma 6.11]. Second, we define a new product
on Pk×l such that the map Γk,l,n becomes an isomorphism of algebras (see definition 8.2.4).
This product is analogous to the one defined in [LZZ11, lemma 6.13]. However our product is
given by a more complicated (and asymmetric) formula, because it needs to be simutaneously
compatible with two universal R-matrices. As a consequence, establishing the desired prop-
erties of this product requires new ideas (see section 8). Because of this, and the fact that
unlike [LZZ11] the generators Li,j (respectively, Ri,j) or even their graded analogues are not
weight vectors for the Cartan subalgebras of the two copies of UL (respectively, UR) that act

5
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on PD , the proofs of theorems A and B become substantially more complicated than the
analogous results of [LZZ11]. See section 9.2 for more details.

The results of this paper were obtained as part of a project on Capelli operators for quantum
symmetric spaces. From this standpoint, it is natural to ask if one can define quantized Weyl
algebras in the latter setting and then realize the action of (a large subalgebra of) the quant-
ized enveloping algebra via elements of this Weyl algebra. We address this question and its
connection to Capelli operators in upcoming work [LSS22a, LSS22b].

The structure of this paper is as follows. In section 2 we review the required background
material on Hopf algebras and twisted tensor products. In section 3 we construct and study the
quantizedWeyl algebraPD and its variations, namelyPDgr,Ak,l,n andA gr

k,l,n. The main goal
of section 4 is to prove that under φU the elements KλL,a ⊗ 1 and 1⊗KλR,b , defined in (75), of
the Cartan subalgebra ofULR are mapped into PD . In section 5 we compute explicit formulas
for φU(KλL,a ⊗ 1) and φU(1⊗KλR,b). Section 6 is devoted to some general properties of the
polarization operators Li,j, Ri,j and their variants. In section 7 we define the map Γk,l,n and
establish some of its properties. Section 8 defines the new product on Pk×l and establishes its
properties. Theorems A and B are proved in section 9 and theorem C is proved in section 10.
Finally, appendix lists the commonly used notation in the paper.

2. Hopf algebras and deformed twisted tensor products

Throughout this section K will denote an arbitrary field and H will be a Hopf algebra over
K. We denote the coproduct, counit, and antipode of H by ∆, ε, and S. The opposite and co-
opposite of H are denoted by Hop and Hcop (we use the same notation for bialgebras as well).
Throughout the paper, our notation for specific Hopf algebras H will remain consistent with
these choices.

If A is an associative algebra and V is an A-module, a subspace W⊆ V is called A-stable
if A ·W⊆W. Finally, an associative algebra A is called an H-module algebra if it is equipped
by an H-module structure such that the product of A yields an H-module homomorphism
A⊗A→ A.

2.1. Local finiteness modulo an ideal

Given a two-sided ideal I of H (considered as an associative algebra), we set E(x, I) :=
{ady(x)+ I : y ∈ H} for x ∈ H, where ady(x) :=

∑
y1xS(y2) is the left adjoint action of H (we

use the Sweedler notation ∆(y) =
∑
y1 ⊗ y2 for the coproduct). We set

F (H, I) := {x ∈ H : dimKE(x, I)<∞} . (11)

For I= 0 this is the locally finite part of H (in the sense of [JL94]), which we will denote by
F (H). We have E(xx ′, I)⊆ E(x, I)E(x ′, I) for x,x ′ ∈ H. Consequently,F (H, I) is a subalgebra
of H.

2.2. The finite dual of H

Given a finite dimensional left H-module V, by the right dual of V we mean the dual space
V∗ equipped with the H-action defined by 〈x · v∗,v〉 := 〈v∗,S−1(x) · v〉 for v∗ ∈ V∗ and v ∈ V,
where 〈·, ·〉 : V∗ ⊗V→K is the canonical pairing. The matrix coefficients of V are the linear
functionals mv∗,v ∈ H∗ defined by

mv∗,v (x) := 〈v∗,x · v〉 for x ∈ H, v ∈ V, v∗ ∈ V∗.

6
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Indeedmv∗,v ∈ H◦, where H◦ denotes the finite dual of H (for the definition of H◦ see [KS97,
section 1.2.8]). Recall that H◦ has a canonical Hopf algebra structure. The product of H◦ is
given by

λµ(x) :=
∑

λ(x1)µ(x2) for λ,µ ∈ H◦and x ∈ H, (12)

where ∆(x) =
∑
x1 ⊗ x2. Given two finite dimensional H-modules V and W, we have

mv∗⊗w∗,v⊗w =mv∗,vmw∗,w for v,w ∈ Vand v∗,w∗ ∈W.

Let∆◦ denote the coproduct of H◦, so that∆◦(λ) =
∑
λ1 ⊗λ2 for λ ∈ H◦, where

∑
λ1 ⊗λ2

is uniquely determined by

〈λ,xy〉=
∑

〈λ1,x〉〈λ2,y〉 for x,y ∈ H. (13)

If {vi}di=1 is a basis of V and {v∗i }di=1 is the dual basis of V∗, then∆◦(mv∗,v) =
∑d

i=1mv∗,vi ⊗
mv∗i ,v. The following remark will be used in section 3.

Remark 2.2.1. LetH• ⊆ H◦ be a sub-bialgebra. ThenH• is anH-module algebra with respect
to right translation, where the action is defined by 〈x ·λ,y〉 := 〈λ,yx〉 for λ ∈ H• and x,y ∈ H.
If H is equipped with a K-linear map x 7→ x♮ that yields an isomorphism of Hopf algebras
H→ Hop, then H• has another H-module algebra structure defined by 〈x ·λ,y〉 := 〈λ,x♮y〉,
which we call left translation. Given any homomorphism of associative algebras τ : H→ H,
we can define τ -twisted left and right translation actions of H on H•, given respectively by the
formulas

〈x ·λ,y〉 := 〈λ,τ (x)♮ y〉 and 〈x ·λ,y〉 := 〈λ,yτ (x)〉.

When H• is equipped with either one of the two τ -twisted actions, the following statements
hold.

(i) If τ : H→ H is a homomorphism of coalgebras, then H• is an H-module algebra.
(ii) If τ : H→ H is an anti-homomorphism of coalgebras, then H• is an Hcop-module algebra.

2.3. The isotypic component of the trivial H-module

For any H-module V we set

V(ϵ) := {v ∈ V : h · v= ε(h)v} ,

where as before ε denotes the counit ofH. Letψ : H→ EndK(V) be the algebra homomorphism
corresponding to this module structure (hence h · v= ψ(h)v for h ∈ H and v ∈ V). We equip
EndK(V) with an H-module structure, defined by h ·T :=

∑
ψ(h1)Tψ(S(h2)) for h ∈ H and

T ∈ EndK(V), where ∆(h) =
∑
h1 ⊗ h2.

Lemma 2.3.1. EndK(V)(ϵ) = EndK(V)ψ(H), where the right hand side is defined as in (3).

Proof. The inclusion ⊇ follows from

h ·T=
∑

ψ (h1)Tψ (S(h2)) = T
∑

ψ (h1)ψ (S(h2)) = Tψ
(∑

h1S(h2)
)
= ε(h)T,

7
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for T ∈ EndK(V)ψ(H). For the inclusion ⊆ note that if T ∈ EndK(V)(ϵ) then

ψ (h)T=
∑

ψ (h1)ε(h2)T=
∑

ψ (h1)Tψ (S(h2))ψ (h3)

=
∑

ε(h1)Tψ (h2) = Tψ
(∑

ε(h1)h2
)
= Tψ (h) .

2.4. Braided triples, twisted tensor products and their deformations

Let C be a full subcategory of the category of H-modules that is closed under direct sums and
tensor products. To ensure that C is a monoidal category we assume that the trivial H-module
(the one-dimensional vector space K equipped with the action h 7→ ε(h) for h ∈ H) belongs to
Obj(C).

Assume that C is braided. The braiding Ř of C is a natural family ofH-module isomorphisms

ŘV,W : V⊗W→W⊗V for V,W ∈ Obj(C)

that satisfies the usual hexagon axioms (see for example [EGNO15, definition 8.1.1]).
Henceforth we call (H,C, Ř) a braided triple.

Let A and B be two H-module algebras, with products mA and mB. Assume that A,B ∈
Obj(C).

Lemma 2.4.1. The map ŘB,A : B⊗A→ A⊗B satisfies the following relations:

(i) ŘB,A(1⊗ a) = a⊗ 1 for a ∈ A and ŘB,A(b⊗ 1) = 1⊗ b for b ∈ B.
(ii) ŘB,A ◦ (idB⊗mA) = (mA⊗ idB)(idA⊗ ŘB,A)(ŘB,A⊗ idA).
(iii) ŘB,A ◦ (mB⊗ idA) = (idA⊗mB)(ŘB,A⊗ idB)(idB⊗ ŘB,A).

Proof. This is well known, but we supply a proof because we did not find a reference.
(i) Equip K with the canonical H-module structure induced by the counit ε : H→K. It is

well known (see for example [EGNO15, exercise 8.1.6]) that one has a commuting triangle

where the lower sides of the triangle are the canonical left and right unit isomorphisms. It
follows immediately that ŘK,A(1⊗ a) = a⊗ 1. Furthermore, by naturality of Ř the diagram

is commutative, hence ŘB,A(1⊗ a) = a⊗ 1. The other relation is proved similarly.

8
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(ii) Consider the diagram of maps below:

The square is commutative by naturality of Ř (because mA and mB are H-module homo-
morphisms) and the triangle is commutative by the hexagon axiom. The assertion of (ii) follows
from comparing two maps B⊗A⊗A→ A⊗B in the diagram: one is obtained by composi-
tion of the top and the right edges of the square, the other is obtained by the outer edges of the
triangle and the bottom edge of the square.

(iii) Similar to (ii).

Definition 2.4.2. Let A,B ∈ Obj(C) be H-module algebras. We denote the products of A and
B by mA and mB, respectively. The Ř-twisted tensor product of A and B, denoted by A⊗Ř B, is
the vector space A⊗B equipped with the binary operation

(mA⊗mB) ◦
(
idA⊗ ŘB,A⊗ idB

)
. (14)

Proposition 2.4.3. A⊗Ř B is an associative algebra.

Proof. This is well known and proved for example in [VV94, proposition 2.2].

From lemma 2.4.1(i) it follows that for a,a ′ ∈ A and b,b ′ ∈ B the product (14) satisfies

(a⊗ 1)(a ′ ⊗ b)(1⊗ b ′) = (aa ′ ⊗ bb ′) . (15)

Remark 2.4.4. The vector space A⊗Ř B= A⊗B carries two module structures: as the outer
tensor product over K of H-modules A and B, it is an H⊗H-module. As the inner tensor
product of A and B, it is an H-module. Of course the latter H-module structure is obtained
from the former one via restriction along the coproduct map H→ H⊗H.

Proposition 2.4.5. A⊗Ř B is an H-module algebra with the H-module structure of
remark 2.4.4.

Proof. Given a,a ′ ∈ A and b,b ′ ∈ B, if we write ŘB,A(b⊗ a ′) =
∑
a ′ ′ ⊗ b ′ ′ then for x ∈ H

we have

x · ((a⊗ b)(a ′ ⊗ b ′)) = x ·
∑

aa ′ ′ ⊗ b ′ ′b=
∑

(x1 · (aa ′ ′))⊗ (x2 · (b ′ ′b)) .

Since A and B are H-module algebras, from the latter equalities and (15) it follows that

x · ((a⊗ b)(a ′ ⊗ b ′)) =
∑

(x1 · a)(x2 · a ′ ′)⊗ (x3 · b ′ ′)(x4 · b)

=
∑

((x1 · a)⊗ 1)((x2 · a ′ ′)⊗ (x3 · b ′ ′))(1⊗ (x4 · b)) .

9
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Since ŘA,B is an H-module isomorphism, from the latter equalities and (15) we have

x · ((a⊗ b)(a ′ ⊗ b ′)) =
∑

((x1 · a)⊗ 1)
(
ŘB,A ((x2 · b)⊗ (x3 · a ′))

)
(1⊗ (x4 · b ′))

=
∑

((x1 · a)⊗ (x2 · b))((x3 · a ′)⊗ (x4 · b ′))

=
∑

(x1 · (a⊗ b))(x2 · (a ′ ⊗ b ′)) .

Thus A⊗Ř B is an H-module algebra.

Let EA ⊆ A and EB ⊆ B be subspaces that generate A and B, respectively. Thus A∼=
T(EA)/IA and B∼= T(EB)/IB, where T(X) denotes the tensor algebra on X, and IA and IB denote
the corresponding ideals of relations. We assume that EA and EB are H-stable.

Remark 2.4.6. The H-module structures on EA and EB equip T(EA) and T(EB) with canon-
ical H-module algebra structures. It is straightforward to verify that the maps T(EA)→ A and
T(EB)→ B are H-module homomorphisms. In particular, IA and IB are H-stable subspaces of
T(EA) and T(EB), respectively.

Consider the linear map

γA,B : EA⊗EB → T(EA⊕EB) , γA,B (a⊗ b) := ab.

Note that we can express γA,B as the composition

EA⊗EB
iA⊗iB−−−→ T(EA⊕EB)⊗T(EA⊕EB)

a⊗b7→ab−−−−−−→ T(EA⊕EB) , (16)

where iA : EA → T(EA⊕EB) and iB : EB → T(EA⊕EB) are canonical embeddings. For the next
lemma, recall that the H-module structure on EA⊕EB induces a canonical H-module algebra
structure on T(EA⊕EB).

Lemma 2.4.7. γA,B is an H-module homomorphism.

Proof. Since iA, iB and the product of T(EA⊕EB) areH-module homomorphisms, the assertion
follows from the description of γA,B in (16).

By the universal property of tensor algebras themapEA⊕EB → A⊗Ř B given by the assign-
ment a⊕ b 7→ a⊗ 1+ 1⊗ b induces a homomorphism of algebras

π : T(EA⊕EB)→ A⊗Ř B.

Proposition 2.4.8. Let A, B, EA and EB be as above. Then π induces an isomorphism of
algebras

T(EA⊕EB)/IA,B ∼= A⊗Ř B,

where IA,B denotes the two-sided ideal of T(EA⊕EB) generated by IA, IB and the relations

ba− γA,B ◦ ŘB,A (b⊗ a) for a ∈ EA, b ∈ EB. (17)

Proof. We have π(EA⊕EB) = EA,B where EA,B := (EA⊗ 1)⊕ (1⊗EB). Furthermore, A⊗Ř B
is generated as an algebra by EA,B. Thus π is a surjection. Next we prove that π is an injection.
From the definition of the product of A⊗Ř B it follows that IA,B ⊆ kerπ. Thus, to complete the
proof it suffices to verify the reverse inclusion.

10
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By the relations (17), every element of T(EA⊕EB)/IA,B can be expressed as a linear com-
bination of products of elements of EA and EB in which elements of EA occur before elements
of EB. Thus,

T(EA⊕EB) = T(EA)T(EB)+ IA,B. (18)

Now choose {aα}α∈IA ⊆ T(EA) and {bβ}β∈IB ⊆ T(EB) such that {IA+ aα}α∈IA is a basis of
T(EA)/IA ∼= A and {IB+ bβ}β∈IB is a basis of T(EB)/IB ∼= B. From (18) it follows that the
elements IA,B+ aαbβ for α ∈ IA and β ∈ IB constitute a spanning set of T(EA⊕EB)/IA,B.

From (15) it follows that π(aα) = aα⊗ 1 for some aα ∈ A and π(bβ) = 1⊗ bβ for some
bβ ∈ B. Also, π(IA,B+ aαbβ) = aα⊗ bβ . The sets {aα}α∈IA and {bβ}β∈IB are bases of A
and B, respectively. Thus π maps a spanning set of T(EA⊕EB)/IA,B bijectively onto the basis
{aα⊗ bβ : α ∈ IA,β ∈ IB} of A⊗Ř B. It follows that kerπ ⊆ IA,B.

Let ψ : EB×EA →K be an H-invariant bilinear form, that is∑
ψ (x1 · b,x2 · a) = ε(x)ψ (b,a) for a ∈ EA, b ∈ EB, x ∈ H, (19)

where as before ε : H→K denotes the counit of H. Let IA,B,ψ denote the two-sided ideal of
T(EA⊕EB) that is generated by IA, IB, and relations of the form

ba− γA,B ◦ ŘB,A (b⊗ a)−ψ (b,a) for a ∈ EA, b ∈ EB. (20)

Definition 2.4.9. We call the algebra A⊗Ř,ψ B := T(EA⊕EB)/IA,B,ψ the ψ-deformed Ř-
twisted tensor product of A and B relative to EA and EB.

The H-module structure of EA⊕EB equips T(EA⊕EB) with a canonical H-module algebra
structure. We have the following statement.

Proposition 2.4.10. The canonical H-module algebra structure on T(EA⊕EB) descends to
an H-module algebra structure on A⊗Ř,ψ B.

Proof. It suffices to verify that IA,B,ψ is an H-stable subspace. By remark 2.4.6 the subspaces
IA and IB of T(EA⊕EB) are H-stable. Thus it remains to show that the relations (20) span an
H-submodule of T(EA⊕EB).

Any x ∈ H acts on T0(EA⊕EB)∼=K by ε(x). Next let a ∈ EA, b ∈ EB and x ∈ H. By (19)
and lemma 2.4.7 we have

x ·
(
ba− γA,B ◦ ŘB,A (b⊗ a)−ψ (b,a)

)
=
∑(

(x1 · b)(x2 · a)− γA,B ◦ ŘB,A (x1 · b⊗ x2 · a)−ψ (x1 · b,x2 · a)
)
,

which is a sum of relations of the form (20).

By the universal property of tensor algebras themaps iA and iB induce embeddings of associ-
ative algebras iA : T(EA)→ T(EA⊕EB) and iB : T(EB)→ T(EA⊕EB). The latter maps induce
H-equivariant homomorphisms of associative algebras

A∼= T(EA)/IA
īA−−−→ A⊗Ř,ψ B and B∼= T(EB)/IB

īB−−−→ A⊗Ř,ψ B.

By tensoring the latter maps and then composing with the products of the algebras T(EA⊕EB)
and A⊗Ř,ψ B we obtain the following commutative diagram:

11
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In the above diagram the vertical maps are the canonical quotients.

Remark 2.4.11. From remark 2.4.6 it follows that iA⊗ iB and īA⊗ īB are H⊗H-module homo-
morphisms. Also, the products of T(EA⊕EB) and A⊗Ř,ψ B are H-module homomorphisms
(see proposition 2.4.10). Thus the composition of the bottom horizontal maps in (21), which
is given by

A⊗B→ A⊗Ř,ψ B , a⊗ b 7→ IA,B,ψ + ab, (22)

is an H-module homomorphism (recall that an H⊗H-module homomorphism is also an H-
module homomorphism by restriction along the coproduct map H→ H⊗H).

2.5. Locally finite braided triples and their products

Given a braided triple (H,C, Ř) we set

RV,W := σW,V ◦ ŘV,W, (23)

where

σW,V :W⊗V→ V⊗W , w⊗ v 7→ v⊗w

is the standard flip map.

Definition 2.5.1. We say a braided triple (H,C, Ř) is locally finite if it satisfies the following
conditions.

(i) Every V ∈ Obj(C) is a sum of its finite dimensional submodules that belong to Obj(C).
(ii) For finite dimensional modules V,W ∈ Obj(C) there exist ωV,W,ωV,W ∈ H⊗H such that

RV,W (v⊗w) = ωV,W · (v⊗w) and R−1
V,W (v⊗w) = ωV,W · (v⊗w) for v⊗w ∈ V⊗W.

Let us briefly explain the idea behind definition 2.5.1. The braiding of the category of
modules of the Hopf algebra Uq(gln) is given by a formal series that does not belong to
Uq(gln)⊗Uq(gln) (see section 3.2). Thus, in order to give a rigorous proof of proposition 2.6.2
below, we need to be able to replace this formal series locally by a finite 2-tensor.

Lemma 2.5.2. Let (H,C, Ř) be a locally finite braided triple and let V1, . . . ,Vr,W1, . . . ,Wr ∈
Obj(C) be finite dimensional modules. Let ωV,W,ωV,W ∈ H⊗H be chosen as in defini-
tion 2.5.1(ii), where V :=

⊕r
i=1Vi and W :=

⊕r
i=1Wi. Then

RVi,Wj (vi⊗wj) = ωV,W · (vi⊗wj) and R−1
Vi,Wj

(vi⊗wj) = ωV,W · (vi⊗wj) ,

for all vi ∈ Vi and wj ∈Wj where 1⩽ i, j⩽ r.

Proof. This follows from naturality of Ř with respect to the canonical maps
Vi⊗Wj ↪→ V⊗W.

12
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We need to work with the braided triples associated to tensor products of Hopf algebras
Uq(gln). To this end, we need the following definition.

Definition 2.5.3. Let (H,C, Ř) and (H ′,C ′, Ř ′) be locally finite braided triples. Set H ′ ′ :=
H⊗H ′ and equip H ′ ′ with the canonical tensor product Hopf algebra structure. Furthermore,
let C ′ ′ be the full subcategory of the category of H ′ ′-modules whose objects are direct sums
of modules of the form V⊗V ′ where V ∈ Obj(C) and V ′ ∈ Obj(C ′). We define a braiding on
C ′ ′ as follows. First, for V,W ∈ Obj(C) and V ′,W ′ ∈ Obj(C ′) we set

Ř ′ ′
V⊗V ′,W⊗W ′ :=

(
ŘV,W

)
13
◦
(
Ř ′
V ′,W ′

)
24
. (24)

Here
(
Ř ′
V ′,W ′

)
24

means that Ř ′
V ′,W ′ acts on the 2nd and the 4th components of (V⊗V ′)⊗ (W⊗

W ′), resulting in a map

(V⊗V ′)⊗ (W⊗W ′)→ (V⊗W ′)⊗ (W⊗V ′) ,

and
(
ŘV,W

)
13

is defined analogously. Next for Ṽ :=
⊕

i Vi⊗V ′
i and W̃ :=

⊕
jWj⊗W ′

j we
define

Ř ′ ′
Ṽ,W̃

:=
⊕
i,j

Ř ′ ′
Vi⊗V ′

i ,Wj⊗W ′
j
.

Proposition 2.5.4. Let H ′ ′, C ′ ′ and Ř ′ ′ be as in definition 2.5.3. Then (H ′ ′,C ′ ′, Ř ′ ′) is a
locally finite braided triple.

Proof. It is trivial to check that (H ′ ′,C ′ ′, Ř ′ ′) meets the condition of definition 2.5.1(i). Next
we show that (H ′ ′,C ′ ′, Ř ′ ′) is a braided triple. It is straightforward to check that C ′ ′ is closed
with respect to tensor products and arbitrary direct sums. The hexagon axioms for Ř ′ ′ follow
from those for Ř and Ř ′. Next we verify naturality of Ř ′ ′. Since Ř ′ ′ is defined by expansion
on direct sums of modules, it suffices to prove commutativity of the diagram

for all choices of V,W,V,W ∈ Obj(C), V ′,W ′,V ′,W ′ ∈ Obj(C ′), fV ∈MorC ′ ′(V⊗V ′,V⊗V ′)
and fW ∈MorC ′ ′(W⊗W ′,W⊗W ′). The subtlety here is that we cannot assume that fV and fW
can be decomposed into tensor products of maps on the tensor components. Since C ′ ′ satisfies
the condition of definition 2.5.1(i), using naturality of Ř and Ř ′ we can assume that all of the
modules in the commutative diagram are finite dimensional. Using lemma 2.5.2 for the triples
(H,C, Ř) and (H ′,C ′, Ř ′) it follows that RV⊗V ′,W⊗W ′ and RV⊗V ′,W⊗W ′ are given by the left
action of the same 2-tensor in H ′ ′ ⊗H ′ ′. Commutativity of the diagram follows immediately.

Finally, we show that the condition of definition 2.5.1(ii) holds. If RV,W and R ′
V ′,W ′ are equal

to the actions of ωV,W ∈ H⊗H and ω ′
V ′,W ′ ∈ H ′ ⊗H ′ respectively, then R ′ ′V⊗V ′,W⊗W ′ is equal

to the action of

(ωV,W)13
(
ω ′
V ′,W ′

)
24
∈ H ′ ′ ⊗H ′ ′.

13
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This verifies definition 2.5.1(ii) for pairs ofH ′ ′-modules in C ′ ′ of the formV⊗V ′ andW⊗W ′.
Using lemma 2.5.2 for the triples (H,C, Ř) and (H ′,C ′, Ř ′), the claim follows for general H ′ ′-

modules in C ′ ′. A similar argument can be given for
(
R ′ ′V⊗V ′,W⊗W ′

)−1
.

2.6. A result on H ′ ′-stable subalgebras of A⊗Ř ′ ′ B

We continue with the notation of definition 2.5.3. Let A and B be two H ′ ′-module algebras
such that A,B ∈ Obj(C ′ ′). Recall from remark 2.4.4 and proposition 2.4.5 that A⊗Ř ′ ′ B is an
H ′ ′-module algebra and also an H ′ ′ ⊗H ′ ′-module (but not necessarily an H ′ ′ ⊗H ′ ′-module
algebra). For ω ∈ H⊗H let

Tω : A⊗Ř ′ ′ B→ A⊗Ř ′ ′ B

denote the linear endomorphism obtained by the action of ω13. Here by definition (x⊗ y)13 :=
x⊗ 1⊗ y⊗ 1 for x,y ∈ H.

Lemma 2.6.1. Let (H,C, Ř) and (H ′,C ′, Ř ′) be locally finite braided triples and let
(H ′ ′,C ′ ′, Ř ′ ′) be defined as in definition 2.5.3. Let A,B ∈ Obj(C ′ ′) be H ′ ′-module algebras.
Let V ′ ′

A ⊆ A and V ′ ′
B ⊆ B be finite dimensional H ′ ′-submodules such that V ′ ′

A ,V
′ ′
B ∈ Obj(C ′ ′).

We decompose V ′ ′
A and V ′ ′

B as

V ′ ′
A =

⊕
i∈ΩA

Vi,A⊗V ′
i,A and V ′ ′

B =
⊕
j∈ΩB

Vj,B⊗V ′
j,B,

where Vi,A,Vj,B ∈ Obj(C) and V ′
i,A,V

′
j,B ∈ Obj(C ′) for i ∈ ΩA and j ∈ ΩB (here ΩA and ΩB are

index sets). Let ωV,W,ωV,W ∈ H⊗H be chosen as in definition 2.5.1(ii) where

V :=
⊕
i∈ΩA

Vi,A and W :=
⊕
j∈ΩB

Vj,B.

For x,y ∈ H let ωx,y ∈ H⊗H be defined by ωx,y := ωV,W(y⊗ x)ωV,W. Then((
Ř ′ ′
B,A

)−1 ◦Tx⊗y ◦ Ř ′ ′
B,A

)∣∣∣
V ′ ′
B ⊗V ′ ′

A

= Tωx,y for 1⩽ i⩽ r.

Proof. By naturality of Ř ′ ′ it follows that

(
Ř ′ ′
B,A

)∣∣
V ′ ′
B ⊗V ′ ′

A
= Ř ′ ′

V ′ ′
B ,V

′ ′
A

and
(
Ř ′ ′
B,A

)−1 ∣∣
V ′ ′
A ⊗V ′ ′

B
=
(
Ř ′ ′
V ′ ′
B ,V

′ ′
A

)−1
.

Thus from (24) it follows that((
Ř ′ ′
B,A

)−1 ◦Tx⊗y ◦ Ř ′ ′
B,A

)∣∣
Vj,B⊗V ′

j,B⊗Vi,A⊗V ′
i,A
=
(
ŘVj,B,Vi,A

)−1

13
◦Tx⊗y ◦

(
ŘVj,B,Vi,A

)
13
.

The relation (23) and lemma 2.5.2 for the triple (H,C, Ř) imply the assertion of the lemma.

Proposition 2.6.2. Let (H,C, Ř) and (H ′,C ′, Ř ′) be locally finite braided triples and let
(H ′ ′,C ′ ′, Ř ′ ′) be defined as in definition 2.5.3. Let A,B ∈ Obj(C ′ ′) be H ′ ′-module algebras.
Let E be a subspace of A⊗Ř ′ ′ B and letA denote the subalgebra of A⊗Ř ′ ′ B that is generated
by E . Finally, let H be a sub-bialgebra of H.

14
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(i) Assume that for every pair of finite dimensional modules V,W ∈ Obj(C), we can choose
ωV,W,ωV,W ∈ H⊗H that satisfy definition 2.5.1(ii). If E is stable under the action of the
subalgebra H⊗ 1⊗H⊗ 1 of H ′ ′ ⊗H ′ ′, then so is A.

(ii) Assume that for every pair of finite dimensional modules V,W ∈ Obj(C), we can choose
ωV,W,ωV,W ∈ H⊗H that satisfy definition 2.5.1(ii). If E is stable under the action of the
subalgebra H⊗ 1⊗H⊗ 1 of H ′ ′ ⊗H ′ ′, then so is A.

Proof. For r⩾ 0 setAr := Span
{
w(1) · · ·w(r) : w(i) ∈ Efor 1⩽ i⩽ r

}
, so thatA :=

∑
r⩾0Ar.

We prove by induction on r that under the assumptions of (i) (respectively, of (ii)), the subspace
Ar is (H⊗ 1⊗H⊗ 1)-stable (respectively, (H⊗ 1⊗H⊗ 1)-stable). For r= 0 this is trivial and
for r= 1 this follows from the assumption on E . Next assume r> 1.

Choose any α,β ∈ A⊗Ř ′ ′ B. We can express α and β as finite sums α=
∑
a⊗ b and β =∑

a ′ ⊗ b ′ where a,a ′ ∈ A and b,b ′ ∈ B. For each pair (b,a ′) that occurs in these summations
we also express Ř ′ ′

B,A(b⊗ a ′) as a summation, that is,

Ř ′ ′
B,A (b⊗ a ′) =

∑
a ′ ′ ⊗ b ′ ′, (25)

where of course the a ′ ′ ∈ A and the b ′ ′ ∈ B depend on b and a′. For h,h ′ ∈ H we have

(h⊗ 1⊗ h ′ ⊗ 1) ·αβ = (h⊗ 1⊗ h ′ ⊗ 1) ·
(∑

(a⊗ b)(a ′ ⊗ b ′)
)

= (h⊗ 1⊗ h ′ ⊗ 1) ·
(∑

aa ′ ′ ⊗ b ′ ′b ′
)

=
∑

((h⊗ 1) · (aa ′ ′))⊗ ((h ′ ⊗ 1) · (b ′ ′b ′)) .

Since both A and B are H ′ ′-module algebras, from the above calculation and (15) we obtain

(
h⊗ 1⊗ h ′ ⊗ 1

)
·αβ =

∑
((h1 ⊗ 1) · a)

(
(h2 ⊗ 1) · a ′ ′)⊗ ((

h ′
1 ⊗ 1

)
· b ′ ′)((h ′

2 ⊗ 1
)
· b ′)

=
∑

(((h1 ⊗ 1) · a)⊗ 1)
((
h2 ⊗ 1⊗ h ′

1 ⊗ 1
)
·
(
a ′ ′ ⊗ b ′ ′))(1⊗ ((

h ′
2 ⊗ 1

)
· b ′)) ,

(26)

where ∆(h) =
∑
h1 ⊗ h2 and ∆(h ′) =

∑
h ′
1 ⊗ h ′

2. From lemma 2.6.1 it follows that for each
pair (h2,h ′

1) that occurs on the right hand side of (26) there exists a two-tensor ωh2,h ′
1
=∑

uh2,h ′
1
⊗ u ′

h2,h ′
1
in H⊗H such that

(h2 ⊗ 1⊗ h ′
1 ⊗ 1) ·

∑
(a ′ ′ ⊗ b ′ ′) = Ř ′ ′

B,A

((
ωh2,h ′

1

)
13
· (b⊗ a ′)

)
= Ř ′ ′

B,A

(((
uh2,h ′

1
⊗ 1
)
· b
)
⊗
((
u ′
h2,h ′

1
⊗ 1
)
· a ′
))

. (27)

Note that by lemma 2.6.1 the two-tensors ωh2,h ′
1
are of the form

ωh2,h ′
1
= ωV,W (h ′

1 ⊗ h2)ωV,W, (28)

where ωV,W,ωV,W ∈ H⊗H satisfy the constraint of definition 2.5.1(ii) for suitable H-modules
V,W. By comparing (26) and (27) and then using (15) we obtain

15
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(
h⊗ 1⊗ h ′ ⊗ 1

)
·αβ =

∑(
((h1 ⊗ 1) · a)⊗

((
uh2,h ′1 ⊗ 1

)
· b
))(((

u ′
h2,h ′1

⊗ 1
)
· a ′

)
⊗

((
h ′
2 ⊗ 1

)
· b ′))

=
∑((

h1 ⊗ 1⊗ uh2,h ′1 ⊗ 1
)
·α

)((
u ′
h2,h ′1

⊗ 1⊗ h ′
2 ⊗ 1

)
·β

)
.

In what follows we complete the proofs of part (i) and part (ii).
(i) It suffices to prove that for h ∈ H and h ′ ∈ H and w(1), . . . ,w(r) ∈ E we have

(h⊗ 1⊗ h ′ ⊗ 1) ·
(
w(1) · · ·w(r)

)
∈ Ar. (29)

We set

α := w(1) and β := w(2) · · ·w(r).

Since∆(H)⊆ H⊗H, we can assume that h ′
1,h

′
2 ∈ H, hence by considering the first component

on both sides of (28) we obtain uh2,h ′
1
∈ H. Thus, by the induction hypothesis we have

((
h1 ⊗ 1⊗ uh2,h ′

1
⊗ 1
)
·α
)
∈ E ⊆ A1. and

((
u ′
h2,h ′

1
⊗ 1⊗ h ′

2 ⊗ 1
)
·β
)
∈ Ar−1. (30)

The inclusion (29) follows from A1Ar−1 =Ar.
(ii) It suffices to prove (29) for h ∈ H and h ′ ∈ H. We define α and β as in (i). As h ∈ H,

we can assume that h1,h2 ∈ H, hence u ′
h2,h ′

1
∈ H. Again the induction hypothesis implies (30)

and the inclusion (29) follows from A1Ar−1 =Ar.

2.7. Braidings and matrix coefficients

Let (H,C, Ř) be a locally finite braided triple. As in (23) we set RV,W := σW,V ◦ ŘV,W for V,W ∈
Obj(C). LetH◦

C ⊆ H◦ denote the Z-span of matrix coefficients of theH-modules that belong to
Obj(C). Since C is closed under direct sums and tensor products, indeed H◦

C is a sub-bialgebra
of H◦.

Let f ∈ H◦
C be a sum of matrix coefficients of V1, . . . ,VN ∈ Obj(C), that is

f =
N∑
i=1

mv∗i ,vi ,

where vi ∈ Vi and v∗i ∈ V∗
i . Similarly, let g ∈ H◦

C be a sum of matrix coefficients of

W1, . . . ,WN ′ ∈ Obj(C), that is g=
∑N ′

i=1mw∗
i ,wi . Choose ωV,W,ωV,W ∈ H⊗H that satisfy the

condition of definition 2.5.1(ii) for V :=
⊕N

i=1Vi and W :=
⊕N ′

i=1Wi. We define

R( f⊗ g) := ωV,W · ( f⊗ g) and R−1 ( f⊗ g) := ωV,W · ( f⊗ g) , (31)

where the actions of ωV,W and ωV,W are by right translation on tensor components. This means
that for example if ωV,W =

∑
r⊗ r ′ ∈ H⊗H, then

(ωV,W · ( f⊗ g))(h⊗ h ′) :=
∑

f(hr)g(h ′r ′) .

Remark 2.7.1. (i) For x,y ∈ H we have(
ωV,W ·

(
mv∗i ,vi ⊗mw∗

j ,wj

))
(x⊗ y) = 〈v∗i ⊗w∗

j ,(x⊗ y) ·RV,W (vi⊗wj)〉, (32)

16
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hence the left hand side of (32) is independent of the choice of ωV,W. Summing over i and j it
follows that R( f⊗ g) is independent of the choice of ωV,W as well. The latter observation and
lemma 2.5.2 imply that R( f⊗ g) does not depend on how f and g are expressed as sums of
matrix coefficients. An analogous statement holds for R−1( f⊗ g).

(ii) From lemma 2.5.2 it also follows that the formulas (31) extend to linear maps

R,R−1 : H◦
C ⊗H◦

C → H◦
C ⊗H◦

C .

Indeed the latter maps R and R−1 are mutual inverses.

We define

〈 f⊗ g,R〉 := (R( f⊗ g))(1⊗ 1) . (33)

In the rest of this subsection ∆◦( f) =
∑
f1 ⊗ f2 and ∆◦(g) =

∑
g1 ⊗ g2.

Lemma 2.7.2. Let f,g ∈ H◦
C . Then the following relations hold.

(i) R( f⊗ g) =
∑
f1 ⊗ g1〈 f2 ⊗ g2,R〉.

(ii) f⊗ g=
∑

〈R−1( f1 ⊗ g1),R〉f2 ⊗ g2.

Proof. It suffices to verify the assertion when f and g are matrix coefficients of finite dimen-
sional H-modules V,W ∈ Obj(C). Suppose that f :=mv∗,v and g :=mw∗,w. If RV,W(v⊗w) =∑
ṽ⊗ w̃ then by (32) we have R( f⊗ g) =

∑
mv∗ ,̃v⊗mw∗,w̃. Choose dual bases {vi} and {v∗i }

for V and V∗ and dual bases {wj} and {w∗
j } for W and W∗. Using the coproduct and counit

identities of H◦ we have∑
f1 ⊗ g1〈 f2 ⊗ g2,R〉=

∑
mv∗,vi ⊗mw∗,wj

(
〈v∗i , ṽ〉〈w∗

j , w̃〉
)

=
∑

〈v∗i , ṽ〉mv∗,vi ⊗〈w∗
j , w̃〉mw∗,wj =

∑
mv∗ ,̃v⊗mw∗,w̃ = R( f⊗ g) .

This proves (i). For (ii) note that if R−1
V,W(v⊗w) =

∑
ṽ⊗ w̃ then R−1( f⊗ g) =

∑
mv∗ ,̃v⊗

mw∗,w̃. Next we write R−1
V,W(vi⊗wj) =

∑
ṽi,j⊗ w̃i,j for each pair of indices i, j. Then∑

〈R−1 ( f1 ⊗ g1) ,R〉f2 ⊗ g2 =
∑

〈mv∗ ,̃vi,j ⊗mw∗,w̃i,j ,R〉mv∗i ,v⊗mw∗
j ,w

=
∑

〈v∗,vi〉mv∗i ,v⊗〈w∗,wj〉mw∗
j ,w =mv∗,v⊗mw∗,w = f⊗ g.

Fix finite dimensional H-modules V,W ∈ Obj(C). Let {vi}di=1 and {wi}d
′

i=1 be bases of V
and W. Also, let {v∗i }di=1 and {w∗

i }d
′

i=1 be the dual bases of V∗ and W∗. We denote the matrix
entries of RV,W in the basis vi⊗wj by Rklij , so that

RV,W (vi⊗wj) =
∑
k,l

Rklij vk⊗wl.

Set tVa,b :=mv∗a ,vb and t
W
a,b :=mw∗

a ,wb . Then R
kl
ij = 〈tVk,i⊗ tWl,j,R〉, so that as in [Ja96, lemma 7.12]

we have the well known relations∑
k,l

〈tVk,i⊗ tWl,j,R〉tWa,ltVb,k =
∑
k,l

〈tVb,k⊗ tWa,l,R〉tVk,itWl,j for all i, j,a,b. (34)
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From (34) it follows that∑
g1f1〈 f2 ⊗ g2,R〉=

∑
f2g2〈 f1 ⊗ g1,R〉 for f,g ∈ H◦

C . (35)

3. The q-Weyl algebra PD

In this section we construct PD as a deformed twisted tensor product of the algebras P and
D with respect to the univeral R-matrix of ULR. Recall that k := C(q).

3.1. The algebra Uq(gln)

For n ∈ N, the quantized enveloping algebra Uq(gln) is the k-algebra generated by Ei,Fi for
1⩽ i⩽ n− 1 and K±1

εi for 1⩽ i⩽ n, that satisfy the relations KεiK
−1
εi = K−1

εi Kεi = 1, KεiKεj =
KεjKεi ,

KεiEjK
−1
εi = q[[i,j]]−[[i,j+1]]Ej , KεiFjK

−1
εi = q−[[i,j]]+[[i,j+1]]Fj , EiFj−FjEi = [[i, j]]

Ki−K−1
i

q− q−1
,

where Ki := KεiK
−1
εi+1

and

[[a,b]] :=

{
1 if a= b

0 if a 6= b,
(36)

as well as the quantum Serre relations. For λ :=
∑n

i=1miεi ∈ Zε1 + · · ·+Zεn we set

Kλ :=
n∏

i=1

Kmi
εi . (37)

The Cartan subalgebra of Uq(gln) is the subalgebra spanned by the Kλ for λ ∈ Zε1 + · · ·+
Zεn. We denote the Cartan subalgebras of UL

∼= Uq(glm) and UR
∼= Uq(gln) by Uh,L and Uh,R,

respectively. Following [KS97] for the choice of the coproduct ∆ on Uq(gln), we set

∆(Ei) := Ei⊗Ki+ 1⊗Ei , ∆(Fi) := Fi⊗ 1+K−1
i ⊗Fi , ∆(Kεi) := Kεi ⊗Kεi .

The counit and antipode of Uq(gln) are given by

ε(Ei) = ε(Fi) = 0 , ε
(
K±1
εi

)
= 1 , S(Ei) =−EiK−1

i , S(Fi) =−KiFi , S(Kεi) = K−1
εi .

3.2. The universal R-matrix of Uq(gln)

Recall that a Hopf algebraH is called quasitriangular if it has a universal R-matrix, i.e. if there
exists an invertible 2-tensor R∈ H⊗H satisfying

∆cop =R∆R−1 , (∆⊗ id)(R) =R13R23 , (id⊗∆)(R) =R13R12. (38)

Strictly speaking, Uq(gln) is not quasitriangular because the formal series that is usually
called the universal R-matrix of Uq(gln) indeed belongs to a topological tensor product
Uh(gln)⊗̂Uh(gln)whereUh(gln) denotes the h-adic Drinfeld–Jimbo quantum group. However,

18
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it turns out that the setting of braided triples is a rigorous way to work with this universal
R-matrix.

Let C(n) denote the full subcategory of the category of Uq(gln)-modules whose objects are
direct sums of irreducible finite dimensionalUq(gln)-modules with highest weight of the form
q
∑n

i=1λiεi , where λ1 ≥ ·· ·⩾ λn are integers. Such modules are sometimes called modules of
type (1, . . . ,1). We define a braiding on C(n) as follows. First we fix a formal series description
of the universal R-matrix for Uq(gln). For more details see [VY20, theorem 3.108] or [KS97,
section 8.3.2].

Definition 3.2.1. Given n ∈ N, the standard root vectors of Uq(gln) are

Eεi−εj := (−1)j−i−1
[
Ei, [. . . ,Ej−1]q−1

]
q−1

and Fεi−εj := (−1)j−i−1
[
Fj−1, [. . . ,Fi]q

]
q
,

where 1⩽ i< j⩽ n and [x,y]q±1 := xy− q±1yx. We set

R(n) :=
(
eh

∑n
i=1Hi⊗Hi

) (n2)∏
i=1

Expq
((
q− q−1

)
Eβi ⊗Fβi

)
, (39)

with the conventions ehHi := Kεi , e
h := q, Expq(x) :=

∑
r⩾0 q

(r2) xr

[r]q!
and βi+ j( j−1)

2
:= εi− εj+1

for 1⩽ i⩽ j⩽ n− 1. Also, set

R(n) :=
(
R(n)

)−1

21
.

In what follows, we need R(n) to define P and D , and we need R(n) to define PDgr and
PD . The formal series R(n) and R(n) equip the category C(n) with two braidings which we
describe below. Given V,W ∈ Obj(C(n)), the formal series (39) defines a linear map

R(n)
V,W : V⊗W→ V⊗W.

To give sense to the action ofR(n) on V⊗Wwemake the following two observations. First, for
any v⊗w ∈ V⊗W all but finitely many terms of Expq

(
(q− q−1)Eβi ⊗Fβi

)
vanish on v⊗w.

Second, if v ∈ V and w ∈W are weight vectors of weights qµ and qν with µ :=
∑n

i=1µiεi and
ν :=

∑n
i=1 νiεi respectively, then the action of eh

∑n
i=1Hi⊗Hi on v⊗w is by multiplication by

the scalar q〈µ,ν〉 where

〈µ,ν〉 :=
n∑

i=1

µiνi. (40)

By a similar reasoning, the action of R(n) yields linear maps

R(n)
V,W : V⊗W→ V⊗W.

It is well known that by setting

Ř(n)
V,W := σV,W ◦R(n)

V,W and Ř(n)
V,W := σV,W ◦R(n)

V,W (41)

we obtain braidings on C(n), which we will denote by Ř(n) and Ř(n)
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Proposition 3.2.2. Set H := Uq(gln), C := C(n), and Ř := Ř(n) or Ř(n)
. Then (H,C, Ř) is a

locally finite braided triple.

Proof. The only assertion that we need to prove is the property of definition 2.5.1(ii). Fix finite
dimensional V,W ∈ Obj

(
C(n)

)
. We construct an element ofUq(gln)⊗Uq(gln) that acts on V⊗

W as R(n)
V,W. Since E

Ni
βi
⊗FNiβi vanishes on V⊗W when Ni is sufficiently large, the exponential

factor

Expq
((
q− q−1

)
Eβi ⊗Fβi

)
can be replaced by a finite sum. Next we provide a finite two-tensor that replaces eh

∑n
i=1Hi⊗Hi .

Letµ(1), . . . ,µ(N) be the distinct weights ofW. Choose ν ∈ Zε1 + · · ·+Zεn such that the values
〈ν,µ(i)〉 are mutually distinct numbers. For 1⩽ i⩽ N define Ti ∈ Uq(gln) by

Ti :=
∏

1 ⩽ j ⩽ N
j ̸= i

(
Kν − q〈ν,µ

( j)〉

q〈ν,µ(i)〉 − q〈ν,µ( j)〉

)
.

Then Ti acts by 0 or 1 on the µ( j)-weight space ofW, depending on if j 6= i or j= i respectively.
It follows that the action of

∑N
i=1Kµ(i) ⊗Ti on V⊗W is identical to the action of eh

∑n
i=1Hi⊗Hi .

Thus the action ofR(n) on V⊗W is identical to the action of a (finite) two-tensor inUq(gln)⊗

Uq(gln). Analogous constructions can be given for
(
R(n)
V,W

)−1
and

(
R(n)
V,W

)±1
.

As in section 2.2 let Uq(gln)
◦ be the finite dual of Uq(gln).

Definition 3.2.3. Let Uq(gln)
• ⊆ Uq(gln)

◦ denote the sub-bialgebra that is spanned by matrix
coefficients of objects of C(n).

For f,g ∈ Uq(gln)
• we define

〈
f⊗ g,R(n)

〉
and

〈
f⊗ g,R(n)〉 as in (33). For finite dimen-

sional V ∈ Obj
(
C(n)

)
the right dual V∗ also belongs to Obj

(
C(n)

)
. From this and the fact that

S and S−1 are conjugate by an element of the Cartan subalgebra it follows that if f ∈ Uq(gln)
•

then f ◦ S±1 ∈ Uq(gln)
•. It is well known (see for example [KS97, section 8.1.1]) that(

R(n)
)
21
=
(
R(n)

)−1
=
(
1⊗ S−1

)(
R(n)

)
and (S⊗ 1)

(
R(n)

)
=
(
R(n)

)−1
(42)

Consequently, for f,g ∈ Uq(gln)
• we have〈

f⊗
(
g ◦ S−1

)
,R(n)〉= 〈g⊗ f,R(n)

〉
and

〈
( f ◦ S)⊗ g,R(n)

〉
=
〈
g⊗ f,R(n)〉. (43)

3.3. The involution x 7→ x♮

It is well known (for example see [No96, section 1.4]) that there exists a unique k-linear iso-
morphism of Hopf algebras

Uq (gln)→ Uq (gln)
op
, x 7→ x♮, (44)

such that

E♮i := qKiFi , F♮i := q−1EiK
−1
i , K♮εi := Kεi . (45)
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Lemma 3.3.1. S(x♮) = S−1(x)♮ for x ∈ Uq(gln).

Proof. Both sides are automorphisms of the algebra Uq(gln). Therefore it suffices to verify
that they agree on the Ei, the Fi, and the Kεi . This is a straightforward calculation.

By the canonical duality betweenUq(gln) andUq(gln)
◦, the map (44) induces an isomorph-

ism of Hopf algebras Uq(gln)
◦ → (Uq(gln)

◦)
cop. We denote the latter map by u 7→ u♮ as well,

so that

〈u♮,x〉= 〈u,x♮〉 for u ∈ Uq (gln)
◦ and x ∈ Uq (gln) . (46)

3.4. The algebras Pn×n and Dn×n

From now on we denote the standard positive system of the root system of gln by

∆+
n := {εi− εj : 1⩽ i< j⩽ n}

Let V(n) denote the irreducibleUq(gln)-module of highest weight q−εn (all highest weights are
considered with respect to ∆+

n ). Thus V(n) ∼= kn as a vector space and the homomorphism of
algebras Uq(gln)→ Endk

(
V(n)

)
is uniquely determined by the assignments

Kεi 7→ 1+
(
q−1 − 1

)
Ei,i , Ei 7→ Ei+1,i , Fi 7→ Ei,i+1,

where the Ei,j are the elementary matrix units associated to the standard basis {ei}ni=1 of V(n)

and 1 :=
∑n

i=1Ei,i. Using (39) the R-matrix of V(n) ⊗V(n) can be computed directly, and we
obtain

R(n)
V(n),V(n) =

∑
1⩽i⩽n

qEi,i⊗Ei,i+
∑

1⩽i6=j⩽n

Ei,i⊗Ej,j+
(
q− q−1

) ∑
1⩽j<i⩽n

Ei,j⊗Ej,i.

For 1⩽ i, j⩽ n let ti,j denote the matrix coefficient me∗i ,ej of V
(n). By (35) the ti,j satisfy the

following relations:

(R1) tk,itk,j = qtk,jtk,i, ti,ktj,k = qtj,kti,k for i< j.
(R2) ti,ltk,j = tk,jti,l, ti,jtk,l− tk,lti,j = (q− q−1)ti,ltk,j for i< k and j< l.

Similarly, let V̆(n) denote the irreducible Uq(gln)-module with highest weight qε1 . Again
V̆(n) ∼= kn as vector spaces, but the map Uq(gln)→ Endk

(
V̆(n)

)
is uniquely determined by the

assignments

Kεi 7→ 1+(q− 1)Ei,i , Ei 7→ Ei,i+1 , Fi 7→ Ei+1,i.

Indeed V̆(n) ∼=
(
V(n)

)∗
. The R-matrix of V̆(n) ⊗ V̆(n) is

R(n)

V̆(n),V̆(n) =
∑

1⩽i⩽n

qEi,i⊗Ei,i+
∑

1⩽i6=j⩽n

Ei,i⊗Ej,j+
(
q− q−1

) ∑
1⩽i<j⩽n

Ei,j⊗Ej,i.

If ∂i,j for 1⩽ i, j⩽ n denotes the matrix coefficient me∗i ,ej of V̆
(n), then again from (35) it

follows that the ∂i,j satisfy relations similar to those between the ti,j, with q replaced by q−1.
Equivalently,
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(R1 ′) ∂k,j∂k,i = q∂k,i∂k,j, ∂j,k∂i,k = q∂i,k∂j,k for i< j.
(R2 ′) ∂k,j∂i,l = ∂i,l∂k,j,∂k,l∂i,j− ∂i,j∂k,l = (q− q−1)∂k,j∂i,l for i< k and j< l.

Definition 3.4.1. Let Pn×n denote the subalgebra of Uq(gln)
◦ generated by the ti,j, for 1⩽

i, j⩽ n. Similarly, let Dn×n denote the subalgebra of Uq(gln)
◦ generated by the ∂i,j, for 1⩽

i, j⩽ n.

It is well known (for example see [Ta92]) that the relations (R1)–(R2) yield a presenta-
tion of Pn×n by generators and relations. Since Dn×n

∼= Pop
n×n, a similar statement holds for

Dn×n. From section 2.2 it follows that both Pn×n and Dn×n are bialgebras with the coproducts
satisfying

ti,j 7→
∑
k

ti,k⊗ tk,j and ∂i,j 7→
∑
k

∂i,k⊗ ∂k,j,

and the counits satisfying ti,j,∂i,j 7→ [[i, j]]. Henceforth we denote the coproducts of Pn×n and
Dn×n by ∆P and ∆D , respectively. In the proof of lemma 3.4.2 we use the relations

ti,j (Kεk) = [[i, j]]q−[[i,k]] , ti,j (Ek) = [[i,k+ 1]] [[j,k]] , ti,j (Fk) = [[i,k]] [[j,k+ 1]] .

Lemma 3.4.2. t♮i,j = tj,i and ∂
♮
i,j = ∂j,i, where t

♮
i,j and ∂

♮
i,j are defined by (46).

Proof. We only give the proof for the ti,j, as the argument for the ∂i,j is similar. The assertion
follows if we verify that

〈ti,j,x♮〉= 〈tj,i,x〉 for x ∈ Uq (gln) . (47)

It suffices to check (47)when x is a generator ofUq(gln), because if (47) holds for x,y ∈ Uq(gln)
then

〈ti,j,(xy)♮〉= 〈ti,j,y♮x♮〉=
∑
a

〈ti,a,y♮〉〈ta,j,x♮〉=
∑
a

〈ta,i,y〉〈tj,a,x〉= 〈tj,i,xy〉,

hence (47) also holds for xy. When x is one of the standard generators ofUq(gln), checking (47)
is a direct calculation. For example for x= Ek we have

〈ti,j,E♮k〉= q
∑
a

〈ti,a,Kk〉〈ta,j,Fk〉.

The right hand side vanishes unless j = k+ 1 and i= k, in which case we have 〈ti,j,E♮k〉= 1. It
follows immediately that 〈ti,j,E♮k〉= 〈tj,i,Ek〉 for all i, j,k.

According to remark 2.2.1, the canonicalUq(gln)⊗Uq(gln)-module structure ofUq(gln) by
left and right translation equips both Pn×n and Dn×n with Uq(gln)⊗Uq(gln)-module algebra
structures. Our next goal is to describe the latter actions explicitly (all of the actions are from
the left side).

LetRD be the action of Uq(gln) on Dn×n by right translation, as in remark 2.2.1. We have

RD (x)u=
∑

〈u2,x〉u1 for x ∈ Uq (gln) , u ∈ Dn×n,
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where as usual ∆(u) =
∑
u1 ⊗ u2. Similarly, let LD be the action of Uq(gln) on Dn×n by left

translation. Thus

LD (x)u=
∑

〈u1,x♮〉u2 for x ∈ Uq (gln) , u ∈ Dn×n.

By remark 2.2.1 both LD and RD equip Dn×n with Uq(gln)-module algebra structures.
Next we define the left and right Uq(gln)-actions on Pn×n. For c ∈ k let ξc denote the

unique automorphism of Uq(gln) defined by

ξc (Ei) := cEi , ξc (Fi) := c−1Fi , ξc (Kεi) = Kεi .

Lemma 3.4.3. ti,j ◦ ξc = ci−jti,j and ∂i,j ◦ ξc = cj−i∂i,j.

Proof. We only give the proof of the assertion for the ti,j. In this case we need to verify the
equality

ti,j (ξc (x)) = ci−jti,j (x) (48)

for x ∈ Uq(gln). This is a straightforward calculation in the special case where x is one of the
standard generators of Uq(gln). To complete the proof of (48) note that if (48) holds for x and
x′, then it also holds for xx′ because

ti,j (ξc (xx
′)) =

n∑
a=1

ti,a (ξc (x)) ta,j (ξc (x
′)) =

n∑
a=1

c(i−a)+(a−j)ti,a (x) ta,j (x
′) = ci−jti,j (xx

′) .

The map

Ξ : Uq (gln)→ Uq (gln)
op,cop

, x 7→ ξ−1/q (S(x))

is an isomorphism of Hopf algebras. Thus, the pullback of Ξ induces an isomorphism of Hopf
algebras Uq(gln)

◦ → (Uq(gln)
◦)

op,cop, given by u 7→ u ◦Ξ. Set

ι(u) := u ◦Ξ for u ∈ Uq (gln)
◦
. (49)

Lemma 3.4.4. We have

ι(ti,j) = ∂j,i for 1⩽ i, j⩽ n. (50)

In particular, the restriction of ι toPn×n is an isomorphism of bialgebras ι : Pn×n → Dop,cop
n×n .

Proof. We need to verify ti,j(Ξ(x)) = ∂j,i(x) for x ∈ Uq(gln). It suffices to check the latter
relation for the standard generators of Uq(gln), and this special case follows from a direct
calculation.

Next note that the map

ι : Pn×n → Dop
n×n , ι(u) := ι(u)♮

is an isomorphism of bialgebras (indeed ι(ti,j) = ∂i,j). Let RD,τ and LD,τ denote the τ -twists
ofRD andLD (see remark 2.2.1), wherewe set τ(x) := S−1(x)♮ for x ∈ Uq(gln). For u ∈ Pn×n

and x ∈ Uq(gln) set

RP (x)u := ι−1 (RD,τ (x) ι(u)) and LP (x)u := ι−1 (LD,τ (x) ι(u)) .
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By remark 2.2.1(ii), RD,τ and LD,τ equip Dn×n with Uq(gln)
cop-module algebra struc-

tures. It follows that RP and LP equip Pn×n with Uq(gln)-module structures. By a direct
calculation

RP (x)u=
∑

〈ι(u2) ,S−1 (x)〉u1 and LP (x)u=
∑

〈ι(u1) ,S−1 (x)♮〉u2,

for x ∈ Uq(gln) and u ∈ Pn×n. Using (49), lemma 3.3.1 and the relation S2 = ξq2 we obtain

RP (x)u=
∑

〈u2 ◦ ξ−1/q,x〉u1 and LP (x)u=
∑

〈(u1 ◦ ξ−q)
♮
,x〉u2.

3.5. The algebras P and D

Our next goal is to extend the constructions of section 3.4 to the m× n case.

Definition 3.5.1. Let m and n be positive integers and set N :=max{m,n}. We define the
algebra P := Pm×n (respectively, D := Dm×n) to be the subalgebra of PN×N (respectively,
DN×N) that is generated by the ti,j (respectively, the ∂i,j) where 1⩽ i⩽ m and 1⩽ j⩽ n.

Note that by restricting the Uq(glN)⊗Uq(glN)-module algebra structures on PN×N and
DN×N we obtain ULR-module algebra structures on P and D . Let us describe these ULR-
module algebras more precisely. For convenience we first assume that m⩽ n. Then the sub-
algebra of Uq(gln) generated by Ei,Fi,K±1

εj for 1⩽ i⩽ m− 1 and 1⩽ j⩽ m is isomorphic to
Uq(glm)

∼= UL. With this identification ofUL with a subalgebra ofUq(gln)we have the follow-
ing lemma.

Lemma 3.5.2. Suppose that m⩽ n and we identify UL with a subalgebra of Uq(gln) as above.
Then LD(x)D ⊆ D and LP(x)P ⊆ P for x ∈ UL.

Proof. We only prove this for LD (for LP the proof is similar). Since Dn×n is a UL-module
algebra, it suffices to check that if i⩽ m and x is one of the standard generators of UL then
LD(x)∂i,j ∈ D . If x= Ek for 1⩽ k⩽ m− 1 then

LD (Ek)∂i,j =
n∑

a=1

〈∂i,a,E♮k〉∂a,j =
n∑

a=1

〈∂i,a,qKkFk〉∂a,j = q
n∑

a=1

n∑
b=1

〈∂i,b,Kk〉〈∂b,a,Fk〉∂a,j.

(51)

We have 〈∂b,a,Fk〉= 〈e∗b ,Ek+1,kea〉= [[a,k]][[b,k+ 1]]. In particular, 〈∂b,a,Fk〉= 0 unless a⩽
m− 1. It follows that the right hand side of (51) is a linear combination of the ∂a,j where
a⩽ m− 1, hence it lies in D . The calculations for the cases x= Fk for 1⩽ k⩽ m− 1 and
x= K±1

εk for 1⩽ k⩽ m are similar.

Lemma 3.5.2 implies that P and D are ULR-stable subspaces of Pn×n and Dn×n, where
we consider

ULR = Uq (glm)⊗Uq (gln)
∼= UL⊗UR

as a subalgebra ofUq(gln)⊗Uq(gln) via the aforementioned embeddingUL ↪→ Uq(gln). Thus,
P and D inherit ULR-module algebra structures from Pn×n and Dn×n.

Henceforth we mostly drop the symbols LP , LD ,RP andRD from our notation. Instead,
we use the notation

(x⊗ y) · u
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to denote the action of x⊗ y ∈ ULR on u ∈ P (or u ∈ D). The actions of x⊗ y ∈ UL⊗UR on
u ∈ P and on v ∈ D are given explicitly by the formulas

(x⊗ y) · u=
∑

〈ι(u1) ,S−1 (x)♮〉〈ι(u3) ,S−1 (y)〉u2 =
∑

〈(u1 ◦ ξ−q)
♮
,x〉〈u3 ◦ ξ−1/q,y〉u2

(52)

and

(x⊗ y) · v=
∑

〈v1,x♮〉〈v3,y〉v2 =
∑

〈v♮1,x〉〈v3,y〉v2, (53)

with (∆P ⊗ 1) ◦∆P(u) =
∑
u1 ⊗ u2 ⊗ u3 and (∆D ⊗ 1) ◦∆D(v) =

∑
v1 ⊗ v2 ⊗ v3 in

Sweedler notation, where∆P and∆D denote the coproducts ofPn×n andDn×n, respectively.

Remark 3.5.3. In the case m> n the construction of the ULR-action is the same, except that
we embed Uq(glm)⊗Uq(gln) in Uq(glm)⊗Uq(glm). However, formulas (52) and (53) remain
the same.

Definition 3.5.4. The map φU : ULR → Endk(P) is the homomorphism of algebras induced
by the action (52).

3.6. ULR-module decomposition of P and D

For any integer partition λ satisfying `(λ)⩽ n, where `(λ) denotes the length of λ, let Vλ
denote the irreducible finite dimensional UR-module of type (1, . . . ,1) with highest weight
q
∑

iλiεi (with respect to ∆+
n ). If λ satisfies `(λ)⩽ m we use the same notation Vλ to denote

the analogously defined module of UL.
The algebras P and D are naturally graded by degree of monomials. For d⩾ 0 let

P(d) (respectively, D (d)) denote the graded component of degree d of P (respectively, D).
Furthermore, let Λd,r be the set of integer partitions λ such that `(λ)⩽ d and |λ|= r, where
|λ| denotes the size of λ. The following proposition is well known and its proof can be found
for example in [NYM93, Ta92, Zh02].

Proposition 3.6.1. Set d :=min{m,n}. We have isomorphisms of ULR-modules

P(r) ∼=
⊕
λ∈Λd,r

V∗
λ⊗V∗

λ and D (r) ∼=
⊕
λ∈Λd,r

Vλ⊗Vλ.

Remark 3.6.2. The action of UL⊗UR on the generators of P and D can be computed expli-
citly. For the subalgebra UR

∼= 1⊗UR of ULR, the action is given by

Ek · ∂i,j = [[k+ 1, j]]∂i,k, Fk · ∂i,j = [[k, j]]∂i,k+1, Kεk · ∂i,j = q[[k,j]]∂i,j,
Ek · ti,j =− [[k, j]]q−1ti,k+1, Fk · ti,j =− [[k+ 1, j]]qti,k, Kεk · ti,j = q−[[k,j]]ti,j,

where 1⩽ k⩽ n− 1, 1⩽ i⩽ m and 1⩽ j⩽ n. For UL
∼= UL⊗ 1 the formulas are similar but

the action occurs in the first index (thus, they are obtained by replacing ∂i,j by ∂j,i and ti,j
by tj,i).

3.7. The algebras PDgr and PD

For n⩾ 1 let R(n) and R(n) be as in definition 3.2.1.
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Definition 3.7.1. We set CL := C(m) and CR := C(n). Furthermore, we set

RL :=R(m) , RL :=R(m) , RR :=R(n) , RR :=R(n).

We define braidings ŘL and ŘL on CL, and ŘR and ŘL on CR as in (41).

From proposition 3.2.2 it follows that (UL,CL,ŘL) and (UR,CR,ŘR) are locally finite
braided triples. Thus the product (in the sense of definition 2.5.3) of (UL,CL,ŘL) and
(UR,CR,ŘR) is also a locally finite braided triple of the form (ULR,CLR,ŘLR), where ŘLR is
defined as in (24). Furthermore, proposition 3.6.1 implies that P,D ∈ Obj(CLR).

Recall that D(1) and P(1) are ULR-modules. Let ψ◦ : D(1) ×P(1) → k be the ULR-
invariant k-bilinear form, in the sense of (19), that is defined by

ψ◦ (∂i,j, tk,l) := [[i,k]] [[j, l]] for 1⩽ i,k⩽ m,and 1⩽ j, l⩽ n.

Definition 3.7.2. We define the algebras PDgr and PD by

PDgr := P ⊗Ř D and PD := P ⊗Ř,ψ◦
D , (54)

according to definition 2.4.2 and definition 2.4.9, with A := P , EA := P(1), B := D , EB :=
D(1), ψ := ψ◦, and Ř := ŘLR.

It turns out that there is an equivalent description of PD and PDgr by generators and
relations. Recall the notation [[a,b]] that was defined in (36). We set

[[a,b]]q :=

{
q if a= b,

q− q−1 if a 6= b.

Definition 3.7.3. The algebra PD is generated by 2mn generators ti,j and ∂i,j for 1⩽ i⩽ m
and 1⩽ j⩽ n, modulo the relations (R1), (R2), (R1 ′), (R2 ′) of section 3.4 and the relations

∂a1,a2 ta1,a2 = [[a1,a1]] [[a2,a2]] +
∑
b1⩾a1

∑
b1⩾a1

∑
b2⩾a2

∑
b2⩾a2

(♦1 +□1)(♦2 +□2) tb1,b2∂b1,b2 , (55)

where

♦i := [[ai,ai]]
[[
bi,bi

]]
[[ai,bi]]q and □i := (1− [[ai,ai]]) [[ai,bi]]

[[
ai,bi

]]
.

The algebra PDgr is also generated by 2mn generators ti,j and ∂i,j for 1⩽ i⩽ m and 1⩽ j⩽ n
modulo the same relations, except that [[a1,a1]][[a2,a2]] does not occur on the right hand side
of (55).

Remark 3.7.4. The relation (55) of PD can be written more explicitly as the relations (R3)–
(R6) below:

(R3) ∂c,btd,a = td,a∂c,b if b 6= a and c 6= d.

(R4) ∂c,btc,a = qtc,a∂c,b+
∑
c ′>c

(q− q−1)tc ′,a∂c ′,b if b 6= a.

(R5) ∂c,atd,a = qtd,a∂c,a+
∑
a ′>a

(q− q−1)td,a ′∂c,a ′ if c 6= d.

(R6) ∂c,dtc,d = 1+
∑
c ′⩾c

∑
d ′⩾d

q[[c
′,c]]+[[d ′,d]](q− q−1)2−[[c ′,c]]−[[d ′,d]]tc ′,a ′∂c ′,a ′ .
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For PDgr the relation (55) has the same explicit form, except that (R6) should be replaced
by

(R6 ′) ∂c,dtc,d =
∑
c ′⩾c

∑
d ′⩾d

q[[c
′,c]]+[[d ′,d]](q− q−1)2−[[c ′,c]]−[[d ′,d]]tc ′,d ′∂c ′,d ′ .

Proposition 3.7.5. definition 3.7.2 and definition 3.7.3 are equivalent.

Proof. We just need to explain how to compute the mixed relations (17) and (20). As a ULR-
module,

D(1) ∼= V̆(m) ⊗ V̆(n) and P(1) ∼= V(m) ⊗V(n),

where the isomorphisms are ∂i,j 7→ ei⊗ ej and ti,j 7→ ei⊗ ej. By a direct calculation using defin-
ition 3.2.1 we obtain

(RL)V̆(m),V(m) = q
∑

1⩽i⩽m

Ei,i⊗Ei,i+
∑

1⩽i6=j⩽m

Ei,i⊗Ej,j+
(
q− q−1

) ∑
1⩽i<j⩽m

Ej,i⊗Ej,i.

The formula for (RR)V̆(n),V(n) is similar, withm replaced by n. The mixed relations (20) of PD
and (17) of PDgr can now be computed explicitly based on definitions 2.4.2 and 2.4.9.

3.8. Bases of monomials for PD and PDgr

Consider the monomials

ta1,11,1 · · · ta1,n1,n · · · t
am,1
m,1 · · · t

am,n
m,n ∂

bm,n
m,n · · ·∂bm,1m,1 · · ·∂b1,n1,n · · ·∂b1,11,1 , ai,j,bi,j ∈ Z⩾0. (56)

The expression (56) makes sense both as an element of PD and an element of PDgr.

Proposition 3.8.1. The monomials (56) form a k-basis of PD .

Proof. By a standard straightening argument we can show that by using the relations (R1),
(R1 ′), (R2), (R2 ′) and (R3)–(R6) any product of the ti,j and the ∂i,j can be expressed as a linear
combination of the monomials (56). The fact that the latter monomials are indeed linearly
independent follows from Bergman’s Diamond Lemma and some straightforward (although
tedious) computations. This was also pointed out in [SSV04, section 10]. In [LSS22a] we give
a more conceptual proof of this assertion using the theory of PBW deformations of quadratic
algebras.

Proposition 3.8.2. The algebra P has a basis consisting of monomials (56) where bi,j = 0
for all i, j. The algebra D has a basis consisting of monomials (56) where ai,j = 0 for all i, j.

Proof. This follows from proposition 3.8.1. It is also proved for example in [NYM93,
theorem 1.4].

By proposition 2.4.8 the algebra PDgr is a quotient of the free algebra on 2mn generators
ti,j and ∂i,j. Note that by a slight abuse of notation we use the same notation for generators of
PD and PDgr. In the next proposition we describe a basis for this quotient.

Proposition 3.8.3. The monomials (56) form a basis of PDgr.

Proof. This follows from the vector space decomposition PDgr = P ⊗D and
proposition 3.8.2.
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Remark 3.8.4. From the results of this subsection it follows that PDgr has two realizations:

(i) According to definition 3.7.2 we have PDgr ∼= P ⊗D as a k-vector space. Thus, PDgr

is generated by 2mn generators ti,j⊗ 1 and 1⊗ ∂i,j.
(ii) By proposition 2.4.8 we can realize PDgr as a quotient of the free k-algebra generated by

2mn generators: the ti,j and the ∂i,j.

Definition 3.8.5. Define a total order ≺ on the set of pairs (i, j) with 1⩽ i⩽ m and 1⩽ j⩽ n
as follows: we set (i, j)≺ (i ′, j ′) if either i+ j< i ′ + j ′, or i+ j = i ′ + j ′ and i< i ′.

Remark 3.8.6. The algebra PD has another basis consisting of monomials of the form∏
i,j

tai,ji,j

∏
i,j

∂
bi,j
i,j

 , (57)

where the ∂i,j (respectively, the ti,j) occur in ascending (respectively, descending) order relative
to the total order ≺. This can be deduced from proposition 3.8.1. Indeed by an elementary
argument one can show that any monomial of the ti,j of total degree d that is sorted in the order
given in proposition 3.8.1 can be expressed as a linear combination of monomials of the ti,j of
total degree d that are sorted in the order given in (57). A similar assertion holds for monomials
in the ∂i,j. Thus the monomials of the form (57) span PD . A dimension counting argument
implies that the latter monomials also form a basis.

By an analogous reasoning we can also show that PD has a basis that consists of the
monomials

tam,nm,n · · · tam,1m,1 · · · t
a1,1
1,n · · · t

a1,1
1,1 ∂

b1,1
1,1 · · ·∂b1,n1,n · · ·∂bm,1m,1 · · ·∂bm,nm,n , ai,j,bi,j ∈ Z⩾0. (58)

Here the ∂i,j (respectively, the ti,j) are sorted according to the lexicographic order (respectively,
the reverse lexicographic order) on indices.

3.9. The algebras Ak,l,n and A gr
k,l,n

In this subsection we consider two families of algebras, the Ak,l,n and the A gr
k,l,n, that slightly

generalize PD and PDgr.

Definition 3.9.1. Fix integers k, l,n⩾ 1 and set m :=max{k, l}. Let t̃i,j and ∂̃i,j be as in (5)
where a=m and b= n. We define Ak,l,n (respectively, A gr

k,l,n) to be the subalgebra of PD =

PDm×n (respectively, PDgr ∼= P ⊗D) that is generated by the t̃i,j and the ∂̃i ′,j (respectively,
the t̃i,j⊗ 1 and the 1⊗ ∂̃i ′,j) where

1⩽ i⩽ k , 1⩽ i ′ ⩽ l and 1⩽ j⩽ n. (59)

Proposition 3.9.2. The algebras Ak,l,n and A gr
k,l,n have the following presentations:

(i) Ak,l,n is isomorphic to the quotient of the free k-algebra generated by the symbols ti,j and
∂i ′,j with i, i′, j satisfying (59), modulo the relations (R1), (R2), (R1 ′), (R2 ′) of section 3.4
and the relations (R3)–(R6) of remark 3.7.4.

(ii) A gr
k,l,n is isomorphic to the quotient of the free k-algebra generated by the symbols ti,j and

∂i ′,j with i, i′, j satisfying (59), modulo the relations (R1), (R2), (R1 ′), (R2 ′) of section 3.4
and the relations (R3)–(R5) and (R6 ′) of remark 3.7.4.
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Proof. (i) Denote the quotient of the free algebra by Fk,l,n. Since Ak,l,n is a subalgebra of
PD = PDm×n for m :=max{k, l}, from the explicit description of the relations of PD it
follows that there exists a natural epimorphism fk,l,n : Fk,l,n → Ak,l,n that is uniquely defined
by the assignments ti,j 7→ tm−k+i,j and ∂i ′,j 7→ ∂m−l+i ′,j. A standard straightening argument
proves that every element of Fk,l,n is a linear combination of monomials of the form (56).
proposition 3.8.1 implies that fk,l,n maps the latter monomials to a linearly independent set of
elements of Ak,l,n. Thus fk,l,n is an isomorphism.

(ii) Similar to the proof of (i), with proposition 3.8.1 replaced by proposition 3.8.3.

Definition 3.9.3. For any 1⩽ r⩽ nwe can identifyUq(glr)with a Hopf subalgebra ofUq(gln)
via the monomorphism of associative algebras

κr,n : Uq (glr)→ Uq (gln) , (60)

defined by κr,n(Ei) := Ei+n−r, κr,n(Fi) := Fi+n−r, and κr,n(K±1
εi ) := K±1

εi+n−r
.

In the next proposition we establish the existence of the map (4). Recall from
remark 3.8.4(ii) that we consider both PD and PDgr as algebras generated by 2mn gen-
erators ti,j and ∂i,j.

Proposition 3.9.4. Fix 1⩽ m ′ ⩽ m and 1⩽ n ′ ⩽ n. Let t̃i,j, ∂̃i,j ∈ PDm ′×n ′ (respectively,
t̃i,j, ∂̃i,j ∈ PDgr

m ′×n ′) for 1⩽ i⩽ m ′ and 1⩽ j⩽ n ′ be as in (5) for a := m ′ and b := n ′, that
is

t̃i,j := tm ′+1−i,n ′+1−j and ∂̃i,j := ∂m ′+1−i,n ′+1−j.

Also, let t̃i,j, ∂̃i,j ∈ PDm×n (respectively, t̃i,j, ∂̃i,j ∈ PDgr
m×n) for 1⩽ i⩽ m and 1⩽ j⩽ n be as

in (5) for a := m and b := n, that is

t̃i,j := tm+1−i,n+1−j and ∂̃i,j := ∂m+1−i,n+1−j.

Then the following assertions hold.

(i) The assignments t̃i,j 7→ t̃i,j and ∂̃i,j 7→ ∂̃i,j for 1⩽ i⩽ m ′ and 1⩽ j⩽ n ′ define unique
embeddings of algebras

e := em×n
m ′×n ′ : PDm ′×n ′ → PDm×n and egr := (egr)m×n

m ′×n ′ : PDgr
m ′×n ′ → PDgr

m×n.

(ii) If we identify Uq(glm ′)⊗Uq(gln ′) with a subalgebra of Uq(glm)⊗Uq(gln) via κm ′,m⊗
κn ′,n then the maps e and egr are Uq(glm ′)⊗Uq(gln ′)-equivariant.

Proof. We only give the details of the proofs of these assertions for PD . The arguments for
PDgr are analogous.

(i) From definition 3.7.3 and remark 3.7.4 it follows that the generators t̃i,j and ∂̃i,j of
PDm ′×n ′ and PDm×n satisfy identical relations. It follows that there exists a homomorph-
ism of algebras PDm ′×n ′ → PDm×n. By proposition 3.8.1 the latter map takes a basis of
PDm ′×n ′ to a basis of PDm×n, hence it is an injection. The uniqueness assertion is trivial.

(ii) We give the proof for e only, since the proof for egr is similar. Since PDm ′×n ′ and
PDm×n are module algebras it suffices to verify equivariance for standard generators of
Uq(glm ′) and Uq(gln ′) on the t̃i,j and the ∂̃i,j. This can be done using the explicit formulas
of remark 3.6.2.
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3.10. The action of PD on P and the map ϕPD

Recall that by proposition 2.4.10, PD is a ULR-module algebra. We denote the action of
x ∈ ULR on D ∈ PD by x ·D.

Let I denote the left ideal of PD that is generated by D (1). By proposition 3.8.1 we have
a ULR-invariant decomposition

PD ∼= I ⊕P.

This decomposition equips P ∼= PD/I with a PD-module structure given by

PD ⊗P → P , D⊗ ( f+I ) 7→ D · f for D ∈ PDand f ∈ P, (61)

where D · f := (Df)+I .

Definition 3.10.1. ThemapφPD : PD → Endk(P) is the homomorphism of algebras induced
by (61).

To simplify our notation, henceforth for X ∈ PD and f ∈ P we write X · f instead of
φPD(X)f.

Lemma 3.10.2. The map (61) is a ULR-module homomorphism.

Proof. This is a consequence of the following general fact: let H be a Hopf algebra, A be
an H-module algebra, and I⊆ A be an H-stable left ideal of A. Then the canonical A-module
structure map A⊗A/I→ A/I is an H-module homomorphism.

3.11. P is a faithful PD-module

The goal of this subsection is to provide a purely algebraic proof of proposition 3.11.4. This
proposition is also proved in [SSV04, theorem 2.6] using analytic tools.

Lemma 3.11.1. Let P(⩽k) :=
⊕k

i=0P(i) for k⩾ 0. Then ∂i,j ·P(⩽k) ⊆ P(⩽k−1).

Proof. Follows by induction on k and the mixed relations (R3)–(R6) in section 3.7.

Recall the total order ≺ on the set of pairs (i, j) with 1⩽ i⩽ m and 1⩽ j⩽ n from defini-
tion 3.8.5.

Lemma 3.11.2. Assume that (ir, jr)≺ (i, j) for 1⩽ r⩽ k. Then ∂i,j · (ti1,j1 · · · tik,jk) = 0.

Proof. We use induction on k. From (i1, j1)≺ (i, j) it follows that either i> i1 or j> j1. If i> i1
then by the mixed relations (R3) or (R5) we have

∂i,jti1,j1 · · · tik,jk = c1ti1,j1∂i,jti2,j2 · · · tik,jk + δj,j1c2
∑
j ′>j

ti1,j ′∂i,j ′ ti2,j2 · · · tik,jk ,

for some c1,c2 ∈ k. The claim now follows from the induction hypothesis, because i+ j ′ >
i+ j and therefore (i, j)≺ (i, j ′). When j> j1 the argument is similar.

For a ∈ Z we set

c(a) :=

{∑a
i=0 q

2i if a⩾ 0,

0 otherwise.
(62)
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Lemma 3.11.3. Assume that (ir, jr)≺ (i, j) for 1⩽ r⩽ k. Then

∂i,j ·
(
tai,jti1,j1 · · · tik,jk

)
= c(a− 1) ta−1

i,j ti1,j1 · · · tik,jk for a⩾ 1.

Proof. The mixed relation (R6) implies

∂i,jt
a
i,jti1,j1 · · · tik,jk = ta−1

i,j ti1,j1 · · · tik,jk + q2ti,j∂i,jt
a−1
i,j ti1,j1 · · · tik,jk

+
(
q2 − 1

)∑
i ′>i

ti ′,j∂i ′,jt
a−1
i,j ti1,j1 · · · tik,jk +

(
q2 − 1

)∑
j ′>j

ti,j ′∂i,j ′ t
a−1
i,j ti1,j1 · · · tik,jk

+
(
q− q−1

)2 ∑
i ′>i,j ′>j

ti ′,j ′∂i ′,j ′ t
a−1
i,j ti1,j1 · · · tik,jk .

Since min{i ′ + j, i+ j ′, i ′ + j ′}> i+ j, by lemma 3.11.2 the sums on the second and the third
line lie in the ideal I . The assertion follows by induction on a.

Proposition 3.11.4. P is a faithful PD-module.

Proof. Let D ∈ PD and assume that D 6= 0. Then D=
∑

d⩾0Dd where each Dd is a linear
combination of monomials of the form (57) with

∑
i,j bi,j = d. Set d◦ :=min{d : Dd 6= 0}. By

lemma 3.11.1, for f ∈ P(d◦) we have D · f = Dd◦ · f. Let T denote the set of all the mn-tuples
b := (bi,j) for which a monomial of the form (57) occurs in Dd◦ with a nonzero coefficient.
We sort the components of the b := (bi,j) according to ≺ on the pairs (i, j). In other words,
we assume that b := (b1,1,b1,2,b2,1, . . . ,bm−1,n,bm,n−1,bm,n). Let b̃ := (b̃i,j) be the minimum
of T in the reverse lexicographic order. Thus, we have

b̃m,n =min{bm,n : (bi,j) ∈ T } ,

then also b̃m−1,n =min{bm−1,n : (bi,j) ∈ T and bm,n = b̃m,n}, and so on. From lemmas 3.11.2

and 3.11.3 it follows that Dd◦ ·
∏

i,j t
b̃i,j 6= 0.

3.12. Two ULR-actions on PD are identical

By proposition 3.11.4 the map φPD is an injection and consequently we can consider PD as a
subalgebra of Endk(P). Thus according to lemma 2.3.1 there exists another action of ULR on
elements of PD . We temporarily denote this action by x •D for x ∈ ULR andD ∈ PD . In the
following proposition, we show that the latter action is identical to the action that is defined in
the beginning of section 3.10.

Proposition 3.12.1. x •D= x ·D for x ∈ ULR and D ∈ PD .
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Proof. By lemma 3.10.2, for f ∈ P we have

(x •D) · f =
∑

x1 · (D · (S(x2) · f)) =
∑

(x1 ·D) · (x2 · (S(x3) · f))

=
∑

(x1 ·D) · (ε(x2) f) =
∑

(x1ε(x2) ·D) · f = (x ·D) · f.

Since P is a faithful module over Endk(P), it follows that x •D= x ·D.

Henceforth we only use the notation x ·D to denote the ULR-action on PD .

3.13. The maps Pk,l,n

Recall that PDgr ∼= P ⊗D as a vector space. Let

P : PDgr → PD (63)

be the linear map uniquely defined by P(a⊗ b) := ab for a ∈ P and b ∈ D .

Proposition 3.13.1. The map P is an isomorphism of ULR-modules.

Proof. The map P is identical to the map (22) when A := P , B := D and H := ULR. Hence
by remark 2.4.11 it is a homomorphism of ULR-modules. From proposition 3.8.1 and propos-
ition 3.8.3 it follows that P maps a basis of PDgr to a basis of PD , hence it is indeed an
isomorphism of ULR-modules.

Definition 3.13.2. Given k, l,n⩾ 1, we set m :=max{k, l} and define the map

Pk,l,n : A
gr
k,l,n → Ak,l,n , D 7→ P(D) , (64)

where P : PDgr → PD is as in (63).

For r,s ∈ Z⩾0 we set

PDgr,(r,s) := P(r) ⊗D(s) and A
gr,(r,s)
k,l,n := A gr

k,l,n ∩PDgr,(r,s), (65)

so that

PDgr =
⊕
r,s⩾0

PDgr,(r,s) and A gr
k,l,n :=

⊕
r,s⩾0

A
gr,(r,s)
k,l,n .

By proposition 3.6.1 we obtain an isomorphism of Uq(glk)⊗Uq(gll)⊗Uq(gln)⊗Uq(gln)-
modules

A
gr,(r,s)
k,l,n

∼=
⊕

λ ∈ Λk,r

µ ∈ Λl,s

(V∗
λ⊗Vµ)⊗ (V∗

λ⊗Vµ) , (66)

where k :=min{k,n} and l :=min{l,n}. Here we consider the left copy of V∗
λ⊗Vµ as a

module for Uq(glk)⊗Uq(gll) and the right copy of V∗
λ⊗Vµ as a module for UR⊗UR

∼=
Uq(gln)⊗Uq(gln). Of course by restriction along the coproduct map UR → UR⊗UR we can
also consider the right copy as a UR-module.
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Proposition 3.13.3. For a⊗ a ′ ∈ P(r) ⊗R̃ D(r ′) and b⊗ b ′ ∈ P(s) ⊗R̃ D(s ′) we have

P(a⊗ a ′)P(b⊗ b ′)−P((a⊗ a ′)(b⊗ b ′)) ∈
min{u,u ′}⊕

i=1

PD(u−i,u ′−i), (67)

where u := r+ s and u ′ := r ′ + s ′.

Proof. We have P(a⊗ a ′)P(b⊗ b ′) = aa ′bb ′. Using the explicit relations of PD (see
remark 3.7.4) we can move the ∂i,j past the ti,j to express a ′b as a ′b=

∑
a ′ ′b ′ ′ where a ′ ′ ∈ P

and b ′ ′ ∈ D . Thus

P(a⊗ a ′)P(b⊗ b ′) =
∑

aa ′ ′b ′ ′b ′.

Similarly, using the relations of PDgr we can move the 1⊗ ∂i,j past the ti,j⊗ 1 and as a result
we obtain (1⊗ a ′)(b⊗ 1) =

∑
a ′ ′ ⊗ b ′ ′ where a ′ ′ ∈ P and b ′ ′ ∈ D . It follows that

P((a⊗ a ′)(b⊗ b ′)) =
∑

aa ′ ′b ′ ′b ′.

The only difference between the relations of PD and PDgr is (R6) vs. (R6 ′). Since (R6 ′) is
the homogenized form of (R6 ′), it follows that

∑
a ′ ′b ′ ′ −

∑
a ′ ′b ′ ′ ∈

min{r ′,s}⊕
i=1

PD(s−i,r ′−i).

From the latter inclusion (67) follows immediately.

Recall that gr(Ak,l,n) denotes the associated graded algebra corresponding to the degree
filtration on Ak,l,n, i.e. the filtration obtained by setting deg(ti,j) = deg(∂i,j) = 1. Note that we
have a canonical isomorphism A gr

k,l,n
∼= gr(A gr

k,l,n) since A gr
k,l,n is graded.

The maps Pk,l,n : A
gr
k,l,n → Ak,l,n do not induce isomorphisms of associative algebras.

However, the following statement holds.

Corollary 3.13.4. The associated graded map gr(Pk,l,n) induces a UR-equivariant isomorph-
ism between A gr

k,l,n
∼= gr(A gr

k,l,n) and gr(Ak,l,n). When k= l= m, the latter map is ULR-
equivariant.

Proof. From proposition 3.13.3 it follows that the associated graded map gr(Pk,l,n) is an iso-
morphism of associative algebras from gr(A gr

k,l,n)
∼= A gr

k,l,n onto gr(Ak,l,n). The equivariance
statements follow from proposition 3.13.1.

3.14. The algebras ŮL, ŮR and ŮLR

We set

ŮLR := φ−1
U (PD) := {x ∈ ULR : φU (x) ∈ PD} .

Also, we set

ŮL :=
{
x ∈ UL : x⊗ 1 ∈ ŮLR

}
and ŮR :=

{
x ∈ UR : 1⊗ x ∈ ŮLR

}
.
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Recall that the adjoint action of ULR is ady(x) :=
∑
y1xS(y2) for x,y ∈ ULR. Recall that we

equip Endk(P) with the ULR-module structure of lemma 2.3.1 and we denote the latter action
by x ·T for x ∈ ULR and T ∈ Endk(P). Then it is straightforward from the definition of φU
that

φU (ady (x)) = y ·φU (x) for x,y ∈ ULR. (68)

Lemma 3.14.1. adx(ŮLR)⊆ ŮLR for x ∈ ULR.

Proof. Follows immediately from (68) and proposition 3.12.1.

Remark 3.14.2. When m⩽ n, proposition 3.6.1 implies that the map LP : UL → Endk(P) is
an injection. The argument is similar to the proof of [KS97, theorem 7.1.5.13].

LetKn denote the kernel ofRP : UR → Endk(P). For the next proposition recall the nota-
tion F (H, I) defined in (11).

Proposition 3.14.3. Assume that m⩽ n. Then ŮL ⊆ F (UL) and ŮR ⊆ F (UR,Kn).

Proof. Since the actions of ULR on P and D are degree preserving, it follows that PD is a
locally finiteULR-module. The assertions of the proposition follow from the fact that the maps

ŮL
ϕU−→ PD and ŮR/(ŮR ∩Kn)

ϕU−→ PD are injective andULR-equivariant (this is equivalent
to (68)).

The following proposition is a ‘no-go theorem’ that provides evidence that the commutative
diagram (1) cannot be fully quantized.

Proposition 3.14.4. There does not exist a k-algebra P̃D with the following properties:

(i) P̃D is a locally finite ULR-module.
(ii) P is a P̃D-module and the action map P̃D ⊗P → P is a homomorphism of ULR-

module.
(iii) There exists a homomorphism of algebras φ̃ : ULR → P̃D such that the diagram

is commutative.

Proof. Let us denote the ULR-action of (i) by x ·D for x ∈ ULR and D ∈ P̃D . Let K ⊆ P̃D

denote the kernel of the map P̃D → Endk(P) that is induced by the P̃D-module structure
on P . We define a new ULR-action on P̃D by setting

x •D :=
∑

φ̃(x1)Dφ̃(S(x2)) for x ∈ ULRand D ∈ P̃D .

By the proof of proposition 3.12.1 we obtain (x •D)− (x ·D) ∈ K for x ∈ ULR andD ∈ P̃D .
In particular, for x,y ∈ ULR if we set D := φ̃(y) then we have

φ̃(adx (y))+K = x •D+K = x ·D+K . (69)
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Now assume that m⩽ n, so that the restriction of φ̃ to a map UL⊗ 1→ Endk(P) is faith-
ful. By (69) it follows that if y ∈ UL⊗ 1 then the image of φ̃(adUL⊗1(y)) in P̃D/K is
finite dimensional. But φ̃(adUL⊗1(y))∩K = {0}, hence adUL⊗1(y) is also finite dimensional.
Consequently, we have shown that UL = F (UL), which is a contradiction.

3.15. Relation between theorem A(i) and theorem A(ii)

Our goal in this subsection is to prove lemma 3.15.1 below, which implies that theorem A(ii)
follows by symmetry from theorem A(i).

From the symmetry of the defining relations of PDm×n with respect to the two indices of
the generators ti,j and ∂i,j it follows that there exists an isomorphism of algebras

ηm,n : PDm×n → PDn×m,

such that ηm,n(ti,j) = tj,i and ηm,n(∂i,j) = ∂j,i for 1⩽ i⩽ m and 1⩽ j⩽ n. Note that ηm,n restricts
to an isomorphism Pm×n

∼= Pn×m. This naturally results in an isomorphism of algebras
Endk(Pm×n)∼= Endk(Pn×m).

Lemma 3.15.1. The following assertions hold.

(i) For x⊗ y ∈ Uq(glm)⊗Uq(gln) and D ∈ PDm×n we have

ηm,n ((x⊗ y) ·D) = (y⊗ x) · ηm,n (D) .

(ii) The induced isomorphism Endk(Pm×n)∼= Endk(Pn×m) maps the images of Uq(glm) and
Uq(gln) in Endk(Pm×n) onto the images of Uq(glm) and Uq(gln) in Endk(Pn×m).

Proof. (i) It suffices to prove the assertion when x and y are selected from the standard generat-
ors ofUq(glm) andUq(gln), respectively. IfD= ti,j orD= ∂i,j, then the assertion follows from
symmetry of the effect of the generators on the indices of the ti,j and the ∂i,j (see remark 3.6.2).
For general D ∈ PDm×n the assertion follows from the fact that PDm×n and PDn×m are
module algebras over Uq(glm)⊗Uq(gln) and Uq(gln)⊗Uq(glm), respectively.

(ii) Follows immediately from (i).

3.16. Relation to C[Matm,n]q and Pol(Matm,n)q

We can now relate our algebras P and PD to the C-algebras C[Matm,n]q and Pol(Matm,n)q
(where 0< q< 1) that are introduced in [SSV04, BKV06]. We remark that in [BKV06] only
the special case m= n is considered, and the latter algebras are denoted by C[Matn]q and
Pol(Matn)q, respectively. The algebra Pol(Matm,n)q is defined in [SSV04, section 2] in terms
of the generators zij and (zij)

∗ where 1⩽ i⩽ m and 1⩽ j⩽ n. These generators satisfy the
relations (2.1)–(2.7) of [SSV04]. For the reader’s convenience we describe the relations of
Pol(Matm,n)q. The relations among the zij (which are (2.1)–(2.3) of [SSV04]) are identical to
the relations among the ti,j, the only difference being that q becomes a complex-valued para-
meter. In a similar way, the relations among the (zij)

∗ (which are (2.4)–(2.6) of [SSV04])
are identical to the relations among the ∂i,j. The mixed relations (which correspond to (2.7)
of [SSV04]) are(

zij
)∗
zkl = q2

∑
1⩽a,b⩽n

∑
1⩽c,d⩽m

(
rb,aj,l

)(
rd,ci,k

)
zca
(
zdb
)∗

+ [[j, l]] [[i,k]]
(
1− q2

)
,
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where ri,ii,i = 1, ri,ji,j = q−1 for i 6= j, rj,ji,i = 1− q−2 for j> i, and ri,jk,l = 0 otherwise. The algebra
C[Matm,n]q is the subalgebra of Pol(Matm,n)q that is generated by the zij.

Throughout this subsection we set A := Z[q,q−1]. The relations of PD in definition 3.7.3
are defined over A. Thus we obtain an integral form PDA of PD by considering the free A-
submodule of PD that is generated by the monomials (56). Evaluation at q◦ for 0< q◦ < 1
results in a ring homomorphism A→ C. Set PD〈q◦〉 := PDA⊗AC.

Corollary 3.16.1. The algebrasPD〈q◦〉 and Pol(Matm,n)q◦ are isomorphic by the assignments

ti,j 7→
zij√
1−q2◦

and ∂i,j 7→
(zij)

∗
√

1−q2◦
.

Proof. It is straightforward to check that these assignments intertwine the relations (R1)–(R6)
with the relations (2.1)–(2.7) of [SSV04].

In the rest of this subsection we relate the actions of quantized enveloping algebras on P
and on C[Matm,n]q. Set PA := P ∩PDA. Then PA is a free A-module, with an A-basis that
consists of the monomials

ta1,11,1 · · · ta1,n1,n · · · t
am,1
m,1 · · · t

am,n
m,n .

Let UA
q (gln) denote the restricted integral A-form of Uq(gln). For integral forms of quantized

enveloping algebras see for example [CP94, section 9.3]. The explicit description of UA
q (gln)

is given for example in [RT10]. We denote the analogous integral form of the algebra ULR
∼=

Uq(glm)⊗Uq(gln) by U
A
LR. Thus

UA
LR

∼= UA
q (glm)⊗AU

A
q (gln) .

For 0< q◦ < 1 set Uq◦(gln) := UA
q (gln)⊗AC. By remark 3.6.2 the map ULR⊗P → P that

describes theULR-module structure onP restricts to a mapUA
LR⊗PA → PA. After the scalar

extension (−)⊗AC and using the isomorphismPA⊗AC∼= C[Matm,n]q◦ we obtain a structure
of a Uq◦(glm)⊗Uq◦(gln)-module on C[Matm,n]q◦ that corresponds to a map

(Uq◦ (glm)⊗Uq◦ (gln))⊗C [Matm,n]q◦ → C [Matm,n]q◦ , (70)

or equivalently a homomorphism of algebras

φU,q◦ : Uq◦ (glm)⊗Uq◦ (gln)→ EndC
(
C [Matm,n]q◦

)
. (71)

The next proposition relates the latter module structure to the one given in [SSV04, section
9–10] and [BKV06, section 3]. We remark that in [SSV04, BKV06], the module algebra struc-
ture on C[Matm,n]q◦ is with respect to Uq◦(glm)

cop ⊗Uq◦(gln)
cop. We denote the latter module

structure by the map

φSSV : Uq◦ (glm)
cop ⊗Uq◦ (gln)

cop → EndC
(
C [Matm,n]q◦

)
.

Let x 7→ x♮ for n⩾ 1 be the C-linear isomorphism of Hopf algebras Uq◦(gln)→ Uq◦(gln)
op

that is given by the same relations as (45) but for q := q◦.
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Proposition 3.16.2. With φU,〈q◦〉 and φSSV as above, we have

φU,q◦ (x⊗ y) = φSSV
(
ϑL
(
S
(
x♮
))

⊗ϑR
(
S
(
y♮
)))

for x⊗ y ∈ Uq◦ (glm)⊗Uq◦ (gln) ,

where ϑL and ϑR are the automorphisms of the Hopf algebra Uq◦(gln) that are uniquely defined
by setting

ϑL (Ei) := q
− 1

2
◦ Fm−i , ϑL (Fi) := q

1
2
◦Em−i , ϑL (Kεi) := K−1

εm+1−i
,

and

ϑR (Ei) := q
− 1

2
◦ Fi , ϑR (Fi) := q

1
2
◦Ei , ϑL (Kεi) := Kεi .

Proof. Follows from comparing remark 3.6.2 with [SSV04, section 8] or [BKV06, equations
(14), (15)]. Note that the coproduct of Uq◦(gln) in [BKV06] is co-opposite to the coproduct
considered in the present paper, but this is corrected by composing with x 7→ S(x♮).

3.17. Some technical statements about the action of PD on P

In this subsection we prove several technical statements about the interaction between the ∂i,j
on P . We will need these statements in the upcoming sections of this paper. In order to make
our exposition more organized we have collected all of them in one subsection. The reader
may find it easier to skip this subsection and return to it whenever there is a reference.

Recall that the action of D ∈ PD on f ∈ P is denoted by D · f (see section 3.10).

Lemma 3.17.1. Assume that either i 6∈ {a1, . . . ,ar} or j 6∈ {b1, . . . ,br}, then ∂i,jta1,b1 · · · tar,br
belongs to the left ideal of PD that is generated by the ∂i ′,j ′ satisfying i ′ ⩾ i and j ′ ⩾ j.
In particular, ∂i,j · (ta1,b1 · · · tar,br) = 0.

Proof. We use induction on r. For r= 1 the assertion follows from relations (R3)–(R6). Next
suppose r> 1. If i 6= a1 and j 6= b1 then ∂i,jta1,b1 = ta1,b1∂i,j and we can use the induction hypo-
thesis. If i = a1 then j 6∈ {b1, . . . ,br} and we can write

∂i,jta1,b1 · · · tar,br = qti,b1∂i,jta2,b2 · · · tar,br +
(
q− q−1

)∑
i ′>i

ti ′,b1∂i ′,jta2,b2 · · · tar,br ,

and again the induction hypothesis is applicable to each summand on the right hand side. The
argument for the case j = b1 is similar.

Lemma 3.17.2. Assume that either {i1, . . . , is}⊈ {a1, . . . ,ar} and {j1, . . . , js}⊈ {b1, . . . ,br}.
Then

∂i1,j1 · · ·∂is,js · (ta1,b1 · · · tar,br) = 0.

Proof. Without loss of generality assume that i1 6∈ {a1, . . . ,ar}. Relations (R1′) and (R2′)
imply that we can replace ∂i1,a∂b,c by either ∂b,c∂i1,a or q±1∂b,c∂i1,a or ∂b,c∂i1,a± (q−
q−1)∂b,a∂i1,c. Using the latter replacements we can express ∂i1,j1 · · ·∂is,js as a linear combina-
tion of monomials that belong to the left ideal Ĭ :=

∑n
j=1D∂i1,j of D . From lemma 3.17.1 it

follows that elements of Ĭ annihilate ta1,b1 · · · tar,br .

For the following corollary recall that M
i
j is the quantum minor defined in (7).
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Corollary 3.17.3. Let i := (i1, . . . , ir) and j := ( j1, . . . , jr) be r-tuples of integers that satisfy

1⩽ i1 < · · ·< ir ⩽ m and 1⩽ j1 < · · ·< jr ⩽ n.

Then M
i
j · (ta1,b1 · · · tas,bs) = 0 when ai ⩾ i1 + 1 for all 1⩽ i⩽ s.

Proof. This follows from lemma 3.17.2 sinceM
i
j is a linear combination of monomials of the

form ∂iσ(1),j1 · · ·∂iσ(r),jr .

Lemma 3.17.4. Suppose that f,g ∈ P satisfy ∂i1,j1 · · ·∂ir,jr · f = g for some 1⩽ i1, . . . , ir ⩽ m
and 1⩽ j1, . . . , jr ⩽ n. Then for any 1⩽ i ′1 ⩽ . . .⩽ i ′s ⩽ m and 1⩽ j ′1 ⩽ . . .⩽ j ′s ⩽ n that satisfy
either min{ju}ru=1 >max{j ′u}su=1 or min{iu}ru=1 >max{i ′u}su=1 we have

∂i1,j1 · · ·∂ir,jr ·
(
fti ′1 ,j ′1 · · · ti ′s ,j ′s

)
= gti ′1 ,j ′1 · · · ti ′s ,j ′s .

Proof. We assume min{ju}ru=1 >max{j ′u}su=1 (the other case follows by symmetry). Recall
that I is the left ideal of PD generated by D(1) (see section 3.10). Set f ′ := ∂ir,jr · f. Then
∂ir,jr f = f ′ +

∑
(i ′,j ′) bi ′,j ′∂i ′,j ′ , where the bi ′,j ′ ∈ PD and the sum is over all pairs (i ′, j ′)

that satisfy ir ⩽ i ′ ⩽ m and jr ⩽ j ′ ⩽ n. In particular j ′ 6∈ {j ′1, . . . , j ′s}, hence by lemma 3.17.1
we obtain

∂ir,jr fti ′1 ,j ′1 · · · ti ′s ,j ′s = f ′ti ′1 ,j ′1 · · · ti ′s ,j ′s +
∑
(i ′,j ′)

bi ′,j ′∂i ′,j ′ ti ′1 ,j ′1 · · · ti ′s ,j ′s ∈ f
′ti ′1 ,j ′1 · · · ti ′s ,j ′s +I .

This means ∂ir,jr · ( fti ′1 ,j ′1 · · · ti ′s ,j ′s ) = f ′ti ′1 ,j ′1 · · · ti ′s ,j ′s . The proof is completed by induction on r.

Recall the operators D ′
k,r from section 1. We have

D ′
1,0 +

(
q2 − 1

)
D ′

1,1 = 1+
(
q2 − 1

) n∑
i=1

tm,i∂m,i.

The next lemma is a consequence of [BKV06, theorem 1] but we give an elementary, independ-
ent proof. This also makes the proofs of theorems A and B independent of [BKV06, theorem
1].

Lemma3.17.5. Set D := D ′
1,0 +(q2 − 1)D ′

1,1. ThenD · ta1,b1 · · · tar,br = q2
∑r

i=1[[m,ai]]ta1,b1 · · · tar,br .

Proof. By remark 3.8.6 the monomials

f = f(a1,1, . . . ,am,n) := tam,nm,n · · · tam,1m,1 · · · t
a1,1
1,n · · · t

a1,1
1,1

form a basis of P . From relations (R1) and (R2) it follows that it suffices to prove the asser-
tion for such monomials. By lemma 3.17.4 the assertion is reduced to the case where ai,j = 0
for i<m. For j> i we have tm,i∂m,itm,j = q2tm,jtm,i∂m,i. By successive application of the latter
relation, followed by lemmas 3.11.3 and 3.17.4, we obtain(

q2 − 1
)
tm,i∂m,i · f = q2

∑n
j=i+1 am,j

(
q2am,i − 1

)
f.
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After summing up over 1⩽ i⩽ n, the assertion of the lemma is reduced to the algebraic identity

1+
n∑

i=1

q2
∑n

j=i+1 am,j
(
q2am,i − 1

)
= q2

∑n
i=1 am,i ,

which can be verified by a straightforward computation.

Definition 3.17.6. Given any two ordered pairs of integers (i, j) and (i ′, j ′), we write (i, j)◁
(i ′, j ′) if i⩽ i ′ and j⩽ j ′ and at least one of the latter inequalities is strict.

Let Ia,b denote the left ideal of PD that is generated by the ∂i,j where i⩾ a and j⩾ b.

Lemma 3.17.7. Let a⩾ 0 and let 1⩽ k⩽ n. Then ∂1,kt
a+1
1,k = c(a)ta1,k+D where c(a) is as

in (62) and D ∈ I1,k.

Proof. Follows by induction on a. For a= 0 the assertion follows from the relation

∂1,kt1,k = 1+ q2t1,k∂1,k+D1 where D1 ∈
∑

(1,k)◁(i,ℓ)

PD∂i,ℓ. (72)

Suppose that for a given a⩾ 0we have ∂1,kta1,k = c(a− 1)ta−1
1,k +D2 withD2 ∈ I1,k. Using (72)

we obtain

∂1,kt
a+1
1,k =

(
1+ q2t1,k∂1,k+D1

)
ta1,k =

(
1+ q2c(a− 1)

)
ta1,k+ q2t1,kD2 +D1t

a
1,k.

From lemma 3.17.1 it follows that D1ta1,k ∈ I1,k. Finally note that c(a) = 1+ q2c(a− 1).

Lemma 3.17.8. Let a,b⩾ 0 and let 1⩽ k⩽ n.

(i) If b> a then ∂b+1
1,k t

a+1
1,k ∈ I1,k.

(ii) If b⩽ a then ∂b+1
1,k t

a+1
1,k = c(a,b)ta−b

1,k +D for some c(a,b) ∈ k, where D ∈ I1,k.
Furthermore c(a,0) = c(a) and c(a,b+ 1) = c(a,b)c(a− b− 1) for b< a.

Proof. (i) Follows from the equality ∂b+1
1,k t

a+1
1,k = ∂b−a

1,k ∂
a+1
1,k t

a+1
1,k and lemma 3.17.7.

(ii) We use induction on b. For b= 0 this is lemma 3.17.7. If b+ 1⩽ a then

∂b+2
1,k t

a+1
1,k = ∂1,k∂

b+1
1,k t

a+1
1,k

= c(a,b)∂1,kt
a−b
1,k + ∂1,kD= c(a,b)c(a− b− 1) ta−b−1

1,k + c(a,b)D1 + ∂1,kD,

where D1,D ∈ I1,k. Part (ii) follows immediately.

Lemma 3.17.9. Let a,b⩾ 0 and let 1⩽ k⩽ n. Assume that f ∈ P is a product of the t1,j for
j⩽ k− 1. Then the following hold:

(i) If b> a then ∂b1,kt
a
1,kf ∈ I1,k.

(ii) If b⩽ a then ∂b+1
1,k t

a+1
1,k f = c(a,b)ta−b

1,k f+D where D ∈ I1,k and c(a,b) is as in
lemma 3.17.8.

Proof. (i) Follows from lemmas 3.17.8(i) and 3.17.1.
(ii) From lemma 3.17.8(ii) we have ∂b+1

1,k t
a+1
1,k f = c(a,b)ta−b

1,k f+Df, where D ∈ I1,k. The
assumption on f and lemma 3.17.1 imply that Df ∈ I1,k.
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Remark 3.17.10. It is easy to verify that c(a,b) = c(a)c(a− 1) · · ·c(a− b) for a⩾ b⩾ 0. We
extend the domain of c(a,b) to pairs (a, b) satisfying a,b⩾−1 by setting c(a,b) = 0 for−1⩽
a< b and c(a,b) = 1 for a⩾ b=−1. Note that c(a,b) is always a polynomial in q2 with
integer coefficients. Furthermore, when a⩾ b the degree of c(a,b) as a polynomial in q is
(b+ 1)(2a− b).

For a k-tuple of non-negative integers a := (a1, . . . ,ak), where k⩽ n, we set ta := tak1,k · · · t
a1
1,1

and ∂a := ∂a11,1 · · ·∂
ak
1,k.

Lemma 3.17.11. Let 1⩽ k ′ < kr < .. . < k1 ⩽ n. Also, let a1, . . . ,ak ′ ⩾ 0 and b1, . . . ,br ⩾ 0. Set
a := (a1, . . . ,ak ′) and f := ta := tak ′1,k ′ · · · t

a1
1,1. Then

∂b1,k ′ t
b1
1,k1

· · · tbr1,kr f = f1 +D,

where f1 ∈ P and D ∈ I1,k ′ . If ak ′ < b then f1= 0. If ak ′ ⩾ b then

f1 = qb(b1+···+br)c(ak ′ − 1,b− 1) tb11,k1 · · · t
br
1,kr
ta

′
where a ′ := (a1, . . . ,ak ′−1,ak ′ − b) .

Proof. The assertion is trivial for b= 0. If b1 = · · ·= br = 0 then the assertion follows from
lemma 3.17.9(ii) and remark 3.17.10. Next assume without loss of generality that b1 ⩾ 1. First
suppose that b= 1. Using lemma 3.17.1 we obtain

∂1,k ′ t
b1
1,k1

· · · tbr1,kr f= qt1,k1∂1,k ′ t
b1−1
1,k1

tb21,k2 · · · t
br
1,kr

f +
(
q− q−1

) ∑
1<i⩽m

ti,k1∂i,k ′ t
b1−1
1,k1

tb21,k2 · · · t
br
1,kr

f

= qt1,k1∂1,k ′ t
b1−1
1,k1

tb21,k2 · · · t
br
1,kr
f+D1,

where D1 ∈ I2,k ′ . By repeating the above calculation and then using lemma 3.17.7 we obtain

∂1,k ′ t
b1
1,k1

· · · tbr1,kr f= qb1+···+br tb11,k1 · · · t
br
1,kr
∂1,k ′ t

a +D2,

= qb1+···+brc(ak ′ − 1) tb11,k1 · · · t
br
1,kr
ta−ek ′ +D2,

where D2 ∈ I1,k ′ , a−ek ′ := (a1, . . . ,ak ′−1,ak ′ − 1) and we define c(−1) := 0. This com-
pletes the proof for b= 1. For b> 1 we just repeat the above argument.

Lemma 3.17.12. Let a := (a1, . . . ,an) and b := (b1, . . . ,bn) be n-tuples of non-negative
integers. Then the following statements hold.

(i) ∂b · ta = 0 if bi > ai for at least one 1⩽ i⩽ n.
(ii) Assume that ai ⩾ bi for all 1⩽ i⩽ n. Then

∂b · ta =

(
q
∑n

i=2(ai−bi)(b1+···+bi−1)
n∏

i=1

c(ai− 1,bi− 1)

)
ta−b, (73)

and

tb∂b · ta =

(
q
∑n

i=2(2ai−2bi)(b1+···+bi−1)
n∏

i=1

c(ai− 1,bi− 1)

)
ta. (74)
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Proof. (i) Follows from lemmas 3.17.9 and 3.17.11.
(ii) By lemma 3.17.11, ∂bta = c(an− 1,bn− 1)∂b

′
tan−bn
1,n ta

′
+D1 where a ′ := (a1, . . . ,an−1),

b ′ := (b1, . . . ,bn−1) and D1 ∈ I1,n. Again by lemma 3.17.11,

∂b
′
tan−bn
1,n ta

′
= q(an−bn)bn−1c(an−1 − 1,bn−1 − 1)∂b

′ ′
tan−bn
1,n tan−1−bn−1

1,n−1 ta ′ ′ +D2,

where a ′ ′ := (a1, . . . ,an−2), b
′ ′ := (b1, . . . ,bn−2) andD2 ∈ I1,n−1. Continuing in this fashion

we finally obtain (73). For (74) we should compute the scalar relating tbta-b and ta. This is
straightforward using the relations t1,it1,j = qt1,jt1,i for i< j.

4. Differential operators associated to the Kλ

Let ŮL, ŮR and ŮLR be defined as in section 3.14. The main goal of this section is to prove
that certain elements of the Cartan subalgebras of UL and UR belong to ŮL and ŮR. This is
established in proposition 4.1.1.

4.1. Cartan elements in ŮL, ŮR and ŮLR

For 1⩽ a⩽ m and 1⩽ b⩽ n we set

λL,a :=−
m∑
i=a

2εi and λR,b :=−
n∑

i=b

2εi. (75)

As in (37) these weights correspond to KλL,a ∈ Uh,L and KλR,b ∈ Uh,R, respectively.

Proposition 4.1.1. Let KλL,a ∈ UL and KλR,b ∈ UR be as in (75), where 1⩽ a⩽ m and 1⩽ b⩽
n. Then KλL,a ∈ ŮL and KλR,b ∈ ŮR.

Proof. We only prove the assertion forKλL,a (forKλR,b the argument is similar). First we verify
the case a=m. By a straightforward computation based on remark 3.6.2 we have

KλL,m · ta1,b1 · · · tar,br = q2
∑r

i=1[[m,ai]]ta1,b1 · · · tar,br .

By lemma 3.17.5 the action of D ′
1,0 +(q2 − 1)D ′

1,1 on P is the same as the action of KλL,m .
Thus, by proposition 3.11.4 we obtain

φU
(
KλL,m ⊗ 1

)
= D ′

1,0 +
(
q2 − 1

)
D ′

1,1. (76)

To complete the proof, by lemma 3.14.1 it suffices to verify that for any a<m, the ad(UL)-
invariant subalgebra of UL that is generated by KλL,a+1 and KλL,m also contains KλL,a . Denoting
the standard generators of UL by Ei, Fi, K

±1
i , we set

E ′
εi−εj :=

[
Ei, [. . . ,Ej−1]q

]
q

and F ′
εi−εj :=

[
Fj−1, [. . . ,Fi]q−1

]
q−1

for 1 ⩽ i < j ⩽m.

Let u := E ′
εa−εmK−εa−εm and v := F ′

εa−εmKλL,a+1 . By a simple induction we can verify that

u=
(
1− q2

)−1
adEa · · ·adEm−1

(
KλL,m

)
and v=

(
1− q−2

)−1
adFm−1 · · ·adFa

(
KλL,a+1

)
,

so that u,v ∈ ŮL by lemma 3.14.1. For x,y ∈ UL set [x,y] := xy− yx. Since ŮL is an algebra,[
E ′
εa−εm ,F

′
εa−εm

]
K−εa−εmKλL,a+1 = uv− q−2vu ∈ ŮL. (77)
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But the left hand side of (77) is equal to(
q− q−1

)−1 (
Kεa−εm −K−1

εa−εm
)
K−εa−εmKλL,a+1 =

(
q− q−1

)−1 (
K−2εmKλL,a+1 −KλL,a

)
.

It follows that

KλL,a =−
(
q− q−1

)(
uv− q−2vu

)
+KλL,mKλL,a+1 ∈ ŮL.

Proposition 4.1.2. UL is generated as an algebra by ŮL and {Kεi}mi=1. Similarly, UR is gen-
erated as an algebra by ŮR and {Kεi}ni=1.

Proof. We give the proof for UL (for UR the proof is similar). Let A denote the subal-
gebra of UL generated by ŮL and {Kεi}mi=1. Set ρ :=

∑m
i=1 iεi. Then K−2ρ = KλL,1 · · ·KλL,m ,

hence by proposition 4.1.1 we have K−2ρ ∈ ŮL. Lemma 3.14.1 implies that EiK−2ρ = (1−
q2)−1adEi(K−2ρ) ∈ ŮL, so that Ei ∈ A. By a similar argument we can prove that Fi ∈ A as
well. Also by our assumption Kεi ∈ A for 1⩽ i⩽ m, hence A= UL.

5. Explicit formulas for ϕU(KλL,a ⊗ 1) and ϕU(1⊗KλR,b)

In this section we compute explicit formulas for φU(KλL,a ⊗ 1) and φU(1⊗KλR,b), where KλL,a
and KλR,b are defined in (75). These explicit formulas are used in the proof of theorem C.

5.1. Eigenvalues of Dn,r and q-factorial Schur polynomials

For any integer partition ν such that `(ν)⩽ n, let sν denote the q-factorial Schur polynomial
in n variables associated to ν, defined by

sν (x1, . . . ,xn;q) :=
det
(∏νj+n−j−1

k=0

(
xi− qk

))
1⩽i,j⩽n∏

1⩽i<j⩽n (xi− xj)
.

Recall that D(r,a,b) ∈ PDa×b is the q-differential operator defined in (8). We will need the
following statement, which is a variation of [BKV06, theorem 1].

Proposition 5.1.1. Let λ be an integer partition satisfying `(λ)⩽ n. Then the restriction of
D(r,n,n) ∈ PDn×n to the irreducible ULR-submodule V∗

λ⊗V∗
λ of Pn×n is a scalar multiple

of identity, the scalar being

φλ,r,n (q) :=
(−1)r qr−r2−2r(n−r)

(1− q2)r
s(1r)

(
q2(λ1+n−1), . . . ,q2(λn−1+1),q2λn ;q2

)
. (78)

Proof. We show that the assertion follows from an analogous result in the setting of operators
in Pol(Matn)q acting on C[Matn]q (see section 3.16) that is proved in [BKV06, theorem 1].
In the following proof we use the notation introduced in section 3.16. In particular we set
A := Z[q,q−1].

Step 1. For each irreducible componentV∗
λ⊗V∗

λ ofPn×n (see proposition 3.6.1) we choose
a lowest weight vector vλ ∈ PA

n×n for theULR-action and setWA
λ := UA

LR · vλ. From the explicit
formulas of the action of ULR (see remark 3.6.2) it follows thatWA

λ ⊆ PA
n×n. Furthermore, the

canonical map WA
λ⊗A k→ V∗

λ⊗V∗
λ is an isomorphism.
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Step 2. By corollary 3.16.1 we obtain a map

PDA
n×n

D 7→D⊗1−−−−−−→ PDA
n×n⊗AC

∼=−−−→ Pol(Matn)q◦ , (79)

that restricts to a map

PA
n×n

D 7→D⊗1−−−−−−→ PA
n×n⊗AC

∼=−−−→ C [Matn]q◦ . (80)

We also have a commutative diagram

where the top horizontal map is the restriction of the ULR-module structure on Pn×n

and the bottom horizontal map is (70) in the special case m= n. Let us denote both
of the maps (79) and (80) by βq◦ . Then βq◦(ti,j) = (1− q2◦)

− 1
2 zij and βq◦(∂i,j) = (1−

q2◦)
− 1

2 (zij)
∗. From the definition of D(r,n,n) it is clear that D(r,n,n) ∈ PDA

n×n. In addition
βq◦

(
(1− q2)rD(r,n,n)

)
= yr, where yr is the operator defined in [BKV06, equation (11)].

Step 3. From proposition 3.16.2 it follows that βq◦(vλ) is the joint highest weight vector
for the irreducible submodule C[Matn]q◦,λ of C[Matn]q◦ that is defined in [BKV06, section 2].
Thus Step 1 and the commutative diagram of Step 2 imply that βq◦(W

A
λ) = βq◦(U

A
LR · vλ)⊆

C[Matn]q◦,λ.
Step 4. Fix λ such that `(λ)⩽ n, choose any vector w ∈WA

λ, and set

w ′ :=
(
1− q2

)r (
D(r,n,n)−φλ,r,n

)
·w.

From Steps 1–2 above it follows that βq◦(w
′) = yr ·βq◦(w)− (1− q2◦)φλ,r,n(q◦)βq◦(w).

Sinceβq◦(w) ∈ C[Mat]q◦,λ, by [BKV06, theorem 1]we obtainβq◦(w
′) = 0. Since evaluations

at q◦ for infinitely many q◦ separate the points of PA
n×n, it follows that w ′ = 0.

Step 5. By Step 4 we haveD(r,n,n) ·w=φλ,r,n(q)w for w ∈WA
λ. SinceW

A
λ spans V∗

λ⊗V∗
λ

over k, the same assertion holds for all w ∈ V∗
λ⊗V∗

λ.

Remark 5.1.2. In our forthcoming work [LSS22b], we prove a broad extension of proposi-
tion 5.1.1 for Capelli operators on quantum symmetric spaces.

The polynomials sν are specializations of the interpolation Macdonald polynomials Rλ
defined in [Sah96] (see also [Kn97] and [Ok97]). In the rest of this section we follow the nota-
tion of [Sah11, section 0.3]. Let Rλ(x1, . . . ,xn;q, t) denote the unique symmetric polynomial
with coefficients in Q(q, t) that satisfies the following conditions:

(i) degRλ = |λ|.
(ii) Rλ(qµ1 , . . . ,qµi t1−i, . . . ,qµn t1−n;q, t) = 0 for all partitions µ 6= λ that satisfy |µ|⩽ |λ|.
(iii) Rλ can be expressed as Rλ = mλ+

∑
µ6=λ cµ,λmµ, where the mµ denote the monomial

symmetric polynomials.
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It is known [Kn97, proposition 2.8] that

sλ (x1, . . . ,xn;q) = q(n−1)|λ|Rλ
(
q1−nx1, . . . ,q

1−nxn;q,q
)
.

The proof of lemma 5.1.4 below uses Okounkov’s binomial theorem for interpolation
Macdonald polynomials [Ok97]. We remark that in [Ok97] the interpolation Macdonald poly-
nomials are defined slightly differently, and are denoted by the P∗

λ, but one can show that

P∗
λ (x1, . . . ,xn;q, t) = Rλ

(
x1,x2t

−1,xnt
−n+1;q, t

)
. (81)

For two integer partitions λ,µ such that `(λ), `(µ)⩽ n, let
[
λ
µ

]
q,t

denote the (q, t)-binomial

coefficient defined in [Ok97]. Thus[
λ
µ

]
q,t

:=
P∗
µ

(
qλ1 , . . . ,qλn ;q, t

)
P∗
λ (q

λ1 , . . . ,qλn ;q, t)
. (82)

Lemma 5.1.3. For 0⩽ r⩽ n we have
[
1n

1r

]
q,q

= q−r(n−r) (q
n−1)···(qn−r+1−1)
(qr−1)···(q−1) .

Proof. The proof is a straightforward but somewhat tedious calculation based on a general
combinatorial formula in [Sah11, theorem 0.8] for the (q, t)-binomial coefficients. We give a
brief outline of this calculation. In the notation of [Sah11], the value of (82) can be expressed
as a sum of the form

∑
Twt(T), where T is a standard tableau of shape λ\µ. For λ := (1n) and

µ := (1r), there is only one such tableau. By direct calculation one obtains

λi =
(
1n−i

)
, aλi,λi+1 =

t−n+i+1
(
1− tn−i

)
1− t

,
|λi| − |λi+1|
|λ| − |λi+1|

=
ti (1− t)
1− ti+1

.

From these, the assertion of the lemma follows immediately.

Lemma 5.1.4. Set νr := (1r) for 0⩽ r⩽ n. Then

n∑
r=0

q−(
r
2)−r(n−r)sνr

(
qn−1x1, . . . ,q

n−ixi, . . . ,xn;q
)
= x1 · · ·xn.

Proof. This is stated in [BKV06, proposition 10] without a proof. We show that it is a special
case of Okounkov’s binomial theorem [Ok97, equation (1.11)]. More specifically, from (81)
it follows that

P∗
νr (x1, . . . ,xn;q,q) = q(1−n)rsνr

(
qn−1x1, . . . ,xn;q

)
.

We now consider the identity [Ok97, equation (1.11)] for t := q and λ := (1n). Then the
left hand side of [Ok97, equation (1.11)] is equal to x1 · · ·xn, whereas its right hand side is
equal to

n∑
r=0

[
1n

1r

]
q,q

q−(
r
2) (qr− 1) · · ·(q− 1)
(qn− 1) · · ·(qn−r+1 − 1)

sνr
(
qn−1x1, . . . ,xn;q

)
.

To complete the proof, we use lemma 5.1.3.
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5.2. The explicit formulas

Let Dn,r and D ′
m,r be as in section 1. For 0⩽ r⩽ m we set

Dr := Dn,r = D ′
m,r. (83)

Proposition 5.2.1. φU(KλL,1 ⊗ 1) = φU(1⊗KλR,1) =
∑m

r=0(q
2 − 1)rDr.

Proof. Both KλL,1 ⊗ 1 and 1⊗KλR,1 act on P(d) by the scalar q2d (this is easy to verify using
remark 3.6.2). Since P is a faithful PD-module, by proposition 3.6.1 it suffices to verify that
for every partition λ that satisfies `(λ)⩽min{m,n} and |λ|= d, the restriction of

∑m
r=0(q

2 −
1)rDr to the irreducible ULR-submodule V∗

λ⊗V∗
λ of P is multiplication by the scalar q2d.

Step 1. First we prove the assertion in the case m= n. In this case Dr = D(r,n,n), hence by
proposition 5.1.1 it is enough to verify that

n∑
r=0

qr−r2−2r(n−r)sνr
(
q2(λ1+n−1), . . . ,q2(λn−1+1),q2λn ;q2

)
= q2(λ1+···+λn). (84)

Equality (84) follows from lemma 5.1.4 after substituting q by q
1
2 .

Step 2. Henceforth assume m< n (by lemma 3.15.1 the proof when m> n is similar). Let

e= en×n
m×n : PD → PDn×n

be the embedding of algebras defined in (4), so that e(ti,j) = ti+n−m,j and e(∂i,j) = ∂i+n−m,j.

Set D̃r := D(r,n,n). By corollary 3.17.3, M
i
j · (e(P)) = 0 unless i= (u1, . . . ,ur) satifies u1 ⩾

n−m+ 1. Thus, for every f ∈ P we have D̃r · e( f) = e(Dr) · e( f) when 0⩽ r⩽ m, and D̃r ·
e( f) = 0 when m< r⩽ n.

Step 3.Recall thatI denotes the left ideal ofPD that is generated byD(1). LetI ′ denote
the left ideal of PDn×n that is generated by D

(1)
n×n. Let e : PD → PDn×n be as in Step 2.

For D ∈ PD and f ∈ P we have (D · f−Df) ∈ I , hence

e(D · f)− e(D)e( f) = e(D · f−Df) ∈ I ′.

But also e(D) · e( f)− e(D)e( f) ∈ I ′. From the last two relations we obtain e(D) · e( f)−
e(D · f) ∈ I ′. But in addition e(D) · e( f)− e(D · f) ∈ Pn×n, hence e(D) · e( f) = e(D · f).

Step 4. Let f ∈ P(d). From Step 3 and Step 2 it follows that

e

(
m∑
r=0

(
q2 − 1

)r
Dr · f

)
= e

(
m∑
r=0

(
q2 − 1

)r
Dr

)
· e( f) =

n∑
r=0

(
q2 − 1

)r
D̃r · e( f) . (85)

From Step 1 it follows that
∑n

r=0(q
2 − 1)rD̃r · e( f) = q2de( f). Since e is an injection, from (85)

we obtain
∑m

r=0(q
2 − 1)rDr · f = q2df.

Proposition 5.2.2. For 1⩽ a⩽ m and 1⩽ b⩽ n we have

ϕU
(
KλL,a ⊗ 1

)
=

m−a+1∑
r=0

(
q2 − 1

)r
D ′
m−a+1,r and ϕU

(
1⊗KλR,b

)
=

n−b+1∑
r=0

(
q2 − 1

)r
Dn−b+1,r.

(86)
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Proof. We give the proof for KλL,a ⊗ 1 only (the proof for 1⊗KλR,b is similar). Every element
of P is expressible as a linear combination of monomials of the form ti1,j1 · · · tik,jk where i1 ⩾
· · ·⩾ ik. Choose k ′ ⩽ k such that ik ′ ⩾ a and ik ′+1 < a. Then(

KλL,a ⊗ 1
)
· ti1,j1 · · · tik,jk = q2k

′
ti1,j1 · · · tik,jk .

Set D :=
∑m−a+1

r=0 (q2 − 1)D ′
m−a+1,r. From lemma 3.17.4 it follows that

D · (ti1,j1 · · · tik,jk) =
(
D · ti1,j1 · · · tik ′ ,jk ′

)
tik ′+1,jk ′+1

· · · tik,jk .

Hence it suffices to prove that

D · ti1,j1 · · · tik ′ ,jk ′ = q2k
′
ti1,j1 · · · tik ′ ,jk ′ . (87)

Set m̃ := m− a+ 1. Let e= em×n
m̃×n : PDm̃×n → PD be the embedding of algebras defined

in (4), so that e(ti,j) = ti+a−1,j and e(∂i,j) = ∂i+a−1,j. Set D̃r := D(r, m̃,n) ∈ PDm̃×n. Similar
to the proof of proposition 5.2.1 we have e(D̃r) = D ′

m−a+1,r and e(D̃r · f) = e(D̃r) ·
e( f) for f ∈ Pm̃×n. proposition 5.2.1 for PDm̃×n yields

∑m−a+1
r=0 D̃r · f = q2k

′
f for f :=

ti1−a+1,j1 · · · tik ′−a+1,jk ′ ∈ Pm̃×n. By applying e to both sides we obtain (87).

6. Some properties of polarization operators

In this section we investigate invariance and generation properties of the Li,j, theRi,j, and their
variants.

6.1. Invariants and the operators Li,j, Ri,j

Recall from (3) that YZ denotes the centralizer of Z in Y .

Lemma 6.1.1. Endk(P)L• = Endk(P)L and Endk(P)R• = Endk(P)R.

Proof. We only give the proofs of the two assertions for L . The inclusion Endk(P)L• ⊇
Endk(P)L is trivial because L• ⊆ L . To prove Endk(P)L• ⊆ Endk(P)L , choose any T ∈
Endk(P)L• . From proposition 5.2.2 it follows that T commutes with

φU (K2εa ⊗ 1) = φU

((
K−1
λL,a

⊗ 1
)(

KλL,a+1
⊗ 1
))

for 1⩽ a⩽ m,

where we assume KλL,m+1 := 1. From proposition 3.6.1 (and also from remark 3.6.2) it follows
that φU(Kεi ⊗ 1) is a diagonalizable operator whose eigenvalues are powers of q. In particular,
the eigenspaces of φU(K2εi ⊗ 1) and φU(Kεi ⊗ 1) are the same. Thus T also commutes with
φU(Kεi ⊗ 1). Finally, proposition 4.1.2 implies that T ∈ Endk(P)L .

As in section 2.3 set

PD(ϵL) := {D ∈ PD : x ·D := εL (x)Dfor x ∈ UL} ,

where εL denotes the counit of UL. We define PD(ϵR), (Ak,l,n)(ϵR),
(
A gr
k,l,n

)
(ϵR)

and(
A

gr,(r,s)
k,l,n

)
(ϵR)

similarly (where εR denotes the counit of UR).

46



J. Phys. A: Math. Theor. 57 (2024) 195304 G Letzter et al

Lemma 6.1.2. PDL• = PDL = PD(ϵL) and PDR• = PDR = PD(ϵR).

Proof. From lemma 6.1.1 it follows that PDL• = PDL and PDR• = PDR. By propos-
ition 3.12.1, the action of ULR on PD is the restriction of the action of ULR on Endk(P)
that is defined in lemma 2.3.1. Thus lemma 2.3.1 implies that PDL = PD(ϵL) and PDR =
PD(ϵR).

Lemma 6.1.3. (Ak,l,n)(ϵR) is a subalgebra of Ak,l,n and
(
A gr
k,l,n

)
(ϵR)

is a subalgebra of A gr
k,l,n.

Proof. Follows immediately from the fact that both Ak,l,n and A gr
k,l,n are UR-module algebras.

Recall that by definition, A gr
k,l,n is a subalgebra of PDgr := PDgr

m×n wherem :=max{k, l}.
For 1⩽ i⩽ k and 1⩽ j⩽ l define L̃

gr
i,j ∈ A gr

k,l,n by

L̃
gr
i,j :=

n∑
r=1

t̃i,r∂̃j,r =
n∑

r=1

tm−i+1,r∂m−j+1,r. (88)

Under the isomorphism of corollary 3.13.4 the L̃
gr
i,j correspond to the gr(L̃i,j) ∈ gr(Ak,l,n).

Lemma 6.1.4. L̃gr
i,j ∈

(
A gr
k,l,n

)
(ϵR)

and L̃i,j ∈ (Ak,l,n)(ϵR) for 1⩽ i⩽ k and 1⩽ j⩽ l.

Proof. Recall thatA gr
k,l,n is aUR-module algebra because it is aUR-stable subalgebra ofPDgr.

For L̃
gr
i,j the assertion follows from the formulas of remark 3.6.2. For example

Es · L̃
gr
i,j = Es ·

n∑
r=1

t̃i,r∂̃j,r =
n∑

r=1

(Es · t̃i,r)
(
Ks · ∂̃j,r

)
+

n∑
r=1

t̃i,r
(
Es · ∂̃j,r

)
=
(
−q−1̃ti,n−s

)(
q∂̃j,n+1−s

)
+ (̃ti,n−s)

(
∂̃j,n+1−s

)
= 0.

Since the map Pk,l,n : A
gr
k,l,n → Ak,l,n is a UR-module homomorphism, we have L̃i,j ∈

(Ak,l,n)(ϵR).

Lemma 6.1.5. The UL-submodule ofPD that is generated by Lm,m contains Li,j for 1⩽ i, j⩽
m. Similarly, the UR-submodule ofPD that is generated by Rn,n contains Ri,j for 1⩽ i, j⩽ n.

Proof. We only give the proof for the assertion about the UR-submodule generated by Rn,n

(the other assertion is proved similarly). Denote this submodule by M . First we prove the
following relations for the UR-action:

Ej ·Ri,j+1 = Ri,jand Fi ·Ri+1,j =−qRi,jfor j 6= i , Fi ·Ri+1,i =−qRi,i+ q−1Ri+1,i+1.
(89)

The proofs of these relations are similar and based on the explicit formulas given in
remark 3.6.2. For example using ∆(Fi) = Fi⊗ 1+K−1

i ⊗Fi we have

Fi ·Ri+1,i = Fi ·
n∑

r=1

tr,i+1∂r,i =
∑(

(Fi · tr,i+1)(∂r,i)+
(
K−1
i · tr,i+1

)
(Fi · ∂r,i)

)
=

n∑
r=1

(
−qtr,i∂r,i+ q−1tr,i+1∂r,i+1

)
=−qRi,i+ q−1Ri+1,+1.
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SinceRn,n ∈ M , from the second relation in (89) for j= nwe obtainRi,n ∈ M for i⩽ n. Then
using the first relation in (89) successively for j = n− 1, . . . , i+ 1 we obtainRi,j ∈ M for i< j.
The above argument can be repeated with the roles of Ei and Fi switched. This yieldsRi,j ∈ M
for i> j. Finally, fromRn,n and the third relation in (89) we obtainRi,i ∈ M for 1⩽ i⩽ n.

Corollary 6.1.6. Li,j ∈ L• for all 1⩽ i, j⩽ m and Ri,j ∈ R• for 1⩽ i, j⩽ n.

Proof. From (68) it follows that L• isUL-stable. By (76) we have φU(KλL,m ⊗ 1) = 1+(q2 −
1)Lm,m, hence Lm,m ∈ L•. Hence by lemma 6.1.5 we have Li,j ∈ L•. The proof of Ri,j ∈ R•
is similar.

6.2. The Uq(glk)⊗Uq(gll)-module decomposition of
(
A gr
k,l,n

)
(ϵR)

Given two irreducible UR-modules Vλ and Vµ, the canonical isomorphism (V∗
λ⊗Vµ)(ϵR)

∼=
HomUR(Vλ,Vµ) implies that

dim(V∗
λ⊗Vµ)(ϵR) =

{
1 if λ= µ,

0 if λ 6= µ.
(90)

Thus, from (66) it follows that as Uq(glk)⊗Uq(gll)-modules we have(
A

gr,(r,s)
k,l,n

)
(ϵR)

= 0 for r 6= s and
(
A

gr,(r,r)
k,l,n

)
(ϵR)

∼=
⊕
λ∈Λd,r

V∗
λ⊗Vλ, where d :=min{k, l,n} .

(91)

7. The map Γk,l,n

Let k, l,n⩾ 1 be integers such that k, l⩽ n. In this section we define a map

Γk,l,n : Pk×l → A gr
k,l,n

that is a bijection onto the subalgebra
(
A gr
k,l,n

)
(ϵR)

of A gr
k,l,n. A similar map was also used

in [LZZ11]. The ideas of the proofs of lemmas 7.1.1 and 7.1.5 are taken from [LZZ11]. Recall
from definition 3.7.2 that PDgr

n×n
∼= Pn×n⊗Dn×n as a vector space.

7.1. Construction of Γk,l,n

For n⩾ 1 set

Γn : Pn×n → PDgr
n×n , Γn := (1⊗ ι) ◦∆P , (92)

where ι : Pn×n → Dn×n is the anti-isomorphism of bialgebras defined in (50) and ∆P is the
coproduct of Pn×n. In particular in Sweedler’s notation we have Γn(u) =

∑
u1 ⊗ ι(u2) for

u ∈ Pn×n.

Lemma 7.1.1. Let εD be the counit of Dn×n. Then the map 1⊗ εD : PDgr
n×n → Pn×n is a left

inverse to Γn. In particular, Γn is an injection.
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Proof. This is equivalent to the relation
∑
εD(ι(u2))u1 = u for u ∈ Pn×n. Since ι is a linear

bijection, it suffices to verify that
∑
εD(ι(u2))ι(u1) = ι(u). Since ι is an anti-isomorphism of

coalgebras, the latter relation follows from the defining property of the counit εD .

Recall from proposition 3.9.4(i) that the assignments t̃i,j 7→ t̃i,j and ∂̃i,j 7→ ∂̃i,j result in an
embedding of algebras

en×n
k×l : PDk×l → PDn×n. (93)

We denote the restriction of the map (93) to the subalgebra Pk×l by the same notation, that is

en×n
k×l : Pk×l → Pn×n. (94)

Lemma 7.1.2. For e= en×n
k×l as in (94) we have Γn (e(Pk×l))⊆ A gr

k,l,n.

Proof. For a monomial ti1,j1 · · · tir,jr ∈ Pn×n we have

∆(ti1,j1 · · · tir,jr) = ∆(ti1,j1) · · ·∆(tir,jr) =
∑

1⩽a1,...,ar⩽n

ti1,a1 · · · tir,ar ⊗ ta1,j1 · · · tar,jr .

Set m ′ := n− k and n ′ := n− l. From the above equality it follows that

Γn (e(ti1,j1 · · · tir,jr)) =
∑

1⩽a1,...,ar⩽n

ti1+m ′,a1 · · · tir+m ′,ar ⊗ ∂jr+n ′,ar · · ·∂j1+n ′,a1 .

Thus Γn(e(ti1,j1 · · · tir,jr)) ∈ A gr
k,l,n (see remark 3.8.4).

Lemma 7.1.2 justifies that the following definition is valid.

Definition 7.1.3. We define Γk,l,n : Pk×l → A gr
k,l,n to be the unique map that makes the diagram

commutative.

Lemma 7.1.4. The map Γk,l,n is injective.

Proof. Since en×n
k×l is an injective map, this follows from lemma 7.1.1.

Lemma 7.1.5. Γk,l,n(P
(d)
k×l) =

(
A

gr,(d,d)
k,l,n

)
(ϵR)

for d⩾ 0.

Proof. First we prove that Γk,l,n(Pk×l)⊆
(
A gr
k,l,n

)
(ϵR)

. By definition 7.1.3 it suffices to prove

that Γn(Pn×n)⊆
(
PDgr

n×n

)
(ϵR)

. By standard properties of the antipode of UR,∑
x2S

−1 (x1) = εR (x)1 for x ∈ UR. (95)
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It follows that for x ∈ UR and u ∈ Pn×n we have

x ·Γn(u) =
∑

(x1 · u1)⊗ (x2 · ι(u2))

=
∑(

u11〈ι(u12),S−1(x1)〉
)
⊗
(
ι(u2)1〈ι(u2)2,x2〉

)
(By (52) and (53))

=
∑

〈ι(u2),S−1(x1)〉〈ι(u3),x2〉u1 ⊗ ι(u4) (By coassociativity)

=
∑

εR(x)〈ι(u2),1〉u1 ⊗ ι(u3) (By (13) and (95)

= εR(x)
∑

u1 ⊗ ι(u2) = εR(x)Γn(u). (By counit relation of Dn×n)

Thus we have proved x ·Γn(u) = εR(x)Γn(u), that is, Γn(u) ∈
(
PDgr

n×n

)
(ϵR)

. From (92) it fol-

lows that Γk,l,n
(
P

(r)
k×l

)
⊆ A

gr,(r,r)
k,l,n . Consequently,

Γk,l,n

(
P

(r)
k×l

)
⊆ A

gr,(r,r)
k,l,n ∩

(
PDgr

n×n

)
(ϵR)

=
(
A

gr,(r,r)
k,l,n

)
(ϵR)

. (96)

By lemma 7.1.4 , to complete the proof it suffices to verify that the two sides of (96) have equal
dimensions. Since k, l⩽ n, from (91) and proposition 3.6.1 it follows that both of these vector
spaces have dimension equal to

∑
λ∈Λd,r

d(λ,k)d(λ, l) where d(λ,k) (respectively, d(λ, l))
denotes the dimension of the Uq(glk)-module (respectively, Uq(gll)-module) associated to λ.

8. The product ⋆k,l,n on Pk×l

Throughout this section we assume that m= n (so that UL
∼= UR

∼= Uq(gln)) and 1⩽ k, l⩽ n.

8.1. An explicit formula for the product of PDgr
n×n

Recall that Pn×n and Dn×n are subalgebras of Uq(gln)
• (see definition 3.2.3 and defini-

tion 3.4.1). Also recall that given f,g ∈ Uq(gln)
•, we define

〈
f⊗ g,R(n)

〉
and

〈
f⊗ g,R(n)〉

as in (33).

Proposition 8.1.1. Let a,a ′ ∈ Pn×n and b,b ′ ∈ Dn×n. Then the product of PDgr
n×n satisfies

(a⊗ b)(a ′ ⊗ b ′) =
∑

〈ι(a ′
1)
♮⊗ (b1)

♮
,R(n)〉〈ι(a ′

3)⊗ b3,R(n)〉aa ′
2 ⊗ b2b

′,

where (∆P ⊗ 1) ◦∆P(a ′) =
∑
a ′
1 ⊗ a ′

2 ⊗ a ′
3 and (∆P ⊗ 1) ◦∆P(b) =

∑
b1 ⊗ b2 ⊗ b3,

with ∆P and ∆D denoting the coproducts of Pn×n and Dn×n respectively.

Proof. We need to compute
(
ŘLR

)
B,A

(b⊗ a ′) where B := Dn×n and A := Pn×n. Recall

from (24) that ŘLR = (ŘL)13(ŘR)24. The map

Pn×n → Uq (gln)
◦
, a 7→ a ◦ ξ−1/q

intertwines between the UR-module structures RP and right translation on Uq(gln)
◦, in the

sense of remark 2.2.1. Thus lemma 2.7.2 implies that

(RR)24 (b⊗ a ′) =
∑

b1 ⊗ a ′
1〈b2 ⊗

(
a ′
2 ◦ ξ−1/q

)
,R(n)〉. (97)
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Similarly, the maps

Dn×n → Uq (gln)
◦
, b 7→ b♮ and Pn×n → Uq (gln)

◦
, a 7→ (a ◦ ξ−q)

♮

intertwine the actions LD and LP (on Dn×n and Pn×n respectively) with right translation.
This is because the map u 7→ u♮ on Uq(gln)

◦ that is defined in (46) is an anti-automorphism of
the coalgebra structure of Uq(gln)

◦. Thus

(RL)13 (b⊗ a ′) =
∑

b2 ⊗ a ′
2〈(b1)

♮⊗ (a ′
1 ◦ ξ−q)

♮
,R(n)〉. (98)

From (97) and (98) it follows that

(a⊗ b)(a ′ ⊗ b ′) =
∑

〈(b1)♮⊗ (a ′
1 ◦ ξ−q)

♮
,R(n)〉〈b3 ⊗

(
a ′
3 ◦ ξ−1/q

)
,R(n)〉aa ′

2 ⊗ b2b
′.

(99)

Since S2(x) = ξq2(x) for x ∈ Uq(gln), we have ι(v) ◦ S= v ◦ ξ−1/q ◦ S2 = v ◦ ξ−q for v ∈
Uq(gln)

◦, and thus lemma 3.3.1 implies that (v ◦ ξ−q)
♮ = (ι(v) ◦ S)♮ = ι(v)♮ ◦ S−1. By a sim-

ilar argument v ◦ ξ−1/q = ι(v) ◦ S−1. Thus in (99) we can substitute (a ′
1 ◦ ξ−q)

♮ by ι(a ′
1)
♮ ◦ S−1

and a ′
3 ◦ ξ−1/q by ι(a ′

3) ◦ S−1. After these substitutions, the assertion of the proposition follows
from (43).

8.2. The product ⋆k,l,n on Pk×l and the map Γk,l,n

We start by defining a binary product

Pn×n⊗Pn×n → Pn×n , u⊗ v 7→ u ?n v.

Definition 8.2.1. For u,v ∈ Pn×n we set

u ?n v :=
∑〈

ι(v1)
♮⊗ ι(u3)

♮
,R(n)

〉〈
ι(v3)⊗ ι(u2) ,R(n)

〉
u1v2, (100)

where the sum ranges over summands of (∆P ⊗ 1) ◦∆P(u) =
∑
u1 ⊗ u2 ⊗ u3 and (∆P ⊗

1) ◦∆P(v) =
∑
v1 ⊗ v2 ⊗ v3.

For the next proposition recall that Γn : Pn×n → PDgr
n×n is the map defined in (92).

Proposition 8.2.2. Γn(u ?n v) = Γn(u)Γn(v) for u,v ∈ Pn×n.

Proof. By proposition 8.1.1 for a := u1, b := ι(u2), a ′ := v1 and b ′ := ι(v2) we obtain

Γn (u)Γn (v) =
∑

(u1 ⊗ ι(u2))(v1 ⊗ ι(v2))

=
∑

〈ι(v1)♮⊗ ι(u4)
♮
,R(n)〉〈ι(v3)⊗ ι(u2) ,R(n)〉u1v2 ⊗ ι(u3) ι(v4) .

Since u 7→ ι(u) is an anti-automorphism of algebras, by (100) we also have

Γn (u ?n v) =
∑

〈ι(v1)♮⊗ ι(u4)
♮
,R(n)〉〈ι(v4)⊗ ι(u3) ,R(n)〉u1v2 ⊗ ι(v3) ι(u2) .

After changing the indices as (u1,u2,u3,u4) = (u1,u21,u22,u3) and (v1,v2,v3,v4) =
(v1,v2,v31,v32) by coassociativity, the equality Γn(u ?n v) = Γn(u)Γn(v) reduces to∑

〈ι(v31)⊗ ι(u21) ,R(n)〉ι(u22) ι(v32) =
∑

〈ι(v32)⊗ ι(u22) ,R(n)〉ι(v31) ι(u21) . (101)
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Set f := ι(v3) and g := ι(u2). Since u 7→ ι(u) is an anti-automorphism of coalgebras, from (43)
it follows that (101) is equivalent to

∑
〈 f2 ⊗ g2,R(n)〉g1f1 =

∑
〈 f1 ⊗ g1,R(n)〉f2g2,

which is a consequence of (35).

Recall that throughout this section 1⩽ k, l⩽ n.

Lemma 8.2.3. Let e := en×n
k×l be as in (94). Then e(u) ?n e(v) ∈ e(Pk×l) for u,v ∈ Pk×l.

Proof. Set D := Γn(e(u) ?n e(v)). By lemma 7.1.5 we have

Γn (e(u)) = Γk,l,n (u) ∈
(
A gr
k,l,n

)
(ϵR)

and Γn (e(v)) = Γk,l,n (v) ∈
(
A gr
k,l,n

)
(ϵR)

.

Since
(
A gr
k,l,n

)
(ϵR)

is a subalgeba of A gr
k,l,n, from proposition 8.2.2 it follows that D ∈(

A gr
k,l,n

)
(ϵR)

. Again by lemma 7.1.5 there existsw ∈ Pk×l such thatD= Γk,l,n(w) = Γn(e(w)).

From injectivity of Γn (see lemma 7.1.1) it follows that e(u) ?n e(v) = e(w). Consequently we
obtain e(u) ?n e(v) ∈ e(Pk×l).

Lemma 8.2.3 validates the following definition.

Definition 8.2.4. For u,v ∈ Pk×l we define a binary product

Pk×l⊗Pk×l → Pk×l , u⊗ v 7→ u ?k,l,n v,

by setting u ?k,l,n v := e−1 (e(u) ?n e(v)) where e := en×n
k×l is the map (94).

Proposition 8.2.5. Let u,v ∈ Pk×l. Then the following statements hold:

(i) Γk,l,n(u ?k,l,n v) = Γk,l,n(u)Γk,l,n(v).

(ii) If u ∈ P
(r)
k×l and v ∈ P

(s)
k×l then u ?k,l,n v ∈ P

(r+s)
k×l and Γk,l,n(u ?k,l,n v) ∈(

A
gr,(r+s,r+s)
k,l,n

)
(ϵR)

.

Proof. (i) By proposition 8.2.2 we have

Γk,l,n
(
u ?k,l,n v

)
= Γk,l,n

(
e−1 (e(u) ?n e(v))

)
= Γn (e(u) ?n e(n)) = Γn (e(u))Γn (e(v)) = Γk,l,n (u)Γk,l,n (v) .

(ii) By definitions of ?k,l,n and Γk,l,n the assertions reduce to proving that for u ∈ P
(r)
n×n and v ∈

P
(s)
n×n we have u ?n v ∈ P

(r+s)
n×n and Γn(u ?n v) ∈ PD

gr,(r+s,r+s)
n×n . The latter assertions follow

from (100) and the fact that for d⩾ 0 we have ∆P(P
(d)
n×n)⊆ P

(d)
n×n⊗P

(d)
n×n.
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8.3. The map Υ

Let Υ : Pn×n⊗Pn×n → Pn×n⊗Pn×n be the map defined by

Υ(u⊗ v) :=
∑

〈ι(v1)♮⊗ ι(u3)
♮
,R(n)〉〈ι(v3)⊗ ι(u2) ,R(n)〉u1 ⊗ v2. (102)

Lemma 8.3.2. Let mn×n : Pn×n⊗Pn×n → Pn×n denote the usual product of the algebra
Pn×n. Then the following statements hold.

(i) u ?n v=mn×n ◦Υ(u⊗ v) for u,v ∈ Pn×n.
(ii) u ?k,l,n v= e−1

(
mn×n(Υ(e(u)⊗ e(v)))

)
for u,v ∈ Pk×l where e := en×n

k×l is as in (94).

Proof. Straightforward from definition 8.2.1.

Lemma 8.3.3. 〈∂i1,j1 · · ·∂ir,jr ,1〉= 0 unless when ik = jk for 1⩽ k⩽ r.

Proof. Follows immediately from the definition of the ∂i,j and the canonical pairing 〈·, ·〉
between Uq(gln)

◦ and Uq(gln).

Proposition 8.3.3. Let e := en×n
k×l be as in (94). SetWd1,d2 := P

(d1)
k×l ⊗P

(d2)
k×l for d1,d2 ⩾ 0 and

W ′
d1,d2 := (e⊗ e)(Wd1,d2). Then Υ(W ′

d1,d2)⊆ W ′
d1,d2 .

Proof. From the defining formula of Υ and the fact that the coproduct of Pn×n maps P
(a)
n×n

into P
(a)
n×n⊗P

(a)
n×n we obtain Υ

(
P

(a)
n,n ⊗P

(b)
n×n

)
⊆ P

(a)
n,n ⊗P

(b)
n×n. The claim follows if we

prove that

Υ(e(u)⊗ e(v)) ∈ e⊗ e(Pk×l⊗Pk×l) for u,v ∈ Pk×l. (103)

It suffices to prove this assertion for monomials u= ti1,j1 · · · tir,jr and v= tp1,q1 · · · tps,qs in Pk×l.
Set m ′ := n− k and n ′ := n− l. Then

((∆⊗ 1) ◦∆)(e(u)) =
∑

e(u)1 ⊗ e(u)2 ⊗ e(u)3 ,

where for indices 1⩽ a1,b1, . . . ,ar,br ⩽ n we have

e(u)1 = tm ′+i1,a1 · · · tm ′+ir,ar , e(u)2 = ta1,b1 · · · tar,br , e(u)3 = tb1,n ′+j1 · · · tbr,n ′+jr .

Similarly,

((∆⊗ 1) ◦∆)(e(v)) =
∑

e(v)1 ⊗ e(v)2 ⊗ e(v)3 ,

where for indices 1⩽ c1,d1, . . . ,cs,ds ⩽ n we have

e(v)1 = tm ′+p1,c1 · · · tm ′+ps,cs , e(v)2 = tc1,d1 · · · tcs,ds , e(v)3 = td1,n ′+q1 · · · tds,n ′+qs .

In the rest of this proof we set

a := (a1, . . . ,ar) , b := (b1, . . . ,br) , c := (c1, . . . ,cs) , d := (d1, . . . ,ds) .

Step 1. From (102) it follows that

Υ(e(u)⊗ e(v)) =
∑
a,b,c,d

M(b,c)M ′ (a,b,d) tm ′+i1,a1 · · · tm ′+ir,ar ⊗ tc1,d1 · · · tcs,ds , (104)
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where using the fact that the map u 7→ u♮ of (46) induces an isomorphism between U(gln)
◦

and (U(gln)
◦)

cop we have

M(b,c) := 〈∂m ′+ps,cs · · ·∂m ′+p1,c1 ⊗ ∂br,n ′+jr · · ·∂b1,n ′+j1 ,R(n)〉

and

M ′ (a,b,d) := 〈∂n ′+qs,ds · · ·∂n ′+q1,d1 ⊗ ∂br,ar · · ·∂b1,a1 ,R(n)〉.

Note that by definition, both of the R-matrix pairings M(b,c) and M ′(a,b,d) correspond to
the action of Uq(gln) on Dn×n ⊆ Uq(gln)

◦ by right translation RD (see section 2.7).
Step 2. We prove that if ct ⩽ m ′ for some 1⩽ t⩽ s then M(b,c) = 0. To this end,

we investigate the effect of the action of R(n) on the first component in M(b,c), i.e. on
∂m ′+ps,cs · · ·∂m ′+p1,c1 . Recall that R(n) acts by a product of 2-tensors of the form Eβ ⊗Fβ ,
where β = εℓ1 − εℓ2 for 1⩽ `1 < `2 ⩽ n, followed by eh

∑n
i=1Hi⊗Hi (which acts by scalars

on tensor product of monomials in the ∂’s and we can ignore it in the argument that fol-
lows). The s-fold coproduct of Eβ is a sum of s-tensors of the form X := Xs⊗ ·· ·⊗X1

with components in {Eβ ,Kβ ,1}. From remark 3.6.2 it follows that the action of X on any
monomial ∂m ′+ps ,̄cs · · ·∂m ′+p1 ,̄c1 does not increase the indices c̄1, . . . , c̄s and leaves the indices
n ′ + p1, . . . ,n ′ + ps unchanged. Thus lemma 8.3.3 implies that M(b,c) = 0.

Step 3. We prove that if dt ⩽ n ′ for some 1⩽ t⩽ s then M ′(a,b,d) = 0. The argument is
similar to Step 2, by investigating the action of root vectors Eβ on the first component of
M ′(a,b,d), that is on ∂n ′+qs,ds · · ·∂n ′+q1,d1 .

Step 4.We prove that if bt ⩽ n ′ for some 1⩽ t⩽ r thenM(b,c) = 0. Again the argument is
similar to Step 2. This time use the fact that the action of the root vectors Fβ does not decrease
the indices n ′ + j1, . . . ,n ′ + jr.

Step 5. We prove that if at ⩽ n ′ for some 1⩽ t⩽ r then M(b,c)M ′(a,b,d) = 0. The proof
is slightly more complicated than Steps 2–4. By Step 4 we can assume that min{b1, . . . ,br}⩾
n ′ + 1. As in Steps 2–4 we can express M ′(a,b,d) as a sum over the values

C∂E,∂F,β1,...,βN (〈(Eβ1 · · ·EβN) · ∂E ,1〉)(〈(Fβ1 · · ·FβN) · ∂F ,1〉) , (105)

where ∂E := ∂n ′+qs,ds · · ·∂n ′+q1,d1 , ∂F := ∂br,ar · · ·∂b1,a1 and C∂E,∂F,β1,...,βN is a scalar in k that
results from the action of eh

∑n
i=1Hi⊗Hi (again, this scalar does not play a role in the argument

that follows). For β = εℓ1 − εℓ2 with 1⩽ `1 < `2 ⩽ n we have

Eβ · ∂ℓ ′,ℓ ′ ′ =

{
0 if `2 6= ` ′ ′,

(−1)ℓ2−ℓ1−1
∂ℓ ′,ℓ1 if `2 = ` ′ ′,

(106)

and

Fβ · ∂ℓ ′,ℓ ′ ′ =

{
0 if `1 6= ` ′ ′,

(−1)ℓ2−ℓ1−1
∂ℓ ′,ℓ2 if `1 = ` ′ ′.

(107)

First suppose that there exists 1⩽ N ′ ⩽ N such that βN ′ = εℓ1 − εℓ2 with `1 ⩽ n ′. Then
by (106) and an argument similar to Step 2 we obtain 〈(Eβ1 · · ·EβN) · ∂E ,1〉= 0, hence the cor-
responding value (105) vanishes. Next suppose that for all 1⩽ N ′ ⩽ Nwe have βN ′ = εℓ1 − εℓ2
where `1 ⩾ n ′ + 1. The r-fold coproduct of Fβ1 · · ·FβN is a sum of r-tensors X= Xr⊗ ·· ·⊗X1
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whose components are products of the FβN ′ and the K−1
βN ′ . If no FβN ′ occurs in Xt then

lemma 8.3.3 implies that 〈X · ∂F ,1〉= 0 unless at = bt ⩾ n ′ + 1. If at least one FβN ′ occurs
in Xt then from (107) it follows that 〈X · ∂F ,1〉= 0 unless at ⩾ n ′ + 1 (because we must have
at = `1). Since we have assumed that at ⩽ n ′ we obtain 〈(Fβ1 · · ·FβN) · ∂F ,1〉= 0. Thus all the
values (105) vanish and we haveM ′(a,b,d) = 0.

Step 6. From Steps 2–5 it follows that the only two-tensors on the right hand side of (104)
that have a nonzero coefficient are those that belong to (e⊗ e)(Pk×l⊗Pk×l). This completes
the proof of (103).

Proposition 8.3.4. Υ induces linear bijectionsP
(r)
n,n ⊗P

(s)
n×n → P

(r)
n,n ⊗P

(s)
n×n for all r,s⩾ 0.

Proof. Since P
(r)
n,n ⊗P

(s)
n×n is finite dimensional, it suffices to prove thatΥ is an injection. Set

Υι := (ι−1 ⊗ ι−1) ◦Υ ◦ (ι⊗ ι) with ι as in (49). Since ι is an antiautomorphism of bialgebras
and preseves the grading of Pn×n, we have

Υι : D
(r)
n×n⊗D

(s)
n×n → D

(r)
n×n⊗D

(s)
n×n,

Υι (u⊗ v) =
∑

〈(v3)♮⊗ (u1)
♮
,R(n)〉〈v1 ⊗ u2,R(n)〉u3 ⊗ v2.

It suffices to prove injectivity of Υι.
Step 1. Define Υ(1) : D

(r)
n×n⊗D

(s)
n×n → D

(r)
n×n⊗D

(s)
n×n by

Υ(1) (u⊗ v) :=
∑

〈u1 ⊗ v1,R(n)〉u2 ⊗ v2.

From lemma 2.7.2(i) we have∑
f1 ⊗ g1〈g2 ⊗ f2,R(n)〉= σ

(∑
g1 ⊗ f1〈g2 ⊗ f2,R(n)〉

)
= σ ◦R(n) (g⊗ f) =

(
R(n)

)−1
( f⊗ g) .

From this and lemma 2.7.2(ii) it follows that

Υ(1) ◦Υι (u⊗ v) =
∑

〈(v4)♮⊗ (u1)
♮
,R(n)〉〈v1 ⊗ u2,R(n)〉〈u3 ⊗ v2,R(n)〉u4 ⊗ v3

=
∑

〈(v3)♮⊗ (u1)
♮
,R(n)〉〈

(
R(n)

)−1
(v1 ⊗ u2) ,R(n)〉u3 ⊗ v2

=
∑

〈(v2)♮⊗ (u1)
♮
,R(n)〉u2 ⊗ v1.

Step 2. Define Υ(2) : D
(r)
n×n⊗D

(s)
n×n → D

(r)
n×n⊗D

(s)
n×n by Υ(2)(u⊗ v) := u♮⊗ v. Set

Ῠ :=
(
Υ(2)

)−1
◦
(
Υ(1) ◦Υι

)
◦Υ(2).

Since u 7→ u♮ is an antiautomorphism of coalgebras on Dn×n, we obtain

Ῠ(u⊗ v) =
∑

〈(v2)♮⊗ u2,R(n)〉u1 ⊗ v1.

55



J. Phys. A: Math. Theor. 57 (2024) 195304 G Letzter et al

Step 3. From lemmas 3.4.2–3.4.4 it follows that the assignment v 7→ (v ◦ S)♮ induces an iso-
morphism of coalgebras Pn×n → Dn×n that preserves the grading. Define a map

Υ(3) : D
(r)
n×n⊗P

(s)
n×n → D

(r)
n×n⊗D

(s)
n×n , Υ

(3) (u⊗ v) := u⊗
(
(v ◦ S)♮

)
.

Using (43) we obtain

(
Υ(3)

)−1
◦ Ῠ ◦Υ(3) (u⊗ v) =

∑
〈(v2 ◦ S)⊗ u2,R(n)〉u1 ⊗ v1 =

∑
〈u2 ⊗ v2,R(n)〉u1 ⊗ v1.

Lemma 2.7.2(i) implies that
(
Υ(3)

)−1 ◦ Ῠ ◦Υ(3)(u⊗ v) =R(n)(u⊗ v). Since the map u⊗
v 7→ R(n)(u⊗ v) is an injection, Υι is also an injection.

Corollary 8.3.5. Let e := en×n
k×l be as in (94) and letmk×l : Pk×l⊗Pk×l → Pk×l be the usual

product of Pk×l. Then the following statements hold.

(i) u ?k,l,n v=mk×l ◦ (e−1 ⊗ e−1) ◦Υ(e(u)⊗ e(v)) for u,v ∈ Pk×l.

(ii) For r,s⩾ 0 the map P
(r)
k×l⊗P

(s)
k×l → P

(r+s)
k×l given by u⊗ v 7→ u ?k,l,n v is surjective.

Proof. (i) By proposition 8.3.3 we have Υ(e(u)⊗ e(v)) ∈ (e⊗ e)(Pk×l⊗Pk×l). The asser-
tion follows from the relation mk×l = e−1 ◦mn×n ◦ (e⊗ e) and lemma 8.3.2(ii).
(ii) By propositions 8.3.4 and 8.3.3 the map

Υk,l,n :=
(
e−1 ⊗ e−1

)
◦Υ ◦ (e⊗ e)

is a linear bijection on P
(r)
k×l⊗P

(s)
k×l. From (i) it follows that u ?k,l,n v=mk×l(Υk,l,n(u⊗ v)).

The latter equality reduces the assertion to surjectivity of mk×l : P
(r)
k×l⊗P

(s)
k×l → P

(r+s)
k×l ,

which is a trivial statement.

9. Proofs of theorems A and B

We begin by describing our strategy for proving theorems A and B. Lemma 3.15.1 implies that
theorem A(ii) follows by symmetry from theorem A(i). Furthermore, lemma 6.1.2 implies
that theorem A(i) is the special case of theorem B for k= l= m. Thus, it suffices to prove
theorem B.

We now give an outline of the proof of theorem B. By corollary 3.13.4 we have a UR-
equivariant isomorphism of k-algebras gr(Ak,l,n)∼= A gr

k,l,n. Recall that by definition, A gr
k,l,n is a

subalgebra of PDgr := PDgr
m×n wherem :=max{k, l}. theorem B for gr(Ak,l,n) is equivalent

to the following assertion for A gr
k,l,n.

Theorem B′. The algebra
(
A gr
k,l,n

)
(ϵR)

is generated by the L̃gr
i,j for 1⩽ i⩽ k and 1⩽ j⩽ l,

where L̃gr
i,j is defined as in (88).
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Let B ⊆ A gr
k,l,n denote the subalgebra generated by the L̃

gr
i,j for 1⩽ i⩽ k and 1⩽ j⩽ l.

Lemma 6.1.4 implies that B ⊆
(
A gr
k,l,n

)
(ϵR)

. Let A
gr,(r,s)
k,l,n be defined as in (65). Since by (91)

we have
(
A

gr,(r,s)
k,l,n

)
(ϵR)

= 0 for r 6= s, to prove theorem B′ it suffices to verify that

(
A

gr,(r,r)
k,l,n

)
(ϵR)

⊆ B for r⩾ 0. (108)

We will verify (108) in the case n⩾max{k, l} in section 9.1 and in the case n<max{k, l}
in section 9.2. This completes the proof of theorem B′ in both cases. Then in section 9.3 we
reduce theorem B for Ak,l,n to theorem B′.

9.1. Proof of theorem B′ when n⩾max{k, l}

We prove by induction on r that(
A

gr,(r,r)
k,l,n

)
(ϵR)

⊆ Br for r⩾ 0,

where

Br := Spank
{
L̃
gr
i1,j1 · · · L̃

gr
ir,jr : 1⩽ i1, . . . , ir ⩽ k , 1⩽ j1, . . . , jr ⩽ l

}
.

For r= 0 the assertion is trivial. For r= 1, from lemma 7.1.5 it follows that
(
A

gr,(1,1)
k,l,n

)
(ϵR)

is

spanned by the L̃
gr
i,j = Γk,l,n(̃ti,j) for 1⩽ i⩽ k and 1⩽ j⩽ l, where t̃i,j is defined as in (5) for

a := k and b := l. Finally, assume r> 1 and choose any D ∈
(
A

(r,r)
k,l,n

)
(ϵR)

. By lemma 7.1.5 we

have D= Γk,l,n(u) for some u ∈ P
(r)
k×l. By corollary 8.3.5(ii) the linear map

P
(1)
k×l⊗P

(r−1)
k×l → P

(r)
k×l , u⊗ v 7→ u ?k,l,n v

is a surjection. Thus, we can express u as a sum of products of the form u ′ ?k,l,n u
′ ′ where

u ′ ∈ P
(1)
k×l and u

′ ′ ∈ P
(r−1)
k×l . By proposition 8.2.5(i),

Γk,l,n
(
u ′ ?k,l,n u

′ ′)= Γk,l,n (u
′) Γk,l,n (u

′ ′) .

From lemma 7.1.5 and the induction hypothesis it follows that Γk,l,n(u ′) ∈ B1 and Γk,l,n(u ′ ′) ∈
Br−1. Consequently, D= Γk,l,n(u) =

∑
Γk,l,n(u ′ ?k,l,n u

′ ′) =
∑

Γk,l,n(u ′)Γk,l,n(u ′ ′) ∈ Br.

9.2. Proof of theorem B′ when n<max{k, l}

Set k :=min{k,n} and l :=min{l,n}. We use a reduction to theorem B′ for the case of
A gr
k,l,n, which follows from section 9.1. This technique is also used in [LZZ11]. However,

the arguments of [LZZ11] do not extend routinely to the present setting. The reason is that
unlike [LZZ11], the products of the generators L̃

gr
i,j are not weight vectors for the Cartan sub-

algebras of Uq(glk) and Uq(gll). As explained below, in order to circumvent this technical
difficulty we use proposition 2.6.2.
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Set m :=max{k, l} and m :=max{k, l}. Recall that by definition, A gr
k,l,n is a subalgebra of

PDgr = PDgr
m×n and A gr

k,l,n is a subalgebra of PDgr
m×n. Let

egr := (egr)m×n
m×n : PDgr

m×n → PDgr
m×n

be the map defined in proposition 3.9.4(i). By checking the images of generators of A gr
k,l,n we

obtain

egr
(
A gr
k,l,n

)
⊆ A gr

k,l,n.

Lemma 9.2.1. egr
((

A gr
k,l,n

)
(ϵR)

)
=
(
A gr
k,l,n

)
(ϵR)

∩ egr
(
A gr
k,l,n

)
.

Proof. This follows from UR-equivariance of the map egr (see proposition 3.9.4).

Recall that PDgr is a module over ULR⊗ULR = UL⊗UR⊗UL⊗UR. Let U
(k,l)
L be the

subalgebra of ULR⊗ULR defined by

U(k,l)
L := κk,m (Uq (glk))⊗ 1⊗κl,m (Uq (gll))⊗ 1.

Proposition 9.2.2. The U(k,l)
L -submodule of PDgr that is generated by egr

((
A gr
k,l,n

)
(ϵR)

)
is

equal to
(
A gr
k,l,n

)
(ϵR)

.

Proof. Set d :=min{k, l}=min{k, l,n}. First note that by (90) and (91) we have isomorph-
isms of Uq(glk)⊗Uq(gll)-modules(

A
gr,(r,s)
k,l,n

)
(ϵR)

= 0 for r 6= s and
(
A

gr,(r,r)
k,l,n

)
(ϵR)

∼=
⊕
λ∈Λd,r

V∗
λ⊗Vλ, (109)

where V∗
λ (respectively, Vλ) denotes an irreducible Uq(glk)-module (respectively, Uq(gll)-

module). Similarly, using the equivariance of egr from proposition 3.9.4(ii) we obtain(
A gr
k,l,n

)
(ϵR)

∩ egr
(
A

gr,(r,s)
k,l,n

)
= 0 for r 6= s,

and an isomorphism of Uq

(
glk

)
⊗Uq

(
gll

)
-modules

(
A gr
k,l,n

)
(ϵR)

∩ egr
(
A

gr,(r,r)
k,l,n

)
= egr

((
A

gr,(r,r)
k,l,n

)
(ϵR)

)
∼=
⊕
λ∈Λd,r

V̄∗
λ⊗ V̄λ, (110)

where V̄∗
λ (respectively, V̄µ) is an irreducible Uq

(
glk

)
-module (respectively, Uq

(
gll

)
-

module). In the latter relation we use the bar on V̄∗
λ and V̄λ to distinguish Uq(glk)-modules

from Uq(glk)-modules and Uq(gll)-modules from Uq(gll)-modules. To complete the proof,
we need to verify that the summand V̄∗

λ⊗ V̄λ of (110) generates the summand V∗
λ⊗Vλ of

(109) as a Uq(glk)⊗Uq(gll)-module. In what follows, we prove the latter assertion. Let v∗λ be
a highest weight vector of the Uq(glk)-module V∗

λ and let vλ be a lowest weight vector of the
Uq(gll)-module Vλ. It suffices to prove that

v∗λ⊗ vλ ∈ V̄∗
λ⊗ V̄λ. (111)
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The weight of vλ with respect to the standard Cartan subalgebra of Uq(gll) is obtained by

applying the longest element of the Weyl group Sl to the coefficients of q
∑d

i=1λiεi (which is
the highest weight of V̄λ). hence the weight of vλ is q

∑d
i=1 εl−i+1λi . By a similar reasoning,

the weight of v∗λ with respect to the standard Cartan subalgebra of Uq(glk) is q
−

∑d
i=1 εk−i+1λi .

Since k− k⩽ k− d, we haveKεi · v∗λ = v∗λ forKεi ∈ Uq(glk) satisfying 1⩽ i⩽ k− k. Similarly,
from l− l⩽ l− d it follows that Kεi · vλ = vλ for Kεi ∈ Uq(gll) satisfying 1⩽ i⩽ l− l. Next
we express v∗λ⊗ vλ as a linear combination of the basis of PDgr that consists of the monomi-
als (56) (see proposition 3.8.3). Since v∗λ⊗ vλ ∈ A gr

k,l,n, the monomials that occur must satisfy

ai,r = bj,r = 0 for 1⩽ i⩽ m− k, 1⩽ j⩽ m− l, 1⩽ r⩽ n. (112)

By remark 3.6.2 each of the occurring monomials is a joint eigenvector for the action of

κk,m (Kεi)⊗ 1⊗κl,m
(
K−εj

)
⊗ 1 where 1⩽ i⩽ kand 1⩽ j⩽ l,

with eigenvalue

q−
∑n

r=1(am−k+i,r+bm−l+j,r).

If this eigenvalue is 1 for i⩽ k− k and j⩽ l− l, then we must have

am−k+i,r = bm−l+j,r = 0 for 1⩽ i⩽ k− k, 1⩽ j⩽ l− l, 1⩽ r⩽ n. (113)

From (112) and (113) (and the general fact that joint eigenfunctions with distinct eigenvalues
are linearly independent) it follows that all of the occurring monomials belong to egr(A gr

k,l,n).
Consequently, v∗λ⊗ vλ belongs to the left hand side of (110). In addition, v∗λ⊗ vλ is the tensor
product of a lowest weight vector for aUq(glk)-module isomorphic to V̄∗

λ and a highest weight
vector for a Uq(gll)-module isomorphic to V̄λ. From the decomposition of the right hand side
of (110) we obtain that v∗λ ∈ V̄∗

λ and vλ ∈ V̄λ. This completes the proof of (111).

We are now ready to complete the proof of (108). From theorem B′ for A gr
k,l,n (which is

established in section 9.1) it follows that

egr
((

A gr
k,l,n

)
(ϵR)

)
⊆ B.

Thus, by proposition 9.2.2 it suffices to prove thatB is stable under the action ofU(k,l)
L . The key

idea to prove this is that the span of the generators of B is stable under an algebra larger than
U(k,l)
L . This enables us to use proposition 2.6.2. Let Ũ(k,l)

L be the subalgebra of ULR⊗ULR =
UL⊗UR⊗UL⊗UR defined as follows:

(i) If k⩽ l, then Ũ(k,l)
L := Uk,l⊗ 1⊗UL⊗ 1 where Uk,l is the subalgebra of UL = Uq(gll) that

is generated by

{Ei}l−1
i=1 ∪{Fi}l−1

i=l−k+1 ∪{Kεi}
l
i=1 .
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(ii) If k> l, then Ũ(k,l)
L := UL⊗ 1⊗Uk,l⊗ 1 where Uk,l is the subalgebra of UL = Uq(glk) that

is generated by

{Ei}k−1
i=k−l+1 ∪{Fi}k−1

i=1 ∪{Kεi}
k
i=1 .

Note that in both cases we have U(k,l)
L ⊆ Ũ(k,l)

L .

Proposition 9.2.3. B is stable under the action of Ũ(k,l)
L .

Proof. This follows from proposition 2.6.2 by setting H := UL, C := C(m) where m :=
max{k, l}, Ř := ŘL, H

′ := UR, C ′ := C(n), Ř ′ := ŘR, A := P , B := D , H := Uk,l and

E := Spank
{
L̃
gr
i,j : 1⩽ i⩽ kand 1⩽ j⩽ l

}
.

Checking that E is stable under the action of Ũ(k,l)
L is a direct calculation based on remark 3.6.2.

Also, according to proposition 3.2.2 we can choose ωV,W,ωV,W ∈ H⊗H satisfying the condi-
tion of definition 2.5.1(ii) to be finite linear combinations of 2-tensors of the form

KFβFβ ′Fβ ′ ′ · · · ⊗K ′EβEβ ′Eβ ′ ′ · · · ,

where β,β ′,β ′ ′, . . . are positive roots (see definition 3.2.1) and K,K ′ are in the Cartan subal-
gebra. Verifying that the assumptions of proposition 2.6.2(i) and proposition 2.6.2(ii) on ωV,W
and ωV,W hold is then a direct calculation based on the formulas that express the root vectors
as commutators of the Ei and the Fi (see definition 3.2.1).

9.3. Proof of theorem B for Ak,l,n

In this subsection we deduce theorem B for Ak,l,n from theorem B′. Let K be any field. As
usual a K-algebra A is called filtered if it has a filtration

A0 ⊆A1 ⊆A2 ⊆ ·· ·

such that AiAj ⊆Ai+j for i, j⩾ 0. We assume that filtered algebras always satisfy A0 =K.
As usual gr(A) :=

⊕∞
i=−1Ai+1/Ai denotes the associated graded algebra of A, where by

conventionA−1 = 0. The following general lemma is standard and can be proved by induction.

Lemma 9.3.1. Let A be a filtered algebra and let a1, . . . ,ar ∈ A1 be such that their images in
A1/A0 generate gr(A). Then a1, . . . ,ar generate A.

The passage from theorem B′ to theorem B relies on the folowing proposition.

Proposition 9.3.2. Let A :=
⊕∞

i=0A(i) be a graded K-algebra and let B be a filtered K-
algebra. Set Ai :=

⊕i
j=0 A( j) for r⩾ 0, so that K :=A0 ⊆A1 ⊆A2 ⊆ ·· · is a filtration of

A. Let F :A→B be a filtration-preserving linear map such that gr(F) : gr(A)→ gr(B) is an
isomorphism of algebras. Suppose that a1, . . . ,ar ∈ A(1) generate A. Then F(a1), . . . ,F(ar)
generate B.

Proof. Set F := gr(F). Since A∼= gr(A), we can consider F as a map A→ gr(B). Set bi :=
F(ai) for 1⩽ i⩽ r. Then bi+B0 = F(ai), hence b1 +B0, . . . ,br+B0 generate gr(B). Thus
lemma 9.3.1 implies that b1, . . . ,br generate B.

60



J. Phys. A: Math. Theor. 57 (2024) 195304 G Letzter et al

We return to the proof of theorem B for Ak,l,n. We verify that the assumptions of propos-

ition 9.3.2 hold for A :=
(
A gr
k,l,n

)
(ϵR)

, B := (Ak,l,n)(ϵR) and F := Pk,l,n. Since Pk,l,n : A
gr
k,l,n →

Ak,l,n is an isomorphism of UR-modules, we have F(A) = B. For r⩾ 0 set

A(r) := A
gr,(r,r)
k,l,n ∩A , Ar :=

r⊕
s=0

A(s) , B̃(r) := Pk,l,n

(
A

gr,(r,r)
k,l,n

)
and B̃r :=

r⊕
s=0

B̃(s).

(114)

Since the UR-action on A gr
k,l,n leaves the subspaces A

gr,(r,s)
k,l,n stable, we have A=

⊕∞
r=0A(r).

Define a filtration on B by setting Br := F(Ar) for r⩾ 0. Since we also have B = F(A), the
map gr(F) : gr(A)→ gr(B) is an isomorphism of graded vector spaces. Next we prove that
the latter map is an isomorphism of algebras. To this end, it suffices to verify that

F(D)F(D ′)−F(DD ′) ∈ Bi+j−1 for D ∈ A(i)and D ′ ∈ A( j). (115)

By proposition 3.13.3 the left hand side of (115) belongs to B̃i+j−1. SinceAk,l,n is aUR-module
algebra and F is a UR-module homomorphism, we have F(D),F(D ′),F(DD ′) ∈ B. It follows
that the left hand side of (115) also belongs to B. But since the map Pk,l,n : A

gr
k,l,n → Ak,l,n is a

bijection,

B̃r ∩B = Pk,l,n

(
A

gr,(r,r)
k,l,n

)
∩Pk,l,n (A) = Pk,l,n

(
A

gr,(r,r)
k,l,n ∩A

)
⊆ Br for r⩾ 0.

For r= i+ j− 1 this implies the inclusion (115). Thus we have proved that the assumptions
of proposition 9.3.2 hold for A, B and F :A→B chosen as above. By theorem B′ the L̃

gr
i,j

for 1⩽ i⩽ k and 1⩽ j⩽ l generate A, hence by proposition 9.3.2 the L̃i,j generate B. This
completes the proof of theorem B for Ak,l,n.

10. Proof of theorem C

In this section we give the proof of theorem C(i). The proof of theorem C(ii) is analogous. As
a byproduct, in corollary 10.4.1 we obtain explicit generators for φ−1

U (Lh,•) and φ
−1
U (Rh,•).

Henceforth we use Ei, Fi and the Kλ for λ ∈ Zε1 + · · ·+Zεn to denote elements of UR =
Uq(gln).

10.1. Parity condition on the λ

For λ,µ ∈ Zε1 + · · ·+Zεn expressed as λ :=
∑n

i=1λiεi and µ :=
∑n

i=1µiεi we define 〈λ,µ〉
as in (40). We also set λ < µ if there exists 1⩽ r< n such that λi = µi for all i⩽ r and λr+1 <
µr+1. This defines a total order on Zε1 + · · ·+Zεn. The following lemma is trivial.

Lemma 10.1.1. Let S be a finite subset of Zε1 + · · ·+Zεn and let λmax denote the max-
imum of S with respect to <. Let γ1, . . . ,γn ∈ Z be such that γn ⩾ 1 and γi ⩾ 1+

maxλ,µ∈S

{∑
i<j⩽n |λj−µj|γj

}
for i< n. Set γ :=

∑n
i=1 γiεi. Then 〈λmax,γ〉> 〈µ,γ〉 for all

µ ∈ S such that µ 6= λmax.

Proposition 10.1.2. Let I be a finite subset of Zε1 + · · ·+Zεn. Let x :=
∑
λ∈I cλKλ ∈ Uh,R

where cλ ∈ k× for λ ∈ I, and assume that x ∈ ŮR. Then for all λ :=
∑
λiεi ∈ I and 1⩽ i⩽

n− 1 we have λi−λi+1 ∈ 2Z⩾0.
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Proof. Step 1. Set D := φU(x). By (68) we have φU(ady(x)) = (1⊗ y) ·D for y ∈ UR.
Since PD is a locally finite UR-module, φU(adUR(x)) is a finite dimensional subspace of
PD . Furthermore for every f ∈ P , if we set Wf := adUR(x) · f := {ady(x) · f : y ∈ UR}, then
dimWf ⩽ d◦ where d◦ := dim(φU(adUR(x))). Note that the upper bound d◦ on dimWf is inde-
pendent of f.

Step 2. Fix αi := εi− εi+1 where 1⩽ i⩽ n− 1. It suffices to prove that 〈λ,αi〉 ∈ 2Z⩾0 for
λ ∈ I. For r⩾ 1 we have

adEriKλ =
r−1∏
j=0

(
1− q〈λ,αi〉−2j

)
EriKλK

−r
i .

Now take a nonzero Uh,R-weight vector f ∈ P of weight q−γ for γ :=
∑n

i=1 γiεi, where
(γ1, . . . ,γn) is an n-tuple of non-negative integers. We have

adEri (x) · f=

(∑
λ∈I

cλadEriKλ

)
· f

= qr〈γ,αi〉

∑
λ∈I

cλq
−〈λ,γ〉

r−1∏
j=0

(
1− q〈λ,αi〉−2j

)Eri · f. (116)

Step 3. For any λ ∈ I, if 〈λ,αi〉 ∈ 2Z⩾0 then
∏r−1

j=0

(
1− q〈λ,αi〉−2j

)
= 0 for all sufficiently

large r. Thus, if we set I ′ :=
{
λ ∈ I : 〈λ,αi〉 6∈ 2Z⩾0

}
then there exists r◦ = r◦(I) such that

for all r⩾ r◦ we have

∑
λ∈I

cλq
−〈λ,γ〉

r−1∏
j=0

(
1− q〈λ,αi〉−2j

)
=
∑
λ∈I ′

cλq
−〈λ,γ〉

r−1∏
j=0

(
1− q〈λ,αi〉−2j

)
. (117)

Note that the lower bound r◦ is independent of γ.
Step 4.Assume that I ′ 6=∅. Choose r◦ ∈ N according to Step 3. Without loss of generality

we can also assume that r◦ ⩾ d◦. Next choose r⩾ r◦. After possibly scaling x by a nonzero
element of the polynomial ring C[q] we can assume that the cλ are nonzero elements in C[q].
Let λmax denote the maximum of I ′ with respect to <. Choose γ as in lemma 10.1.1 (with
S := I ′). Since the condition on the coefficient γi only depends on γj for j> i, we can also
assume that γi− γi+1 ⩾ 1. For λ ∈ I ′ let qN(r,λ) be the lowest power of q that occurs after
expanding and simplifying cλq−〈λ,γ〉∏r−1

j=0

(
1− q〈λ,αi〉−2j

)
. We have

N(r,λmax)⩽−〈λmax,γ〉+ degcλmax (q) ,

because the lowest power qN(r,λ) is obtained as follows: from each factor
(
1− q〈λ,αi〉−2j

)
we

can choose 1 if 〈λ,αi〉− 2j> 0 and q〈λ,αi〉−2j otherwise. For all other λ ∈ I ′ we have

N(r,λ)⩾−degcλ
(
q−1
)
−〈λ,γ〉− r|〈λ,αi〉|− r(r− 1) .

By the choice of γ, for λ ∈ I ′ such that λ 6= λmax we have 〈λmax,γ〉⩾ 1+ 〈λ,γ〉. Thus

〈λmax,kγ〉⩾ k+ 〈λ,kγ〉 for k ∈ N.
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Next choose k ∈ N such that k⩾ 2r◦ and

k⩾ max
λ∈I ′,λ6=λmax

{
degcλmax (q)+ degcλ

(
q−1
)
+ 2r◦|〈λ,αi〉|+ 2r◦ (2r◦ − 1)

}
. (118)

If we substitute γ by kγ, from (118) we obtain that N(r,λmax)< N(r,λ) for all λ ∈ I ′\{λmax}
and r◦ ⩽ r⩽ 2r◦. Together with Step 3, this proves that for the latter choice of γ we have

∑
λ∈I

cλq
−〈λ,γ〉

r−1∏
j=0

(
1− q〈λ,αi〉−2j

)
6= 0 for r◦ ⩽ r⩽ 2r◦,

because the coefficient of qN(r,λmax) is nonzero.
Step 5. The γ chosen at the end of Step 4 satisfies γi− γi+1 ⩾ 2r◦, or equivalently

〈−γ,αi〉⩽−2r◦ (because k⩾ 2r◦). Choose f ∈ P of Uh,R-weight q−γ (for example f :=
tγ1
1,1 · · · t

γn
1,n). A standard argument based on representation theory of Uq(sl2) implies Eri · f 6= 0

for 0⩽ r⩽ 2r◦. Since the vectors Esi · f for 0⩽ s⩽ 2r◦ have distinct Uh,R-weights, they are
linearly independent. From Step 2 and Step 4 it follows that the vectors adEsi (x) · f for r◦ ⩽ s⩽
2r◦ are also linearly independent. Consequently, dimWf ⩾ r◦ + 1⩾ d◦ + 1. This contradicts
Step 1.

10.2. Proof of λ1 ⩽ 0

We begin with the following observation.

Remark 10.2.1. Let D ∈ PD and let a := (a1, . . . ,an) be an n-tuple of non-negative integers.
We use the notation ∂a := ∂a11,1 · · ·∂

an
1,n and t

a := tan1,n · · · t
a1
1,1 for an n-tuple of integers (a1, . . . ,an).

Assume that D · ta = cta for some c ∈ k. Recall the basis of PD that consists of the monomi-
als (58). We can write D as D= D1 +D2 +D3 where

(i) D1 is a linear combination of basis vectors of the form tb
′
∂b

′
where b ′ is an n-tuple of

non-negative integers,
(ii) D2 is a linear combination of basis vectors of the form ta

′
∂b

′
where a ′ and b ′ are n-tuples

of non-negative integers and a ′ 6= b ′, and
(iii) D3 is a linear combination of the remaining basis vectors in (58).

Using lemma 3.17.1 and then lemma 3.17.12 we obtain D · ta = (D1 +D2) · ta = D1 · ta.

Example 10.2.2. Set λ := ε1 + · · ·+ εn and x := Kλ ∈ UR. Then x · tr1,1 = q−rtr1,1 for r⩾ 1.
From remark 10.2.1, lemma 3.17.12 and remark 3.17.10 it follows that if φU(1⊗ x) ∈ R•
then the eigenvalue of tr1,1 with respect to φU(1⊗ x) should be a ratio of two polynomials such
as φ1(q)/φ2(q) where degφ2 is bounded above (independently of r). Thus, φU(1⊗ x) 6∈ R•
and in particular R• ⊊ R. Consequently, Kλ is a locally finite element of UR that does not
belong to ŮR.

Proposition 10.2.3. Let I be a finite subset of Zε1 + · · ·+Zεn. Let x :=
∑
λ∈I cλKλ ∈ Uh,R

where cλ ∈ k× for λ ∈ I, and assume that x ∈ ŮR. Then for all λ :=
∑
λiεi ∈ I we have

λ1 ⩽ 0.

Proof. Set D := φU(x), so that D ∈ PD . Write D= D1 +D2 +D3 as in remark 10.2.1 and
suppose that D1 =

∑
a∈Z zata∂a where Z is a finite set of n-tuples of non-negative integers

and the za ∈ k×. After scaling x by a nonzero element ofC[q] if necessary, we can assume that
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the cλ and the za are nonzero polynomials in q. Recall that tγ := tγn1,n · · · t
γ1
1,1 for γ :=

∑n
i=1 γiεi

in Zε1 + · · ·+Zεn. Then

D · tγ =
∑
λ∈I

cλq
−〈λ,γ〉tγ .

Also, by lemma 3.17.12 and remark 10.2.1 we obtain D · tγ = D1 · tγ =
∑

a∈Z za(q)φa(q2)tγ ,
where the φa are polynomials in q with integer coefficients. Note that the za are independent
of γ, but the φa can depend on γ.

Set λ̃ := λmax where λmax is the maximum of I according to the total order introduced
in section 10.1. By lemma 10.1.1 we can choose γ such that we have 〈λ̃,γ〉> 〈µ,γ〉 for all
µ ∈ I\{λ̃}. If the assertion of the proposition is not true, then λ̃1 > 0 and thus by choosing
γ1 sufficiently large we can also assume that 〈λ̃,γ〉⩾ 1. Thus, for all sufficiently large k ∈ N
the lowest power of q that occurs in

∑
λ∈I cλq

−〈λ,kγ〉 is from the summand cλ̃q
−〈λ̃,kγ〉, and

is equal to d− k〈λ̃,γ〉, where d is the lowest power of q that occurs in cλ̃. By comparing with∑
a za(q)φa(q

2) it follows that

d− k〈λ̃,γ〉⩾min
a∈Z

{
−degza

(
q−1
)}
.

The right hand side is independent of k and γ. However, this is a contradiction since k can be
chosen arbitrarily large and 〈λ̃,γ〉⩾ 1.

10.3. Proof of λ1 ∈ 2Z⩽0

In this subsection we strengthen proposition 10.2.3, as follows.

Proposition 10.3.1. Let I be a finite subset of Zε1 + · · ·+Zεn. Let x :=
∑
λ∈I cλKλ ∈ Uh,R

where cλ ∈ k× for λ ∈ I, and assume that x ∈ ŮR. Then for every λ :=
∑
λiεi ∈ I we have

λ1 ∈ 2Z⩽0.

Proof. We assume that the assertion is false, and arrive at a contradiction.
Step 1. Recall from proposition 4.1.1 that the KλR,b for 1⩽ b⩽ n are contained in ŮR.

The Kλ ∈ Uh,R satisfying λi−λi+1 ∈ 2Z⩾0 for 1⩽ i⩽ n− 1 and λ1 ∈ 2Z⩽0 can be expressed
as products of the KλR,b . Thus by propositions 10.1.2 and 10.2.3 we can assume that λ1 ∈
{−1,−3,−5, . . .} for all λ ∈ I.

Step 2. Set D := φU(x) so that D ∈ PD . Write D as D= D1 +D2 +D3 according to
remark 10.2.1. Suppose that D1 =

∑
b∈Z zbtb∂b, where Z is a finite set of n-tuples of non-

negative integers and the zb ∈ k×. After scaling x by a nonzero element of C[q] we can
assume that the cλ and the zb are nonzero elements of C[q]. We keep using the notation tγ for
γ :=

∑n
i=1 γiεi from the proof of proposition 10.2.3. Then D · tγ =

∑
λ∈I cλq

−〈λ,γ〉tγ . From
lemma 3.17.12(ii) and remark 3.17.10 it follows that tb∂b · tγ = φb(q2)tγ where φb ∈ C[q] and

degφb =
n∑

i=1

γi (b1 + · · ·+ bi)−
n∑

i=1

(
bi (b1 + · · ·+ bi)−

bi (bi− 1)
2

)
. (119)

For b ∈ Z define λb ∈ Zε1 + · · ·+Zεn by

λb := b1ε1 +(b1 + b2)ε2 + · · ·+(b1 + · · ·+ bn)εn.

By (119) we have degφb = 〈λb,γ〉+C(b), where C(b) is independent of γ.
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Step 3. Let λ̃ ∈ I be such that −λ̃ is the maximum of −I := {−λ : λ ∈ I} with respect
to the total order < of section 10.1. Using lemma 10.1.1 for −I, we can choose γ such that
−〈λ̃,γ〉>−〈µ,γ〉 for all µ ∈ I\{λ̃}. Since λ̃1 ∈ {−1,−3,−5, . . .}, by choosing the parity of
γ1 suitably we can also assume that−〈λ̃,γ〉 is an odd integer. Then for k ∈ N sufficiently large,
the highest power of q that occurs in

∑
λ∈I cλq

−〈λ,kγ〉 is from the summand cλ̃q
−〈λ̃,kγ〉, and

is equal to d− k〈λ̃,γ〉, where d := degcλ̃.
Step 4. Let bmax ∈ Z be such that λbmax =max{λb : b ∈ Z}, where the maximum is taken

with respect to <. Note that the map b 7→ λb is an injection. From (119) and lemma 10.1.1
applied to the set {λb : b ∈ Z} it follows that we can choose γ and k in Step 3 such that the
following additional property holds: the highest power of q that occurs in

∑
b∈Z zb(q)φb(q2)

is from the summand zbmax(q)φbmax(q
2), and is equal to d ′ + 2degφbmax , where d ′ := degzbmax .

Note that the values degφb depend on γ and k, but the values degzb only depend on x and in
particular they are independent of the choices of γ and k.

Step 5. Recall that tkγ is an eigenvector of D, hence D · tkγ = D1 · tkγ =∑
b∈Z zb(q)φb(q2)tkγ by remark 10.2.1. By comparing the highest power of q in the eigen-

value of tkγ from Step 3 and Step 4 it follows that

d ′ + 2degφbmax = d− k〈λ̃,γ〉. (120)

Since d′ is independent of γ and k, the parity of the left hand side of (120) does not change
by varying k and γ. However, recall that 〈λ̃,γ〉 is an odd integer and the only constraint on k
is that it should be sufficiently large. Thus, we can choose k such that the parities of the two
sides of (120) are different. This is a contradiction.

10.4. Completing the proof of theorem C(i)

Theorem C(i) is an immediate consequence of the following corollary and proposition 5.2.2.

Corollary 10.4.1. Let I be a finite subset of Zε1 + · · ·+Zεn. Let x :=
∑
λ∈I cλKλ ∈ UR,h

where cλ ∈ k× for λ ∈ I, and assume that x ∈ ŮR. Then x belongs to the subalgebra of Uh,R

that is generated by the KλR,b for 1⩽ b⩽ n.

Proof. Follows immediately from propositions 10.1.2 and 10.3.1.

Corollary 10.4.1 implies that
{
KλR,b

}n
b=1

is a generating set of the algebra ŮR. An analogous

statement holds for UL. That is,
{
KλL,a

}m
a=1

is a generating set of the algebra ŮL.
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Appendix. Commonly used notation

In this section we list the commonly used symbols and notation along with the subsection in
which each item is defined.
Introduction: k, UL, UR, ULR, L , R, L•, R•, Li,j, Ri,j, YZ , em×n

a×b , L̃i,j, M
i
j, M

i
j, D(r,a,b),

Dk,r, D ′
k,r, Ra, Lb, Lh, Rh, Lh,•, Rh,•.

Subsection 2.1: ady(x), F (H, I), F (H).
Subsection 2.2: V∗, 〈v∗,v〉, mv∗,v, ∆◦, H◦.
Subsection 2.3: V(ϵ).
Subsection 2.4: ŘV,W, A⊗Ř B, A⊗Ř,ψ B.
Subsection 2.5: RV,W, ωV,W, ωV,W.
Subsection 2.7: H◦

C , 〈 f⊗ g,R〉.
Subsection 3.1: Uq(gln), εi, [[a,b]], Kεi , Ki, Kλ, Ei, Fi, Uh,L, Uh,R.

Subsection 3.2: C(n), R(n), R(n), Expq, 〈µ,ν〉, Ř(n), Ř(n)
.

Subsection 3.3: x♮.
Subsection 3.4:∆+

n , Ei,j, Pn×n, Dn×n, ti,j, ∂i,j, t
♮
i,j, ∂

♮
i,j, LP , RP , LD , RD , ∆P , ∆D , ξc, Ξ,

ι, ι.
Subsection 3.5: P , Pm×n, D , Dm×n, φU .
Subsection 3.6: `(λ), P(d), D(d), Vλ, Λd,r, |λ|.
Subsection 3.7: CL, CR, RL, RL, RR, RR, ŘL, ŘL, ŘR, ŘR, RLR, RLR, ŘLR, ŘLR, PDgr,
PD .
Subsection 3.9: Ak,l,n, A

gr
k,l,n, κr,n, (egr)

m×n
m ′×n ′ .

Subsection 3.10: φPD, X · f.
Subsection 3.11: P(⩽k), ≺, c(a).
Subsection 3.13: P, Pk,l,n, PDgr,(r,s), A gr,(r,s)

k,l,n ,

Subsection 3.14: ŮL, ŮR, ŮLR.
Subsection 3.15: ηm,n.
Subsection 3.17: ◁, c(a,b), ta, ∂a.
Subsection 4.1: λL,a, λR,b, KλL,a , KλR,b
Subsection 6.1: PD(ϵL), PD(ϵR), εL, εR, (Ak,l,n)(ϵR),

(
A gr
k,l,n

)
(ϵR)

,
(
A

gr,(r,s)
k,l,n

)
(ϵR)

, PDL ,

PDR, PDL• , PDR• , L̃
gr
i,j.

Subsection 7.1: Γn, Γk,l,n.
Subsection 8.2: u ?n v, u ?k,l,n v.
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