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CrossMark
Abstract

Let & := &,,, denote the quantized coordinate ring of the space of m X n
matrices, equipped with natural actions of the quantized enveloping algebras
U,(gl,,) and U,(gl,). Let .Z and % denote the images of U,(gl,,) and U,(gl,)
in End(&?), respectively. We define a g-analogue of the algebra of polynomial-
coefficient differential operators inside End(Z?), henceforth denoted by £ 9,
and we prove that £ N P P and Z N & 9 are mutual centralizers inside & 2.
Using this, we establish a new First Fundamental theorem of invariant theory
for U,(gl,). We also compute explicit formulas in terms of g-determinants for
generators of the algebras £, N &% and Zy N ¥ 9, where £}, and %y denote
the images of the Cartan subalgebras of U,(gl,) and U,(gl,) in End(%),
respectively. Our algebra &% and the algebra Pol(Mat,, ,), that is defined
in (Shklyarov et al 2004 Int. J. Math. 15 855-94) are related by extension of
scalars, but we give a new construction of #22 using deformed twisted tensor
products.
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1. Introduction

The First Fundamental theorem (FFT) is one of the pinnacles of invariant theory with a history
as old as Hermann Wey!’s influential book, The Classical Groups [Wy39]. In its original form,
the FFT for the group GL,, describes the generators of the subalgebra of GL,,-invariants in the
polynomial algebra P(V®* @ (V*)®!), where V := C" denotes the standard GL,,-module.

It was pointed out by Howe [H095, section 2.3] that the FFT has an equivalent formulation
as a double centralizer property, which we now recall. Let Mat,,»,, denote the vector space
of complex m x n matrices. Then Mat,,,, has a natural GL,, x GL,-module structure by left
and right matrix multiplication. We equip the algebra P := P(Mat,,x,) of polynomials on
Mat,,, and the algebra PD := PD(Mat,,,) of polynomial-coefficient differential operators
on Mat,, ., with their canonical GL,, x GL,-module structures. Recall that P is a PD-module.
The (infinitesimal) actions of the Lie algebras gl,, and gl,, on P are given by certain differential
operators of order one, which are usually called polarization operators. It follows that there
exists a homomorphism of algebras ¢ : U, , = PD, where U, , := U(gl,,) @ U(gl,) is the
tensor product of the universal enveloping algebras of gl,, and gl,,, such that the diagram

Uppn @ P —— 22020 P
S 0
R fd(z)Rf D®f—D-f
PD &P

commutes. The operator commutant version of the FFT, according to [Ho95, theorem 2.3.3],
states that the subalgebra PD of GL,,-invariants in PD is generated by the image of U (gl,).
Since PP = PDY(EW) | the latter assertion is equivalent to the following: the images of
U(gl,,) and U(gl,,) in PD are mutual centralizers.

In [LZZ11, section 6] the authors extend the original form of the FFT to the quantized envel-
oping algebra U,(gl,) by considering a g-analogue of P(V® & (V*)!) that carries a U,(gl,)-
action, and then describing the generators of the subalgebra of invariants. It is then natural to
ask if the operator commutant version of the FFT also has a g-analogue. It turns out that in
the quantized setting, the situation for the operator commutant FFT is more subtle than in the
classical case. One major issue is how to quantize the Weyl algebra PD and, more importantly,
the map ¢ : U, , — PD. Indeed we provide some justification that the latter map cannot be
fully quantized (see proposition 3.14.4). Nevertheless, our first main result (theorem A) is a
positive answer to the above question.

From now on let k := C(g) be the field of rational functions in a parameter g. For the
operator commutant FFT in the quantized setting we need a quantized Weyl algebra &% :=
P Dmxn. The k-algebra & that we consider is closely related to the algebra Pol(Mat,, , )4
of [SSV04, BKV06] (see corollary 3.16.1). We give a different construction of &% as the
deformed twisted tensor product of & := &, «,, the quantized coordinate ring of Mat,, .,
and & := P, xn, the quantized algebra of constant-coefficient differential operators on Mat,, x ,
(see section 3 for precise definitions). The construction of &2 and & is analogous to the FRT
construction [KS97, section 9.1]. Concretely, the algebra &7 % is generated by 2mn generators
t;jand 0;j, where 1 <i<mand 1 <j < n, modulo the relations that are described in section 3
(see definition 3.7.3). From now on we set

Upo=U,(gl,) ., Ur:=Us(gl,) , Uwr:=ULQUkg.
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Both & and £ are U g-module algebras (the explicit formulas for the U z-action on gen-
erators are given in remark 3.6.2). Furthermore, & is naturally a & Z-module. In particular,
we have homomorphisms of associative algebras

(ZSU:ULR—)Endk(gz) and ¢pD:<@.@—>Endk(:@).

Since & is a faithful & Z2-module (see proposition 3.11.4), we can identify &% with
opp (P 2). Using the latter identification, we set

L=y (U,®1), Z:=¢v(1QUg), Le:=LNPD, Re:=ZNPP.

Note that in general we have %, C .Z and Z, C Z. In fact if m < n then the restriction of
¢y to UL ® 1 yields an isomorphism U = . but one can show that ¢[,1(.$.) is properly
contained in the locally finite part of U;, (see proposition 3.14.3 and example 10.2.2). Set

n m
Liji=> tis0,for 1 <ijj<mand Rij:=> t:0,;for1<ij<n.  (2)
r=1 r=1

The L;; and the R;; are natural analogues in &% of the polarization operators of the (non-
quantized) Weyl algebra PD. We have L, ; € Z, and R; ; € #, (see corollary 6.1.6). Of course,
similar inclusions hold in the non-quantized case. However, the situation with the preimages
of the L;; and the R;; in Uy, and Uy is more complicated. For example, the root vector E;,
of Uy, (respectively, Ug), where i < j, does not lie in the preimage of L; ; (respectively, R; ;).
Henceforth we adopt the following notation: for subsets ), Z of an algebra X, we set

yz::{yey:yz:zy forallze Z}. 3)

Our first main theorem is the following.

Theorem A. Let ¥, #, Zs, and R be the subalgebras of Endy (L) defined above. We
identify 22 with ¢pp(P D) C Endg (). Then the following statements hold.

(i) PG% = PP¥ = <,. Furthermore, £, is generated by the L j for 1 <i,j < m.
(ii) PDZs = PPZ = Ra. Furthermore, R, is generated by the R;j for 1 <i,j < n.

Let us elucidate the relation between theorem A and the literature on Howe duality and
the FFT in the quantized setting. Quantized analogues of (gl,,, gl,,)-duality have been estab-
lished in [Zh02] and [NYM93], but these works do not consider the double centralizer prop-
erty inside a quantized Weyl algebra. To compare our results with those of Lehrer—Zhang—
Zhang [LZZ11], we briefly explain their formulation of the FFT for U,(gl,). In [LZZ11,
section 6] the authors define a g-analogue of the algebra P(V®* @ (V*)®!), which they call
Ay, (this algebra tacitly depends on n as well). The algebra Ay ; is isomorphic to a twisted
tensor product of Py, and Zy,, but the twisting is only with respect to the universal R-
matrix of U,(gl,). In particular, in the special case k=1 the relations on the generators of
Ay are not symmetric with respect to their indices. Because of this asymmetry, Ay ; does
not appear to be the desired object for proving a double centralizer statement. The twisting
that we consider to define &% uses the universal R-matrices of both U; and Ug. In addition,
unlike .4, ; whose relations are homogeneous, the relation (R6) of &% is not homogeneous.
From this viewpoint, &% resembles the classical Weyl algebra more than A ;. We remark
that recently, Jakobsen [Ja23] considered an embedding of the quantized enveloping algebras

3
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into what is called the Hayashi-Weyl algebra [Ha94]. This is different from our approach, in
that the Hayashi-Weyl algebra quantizes the (localization of the) enveloping algebra of the
Heisemberg Lie algebra, whereas our algebra quantizes the usual Weyl algebra.

Our second main result (theorem B below) is a new FFT for U,(gl,), in the spirit of the
aforementioned result of [LZZ11], for a family of algebras %, where k,I,n are positive
integers. The latter algebras generalize &% and indeed we have <7, , , = & Dy xcn. An expli-
cit presentation of 2% ; , by generators and relations is given in proposition 3.9.2. To state the-
orem B, we need some notation. For integers 1 < a < m and 1 < b < n there exists an embed-
ding of associative algebras

e=e""" PDwp = P Dpxn )

axb

that is defined as follows. We relabel the generators of &2 %, «, by setting
fiji=top_ipp1—; and O =0y _ipp; forl<i<a, 1<j<b. (5)

We relabel the generators of &%, similarly, with a and b replaced by m and n respectively.
The map e of (4) is uniquely determined by the assignments e(7; ;) := 7;j and e(9; ;) := 0;j (see
proposition 3.9.4). Concretely, the map e identifies the a x b matrices [t;;] and [0;;] formed
by the generators of &%, with the intersections of the lowest a rows and the rightmost
b columns in the analogous m x n matrices formed by the generators of & Z,,«,. Now fix
integers k,/,n > 1 and set m := max{k,l}. We define <% , to be the subalgebra of &«
that is generated by the Ei,/' and the 5,»1,', where 1 <i<k, 1<i’ <[, and 1 <j < n. The Ug-
action on & P, leaves o ; , invariant and thus 7 ; ,, is a Ur-module algebra. The standard
degree filtration of <% ; , (corresponding to setting degt; j = deg &/J = 1) is Ug-stable, hence
the associated graded algebra gr(.<% ;) is also a Ug-module algebra. Let e be the counit of
Uk and denote the subalgebra of Ug-invariants in <% ; , by (<%1.,) (er)? that is,

(i) )= {D € A, x-D=eg(x)Dforx € Ug}.

(er

We denote the subalgebra of Ug-invariants in gr(<% . ,) by (gr(,gz%,g,7,l)) (c) B well. For 1 <

ER)

i < kand 1 <j <[ we define elements |:,- J € 1, by the formula

n n
LiJ = Zl‘iﬂajﬂ’ = ZtM7i+l,r6m7j+l,r' (6)
r=1 r=1

By the same formula we can define analogous elements in gr(.2% ;). By a slight abuse of the

symbol gr(-), we denote these elements of gr(.2#% ;) by gr(L:;).
Theorem B. The algebras (ssz,;,n)(ek) and (gr(;zf;(7l7n))(eR) are generated by the |~_l-J and the

gr(lN_,-J) respectively, for | <i<kand1<j<L

It would be interesting to relate theorem B to the quantized FFT of [LZZ11, theorem
6.10] for example by a deformation argument. However, we are unable to establish such a
connection.

Our third main theorem (theorem C below) explicitly describes the images in X2 =
P Dyuxcn of the Cartan subalgebras of Uy and Ug. To state theorem C we need to define cer-
tain elements of 2% that are constructed using g-determinants. Let i := (iy,...,i,) and j :=

4
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(jis---+Jr) be r-tuples of integers satisfying 1 <ij <---<i,<mand 1 <j; <---<j, <n.
Define quantum minors M; € & and VJ € 9 by

. o —i — é("')
M; ::Z(f‘]) ( )tiau):il "l and A/Il.l ::Z(*q Y Oiyiyir = Oigiiyirr ()

o o

where the summations are over permutations in r letters, and £(o) denotes the length of o (in
the sense of Coxeter groups). For a,b,r > 1 define D(r,a,b) € P P,«) by

D (r,a,b) :ZZM;WJ, (3)
J

i

where the summation indices i := (i1,...,i,) and j := (j;,...,j,) satisfy 1 <i; <---<i,<a
and 1 <j; <--- <j, <b. We also set D(0,a,b) = 1. For 0 < r <n and 1 < k < n we define
Dk,r € gz—@mxn by

Dy, =€ (D (r,m,k)).

 Ymxk

Similarly, for 0 < r < m and 1 < k < m we define D,gy, € P Dyxn by
Dlg,r = ezn;nn (D(r.k,n)).
Note that Dy , = D; , = 0 when r > min{k,m,n} and D o = D/ , = 1. Set

Ra::i(qtl)’na,rforlgagn and Lb::i(qz—l)rDA,forlgbgm. 9)
r=0 r=0

Furthermore, let Uy ;, and Uy g denote the Cartan subalgebras of U;, and Ug, respectively (see
section 3.1). We set

Lyi=0u(Upr®1), Lye:=PINLy, Hy:=du(10Uygr),
Rye:= PDOTy. (10

Theorem C. The following statements hold.

(i) Ry, is generated by Ry, ... R,.
(ii) £y .o is generated by Ly, ... Ly,

In the proofs of our theorems we borrow at least two key ideas from [LZZ11]. First, we
use the bialgebra structure of &, , to define a map I';;, from ., onto the subalgebra of
Ug-invariants in gr(.e%; ,) (assuming n > max{k, [}). The map Iy ; ,, given in definition 7.1.3,
is similar to the map introduced in [LZZ11, lemma 6.11]. Second, we define a new product
on Py such that the map I'y;, becomes an isomorphism of algebras (see definition 8.2.4).
This product is analogous to the one defined in [LZZ11, lemma 6.13]. However our product is
given by a more complicated (and asymmetric) formula, because it needs to be simutaneously
compatible with two universal R-matrices. As a consequence, establishing the desired prop-
erties of this product requires new ideas (see section 8). Because of this, and the fact that
unlike [LZZ11] the generators L;; (respectively, R; ;) or even their graded analogues are not
weight vectors for the Cartan subalgebras of the two copies of Uy, (respectively, Ug) that act

5
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on L9, the proofs of theorems A and B become substantially more complicated than the
analogous results of [LZZ11]. See section 9.2 for more details.

The results of this paper were obtained as part of a project on Capelli operators for quantum
symmetric spaces. From this standpoint, it is natural to ask if one can define quantized Weyl
algebras in the latter setting and then realize the action of (a large subalgebra of) the quant-
ized enveloping algebra via elements of this Weyl algebra. We address this question and its
connection to Capelli operators in upcoming work [LSS22a, L.SS22b].

The structure of this paper is as follows. In section 2 we review the required background
material on Hopf algebras and twisted tensor products. In section 3 we construct and study the
quantized Weyl algebra & 7 and its variations, namely & 2%, o ; , and /) . The main goal
of section 4 is to prove that under ¢y the elements K, , ® 1 and 1 ® K, ,, defined in (75), of
the Cartan subalgebra of U, are mapped into 22 2. In section 5 we compute explicit formulas
for ¢y(Kx,, ®1) and ¢y(1 ® Ky, ,). Section 6 is devoted to some general properties of the
polarization operators L;;, R;; and their variants. In section 7 we define the map I'y;, and
establish some of its properties. Section 8 defines the new product on &, and establishes its
properties. Theorems A and B are proved in section 9 and theorem C is proved in section 10.
Finally, appendix lists the commonly used notation in the paper.

2. Hopf algebras and deformed twisted tensor products

Throughout this section K will denote an arbitrary field and H will be a Hopf algebra over
K. We denote the coproduct, counit, and antipode of H by A, ¢, and S. The opposite and co-
opposite of H are denoted by H°P? and H*°P (we use the same notation for bialgebras as well).
Throughout the paper, our notation for specific Hopf algebras A will remain consistent with
these choices.

If A is an associative algebra and V is an A-module, a subspace W C V is called A-stable
if A- W C W. Finally, an associative algebra A is called an H-module algebra if it is equipped
by an H-module structure such that the product of A yields an H-module homomorphism
ARA —A.

2.1. Local finiteness modulo an ideal

Given a two-sided ideal I of H (considered as an associative algebra), we set E(x,I) :=
{ady(x) +1 : y € H} for x € H, where ad,(x) := ) y1xS(y>) is the left adjoint action of H (we
use the Sweedler notation A(y) = > y; ® y, for the coproduct). We set

F(H,):={x€H : dimgE (x,I) < c0}. (11)

For I =0 this is the locally finite part of H (in the sense of [JL94]), which we will denote by
Z(H). Wehave E(xx',I) C E(x,)E(x’,I) forx,x" € H. Consequently, .% (H,I) is a subalgebra
of H.

2.2. The finite dual of H

Given a finite dimensional left H-module V, by the right dual of V we mean the dual space
V* equipped with the H-action defined by (x-v*,v) := (v*,S7!(x) - v) for v € V* and v € V,
where (-,-) : V* ® V — K is the canonical pairing. The matrix coefficients of V are the linear
functionals m,- ,, € H* defined by

My, (x) ;== (v*,x-v) forxeH,veV,v' eV

6
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Indeed m, -, € H°, where H° denotes the finite dual of H (for the definition of H° see [KS97,
section 1.2.8]). Recall that H° has a canonical Hopf algebra structure. The product of H® is
given by

A (x) ::Z)\(xl),u(xz) for \,u € H°and x € H, (12)
where A(x) = 3" x; ® x. Given two finite dimensional H-modules V and W, we have
My @us vow = Mys My, forv,w € Vand v, w* € W.

Let A° denote the coproduct of H®, so that A°(X\) ="\ ® A, for A € H°, where >\ ® Ay
is uniquely determined by

Axy) = (LX) (Aa,y) forx,y € H. (13)

If {v;}9_, is a basis of V and {v} }%_, is the dual basis of V*, then A°(m, ,) = Z;i:l My« ,, @
mys . The following remark will be used in section 3.

Remark 2.2.1. Let H* C H° be a sub-bialgebra. Then H® is an H-module algebra with respect
to right translation, where the action is defined by (x- A,y) := (A, yx) for A € H® and x,y € H.
If H is equipped with a K-linear map x — x? that yields an isomorphism of Hopf algebras
H — H°, then H* has another H-module algebra structure defined by (x- \,y) := (\,x%y),
which we call left translation. Given any homomorphism of associative algebras 7 : H — H,
we can define 7-twisted left and right translation actions of H on H®, given respectively by the
formulas

(e Ay) = LT (0)Fy)and (e Ay) = (AT ().

When H*® is equipped with either one of the two 7-twisted actions, the following statements
hold.

(1) If 7 : H— H is a homomorphism of coalgebras, then H® is an H-module algebra.
(1) If 7 : H — H is an anti-homomorphism of coalgebras, then H® is an H*°°-module algebra.

2.3. The isotypic component of the trivial H-module

For any H-module V we set
Vig:={veV:h-v=e(h)v},

where as before e denotes the counit of H. Let ¢) : H — Endg (V) be the algebra homomorphism
corresponding to this module structure (hence & -v = (h)v for h € H and v € V). We equip
Endg (V) with an H-module structure, defined by h-T:=>"1(h)Tt(S(hy)) for h € H and
T € Endg(V), where A(h) =" h| ® ho.

Lemma 2.3.1. Endx(V)(.) = Endx (V)*"), where the right hand side is defined as in (3).

Proof. The inclusion D follows from

hT=3 "9 () TY(S () =T () (S(h)) =T (Zhls(hz)) —cW)T,
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for T € Endk (V)¥*). For the inclusion C note that if 7 € Endg (V) ) then

GMT=Y ¢(h)e(h)T="> ¢ ()T (S (h)) (h3)
= elm) T () =T (D) o) =T ().

2.4. Braided triples, twisted tensor products and their deformations

Let C be a full subcategory of the category of H-modules that is closed under direct sums and
tensor products. To ensure that C is a monoidal category we assume that the trivial H-module
(the one-dimensional vector space K equipped with the action & — €(h) for h € H) belongs to
Obj(C).

Assume that C is braided. The braiding R of C is a natural family of H-module isomorphisms

Rvw:VOW—=WaV for V,W e Obj(C)

that satisfies the usual hexagon axioms (see for example [EGNOI1S5, definition 8.1.1]).
Henceforth we call (H,C,R) a braided triple.

Let A and B be two H-module algebras, with products m4 and mp. Assume that A,B €
Obj(C).

Lemma 2.4.1. The map RBA :B®A — A ® B satisfies the following relations:

(i) Rpa(l®@a)=a® 1 forac Aand Rps(b® 1) =1®b for b € B.
(ii) Rpa 0 (idp @my) = (ms ®idp)(ids @ Rpa)(Rp,a ®1da).
(iii) RB,A o (mB X ldA) = (ldA ® mB)(RBA ® ldB)(ldB X RB7A)-

Proof. This is well known, but we supply a proof because we did not find a reference.
(1) Equip K with the canonical H-module structure induced by the counit € : H — K. It is
well known (see for example [EGNO15, exercise 8.1.6]) that one has a commuting triangle

Ry A

K® A A®K
A

where the lower sides of the triangle are the canonical left and right unit isomorphisms. It
follows immediately that Ri 4(1 ® @) = a® 1. Furthermore, by naturality of R the diagram

R
KA ©a ARK
lB®idAl lidA(@lB
R
BoA—22 _ A®B

is commutative, hence Ry 4(1 ® a) = a ® 1. The other relation is proved similarly.

8
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(ii) Consider the diagram of maps below:

Rp a®id i
A@BR A< BoAg A 29" pe g
\ lRB,A@A lRB,A
ida®RB, A
AR AR B - A®B
maQ®idp

The square is commutative by naturality of R (because m, and mp are H-module homo-
morphisms) and the triangle is commutative by the hexagon axiom. The assertion of (ii) follows
from comparing two maps B®A ® A —+ A ® B in the diagram: one is obtained by composi-
tion of the top and the right edges of the square, the other is obtained by the outer edges of the
triangle and the bottom edge of the square.

(iii) Similar to (ii). O
Definition 2.4.2. Let A, B € Obj(C) be H-module algebras. We denote the products of A and
B by my4 and mgp, respectively. The R-twisted tensor product of A and B, denoted by A ®j, B, is
the vector space A ® B equipped with the binary operation

(mA ®m5) o (ldA ®RB,A ®ld3) . (14)
Proposition 2.4.3. A ®j B is an associative algebra.
Proof. This is well known and proved for example in [VV94, proposition 2.2]. O

From lemma 2.4.1(i) it follows that for a,a’ € A and b, b’ € B the product (14) satisfies
(a®1)(a’@b)(1@b") = (aa’ @bb"). (15)

Remark 2.4.4. The vector space A ®; B =A ® B carries two module structures: as the outer
tensor product over K of H-modules A and B, it is an H ® H-module. As the inner tensor
product of A and B, it is an H-module. Of course the latter H-module structure is obtained
from the former one via restriction along the coproduct map H -+ H® H.

Proposition 2.4.5. AQy B is an H-module algebra with the H-module structure of
remark 2.4.4.

Proof. Given a,a’ € A and b,b’ € B, if we write Rg4(b®a’) =Y a’’ @ b'' then for x € H
we have

x-((a®b)(a’@b"))=x- Zaa” @b"'b= Z(xl (aa’")) @ (x2- (b"'D)).

Since A and B are H-module algebras, from the latter equalities and (15) it follows that

x-((a@b) (@’ ®@b") = (x1-a)(x-a")@ (xs-b") (x-b)
=Y (@@ 1) ((rn-a") @ (x3-5") (10 (x3-b)).
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Since RA7 p is an H-module isomorphism, from the latter equalities and (15) we have

x-((a®b) (@ @b')=> ((xi-a)®1) (Rea((x2:b) @ (x3-a"))) (1@ (x4-b"))
=) ((x-a)® (%2 b)) ((x3-a") @ (x4 -b"))
=) (x1-(a®b))(x2-(a'®D")).
Thus A ®j B is an H-module algebra. O

Let E4 CA and Ep C B be subspaces that generate A and B, respectively. Thus A =
T(E4)/I4 and B = T(Eg)/Ig, where T(X) denotes the tensor algebra on X, and I4 and I denote
the corresponding ideals of relations. We assume that E4 and Eg are H-stable.

Remark 2.4.6. The H-module structures on E4 and Eg equip T(E4) and T(Ep) with canon-
ical H-module algebra structures. It is straightforward to verify that the maps T(E4) — A and
T(Eg) — B are H-module homomorphisms. In particular, I, and Iz are H-stable subspaces of
T(E,) and T(Ep), respectively.

Consider the linear map
a8 Ea®@Ep — T(Ex ©Eg) , Yap(a®Db) := ab.
Note that we can express 74 p as the composition

Ex®Ep 22" T(Ey @ Eg) @ T(Ey ® Eg) <222 T(E, @ Ep) (16)

where iy : Ex — T(E, @ Eg) and ig : Eg — T(E4 @ Ep) are canonical embeddings. For the next
lemma, recall that the H-module structure on E4 ¢ Eg induces a canonical H-module algebra
structure on T(E, & Ep).

Lemma 2.4.7. vy, p is an H-module homomorphism.

Proof. Since i, ip and the product of T(E4 @ Ep) are H-module homomorphisms, the assertion
follows from the description of y4 g in (16). O

By the universal property of tensor algebras the map E4 @ Ep — A ®j B given by the assign-
menta®b— a® 1+ 1® b induces a homomorphism of algebras

T T(EA @EB) %A@RB

Proposition 2.4.8. Let A, B, Ey and Eg be as above. Then w induces an isomorphism of
algebras

T(Er @ Ep) /Irns =A@y B,
where I4 g denotes the two-sided ideal of T(Ex @ Eg) generated by 14, I and the relations
ba —yap OR&A (b®a) fora€cEy, beEp. (17)

Proof. We have m(E4 @ Ep) = E4 p Where E5 g := (Ep4 ® 1) & (1 ® E). Furthermore, A ® B
is generated as an algebra by E, p. Thus 7 is a surjection. Next we prove that 7 is an injection.
From the definition of the product of A ®3 B it follows that /4 g C ker. Thus, to complete the
proof it suffices to verify the reverse inclusion.

10
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By the relations (17), every element of T(Es @ Eg)/I4 g can be expressed as a linear com-
bination of products of elements of E4 and Ep in which elements of E4 occur before elements
of Eg. Thus,

T(Ex ® Ep) =T (Ea) T(Eg) + I, (18)

Now choose {aq }acz, C T(Ea) and {bg}pecz, € T(Eg) such that {Iy + aq }aez, is a basis of
T(Ea)/In = A and {Ig +bg} ez, is a basis of T(Eg)/Iz = B. From (18) it follows that the
elements I4 g +aqbg for a € I, and 3 € Iy constitute a spanning set of T(Ex @ Eg)/Ia p.
From (15) it follows that 7(a,) = @, ® 1 for some @, € A and 7(bg) = 1 ® bs for some
bs € B. Also, (Iy g+ anbp) =an @ bg. The sets {antacz, and {bs}sez, are bases of A
and B, respectively. Thus 7 maps a spanning set of T(E4 @ Ep)/I4 p bijectively onto the basis
{aa ®bg : a« € Ty, B € I} of A ®y B. It follows that kerm C I4 p.
O

Let ) : Eg X E4 — K be an H-invariant bilinear form, that is
Zw(xl b,xy-a)=¢(x)(b,a) foracEy, beEp, x€H, (19)

where as before € : H — K denotes the counit of H. Let I g, denote the two-sided ideal of
T(E4 @ Ep) that is generated by I4, I, and relations of the form

ba—VA’BoRB’A (b®a)—w(b,a) fora € E, b € Ep. (20)
Definition 2.4.9. We call the algebra A®j , B := T(Ex ® Eg)/Is .y the t-deformed R-
twisted tensor product of A and B relative to E4 and Ejp.

The H-module structure of E4 @ Ep equips T(E4 @ Ep) with a canonical H-module algebra
structure. We have the following statement.

Proposition 2.4.10. The canonical H-module algebra structure on T(Eq ® Ep) descends to
an H-module algebra structure on A ®y ,, B.

Proof. It suffices to verify that I p ., is an H-stable subspace. By remark 2.4.6 the subspaces
I and I of T(E4 @ Ep) are H-stable. Thus it remains to show that the relations (20) span an
H-submodule of T(E,4 ® Ep).
Any x € H acts on T°(E4, @ Ep) = K by €(x). Next let a € E4, b € Eg and x € H. By (19)
and lemma 2.4.7 we have
x-(ba—7a50Rpa(b@a) - (b,a))

:Z((Xl -b) (x2-a) _'YA,BORB,A (x1-b®@x2-a) — 1 (x -b,xg-a)),

which is a sum of relations of the form (20). O

By the universal property of tensor algebras the maps i4 and i induce embeddings of associ-
ative algebras iy : T(Ex) — T(Es ® Ep) and ig : T(Ep) — T(E4 @ Ep). The latter maps induce
H-equivariant homomorphisms of associative algebras

AZT(Ey) Iy —2 A ®kpB and B=T(Eg) /Iy A g,y B-

By tensoring the latter maps and then composing with the products of the algebras T(E4 @ Ep)
and A ®y, ,, B we obtain the following commutative diagram:

1



J. Phys. A: Math. Theor. 57 (2024) 195304 G Letzter et al

T(EA) ® T(Ep) —222 ~ T(Es @ Ep) @ T(Ea ® Ep) —22% . (B4 @ Ep)
l TA®TB l a@b—ab l (21)
A®B———(A®p, B)®(A®p,, B) A®p, B

In the above diagram the vertical maps are the canonical quotients.

Remark 2.4.11. From remark 2.4.6 it follows that i ® iz and i, ® i3 are H® H-module homo-
morphisms. Also, the products of T(E,4 @ Ep) and A ® , B are H-module homomorphisms
(see proposition 2.4.10). Thus the composition of the bottom horizontal maps in (21), which
is given by

AQB—A®p B, a®brs Iy py +ab, (22)

is an H-module homomorphism (recall that an H ® H-module homomorphism is also an H-
module homomorphism by restriction along the coproduct map H — H ® H).

2.5. Locally finite braided triples and their products

Given a braided triple (H,C,R) we set

Ryw:= 0'W7VORV7W7 (23)
where

owy  WRQV—-VRW | wvvRw

is the standard flip map.

Definition 2.5.1. We say a braided triple (H,C,R) is locally finite if it satisfies the following
conditions.

(i) Every V € Obj(C) is a sum of its finite dimensional submodules that belong to Obj(C).
(ii) For finite dimensional modules V, W € Obj(C) there exist wy,w,wy,w € H® H such that

Ryw(vew)=wyy- - (v@w) and R‘z%,v(v®w):wvﬂw~(v®w) forvewe Ve Ww.

Let us briefly explain the idea behind definition 2.5.1. The braiding of the category of
modules of the Hopf algebra U,(gl,) is given by a formal series that does not belong to
U,(gl,) ® Uy(gl,) (see section 3.2). Thus, in order to give a rigorous proof of proposition 2.6.2
below, we need to be able to replace this formal series locally by a finite 2-tensor.

Lemma 2.5.2. Let (H,C,R) be a locally finite braided triple and let Vy,...,V,,Wy,...,W, €
Obj(C) be finite dimensional modules. Let wy w,wyw € HQ H be chosen as in defini-
tion 2.5.1(ii), where V.= @;_, Vi and W := @;_, W.. Then

RV,,W/- (vi® Wj) =wy,w- (vi® Wj) and R‘Z}W/ (vi® Wj) =Wwy,w- (V,‘ ® Wj) ,
forall v; € Vi and w; € Wy where 1 <i,j<r.

Proof. This follows from naturality of R with respect to the canonical maps
VioW, =< Ve W. O
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We need to work with the braided triples associated to tensor products of Hopf algebras
U,(gl,). To this end, we need the following definition.

Definition 2.5.3. Let (H,C,R) and (H',C’,R’) be locally finite braided triples. Set H'' :=
H® H' and equip H'/ with the canonical tensor product Hopf algebra structure. Furthermore,
let C'’ be the full subcategory of the category of H''-modules whose objects are direct sums
of modules of the form V® V' where V € Obj(C) and V' € Obj(C’). We define a braiding on
C'’ as follows. First, for V,W € Obj(C) and V', W’ € Obj(C’) we set

Rioyr wow = (Ryw) 50 (R wi) - (24)

Here (Ry, y),, means that Ry, y acts on the 2" and the 4" components of (V@ V') ® (W&
W'), resulting in a map

(VaVhie (Wa W)= (VaW)e (W V'),

and (IVQVW)13 is defined analogously. Next for V:= P, V,®V/ and W= DWW we
define ‘

Ry = DRy
V,W._ V‘®V/,VV/®VV/
i

Proposition 2.5.4. Let H'/, C'" and R"' be as in definition 2.5.3. Then (H'',C'',R"") is a
locally finite braided triple.

Proof. It is trivial to check that (H'’,C’’,R’’) meets the condition of definition 2.5.1(i). Next
we show that (H'/,C'’,R"") is a braided triple. It is straightforward to check that C’’ is closed
with respect to tensor products and arbitrary direct sums. The hexagon axioms for R’/ follow
from those for R and R’. Next we verify naturality of R’’. Since R’ is defined by expansion
on direct sums of modules, it suffices to prove commutativity of the diagram

RV@V’,W@W’

VeV (We W) WeoW)e(VeV)
fv®fwl lfw@fv

VeV)e WeW) WeoW)e VeV

VeV wew’

for all choices of V, W, V, W € Obj(C), V!, W',V W’ € Obj(C), fy € Morc (Ve V' .V V')
and fiy € More (W@ W' W® w’ ). The subtlety here is that we cannot assume that fy and fiy
can be decomposed into tensor products of maps on the tensor components. Since C'’ satisfies
the condition of definition 2.5.1(i), using naturality of R and R’ we can assume that all of the
modules in the commutative diagram are finite dimensional. Using lemma 2.5.2 for the triples
(H,C,R) and (H',C’,R’) it follows that Rygy’ wew’ and Rygy’ wew’ are given by the left
action of the same 2-tensor in '/ ® H''. Commutativity of the diagram follows immediately.

Finally, we show that the condition of definition 2.5.1(ii) holds. If Ry, w and R\l/’,W’ are equal
to the actions of wy,w € H® H and wy, y» € H' ® H' respectively, then R//ygy: wew is equal
to the action of

(CUV7W)13 (OJ‘I//,W/)24 c H” ®H”.

13
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This verifies definition 2.5.1(ii) for pairs of H'/-modules in C’’ of the form V® V' and W@ W'.
Using lemma 2.5.2 for the triples (H,C,R) and (H',C’,R’), the claim follows for general H'’-

. . . —1
modules in C’’. A similar argument can be given for (R//V®v',W®W’) . O

2.6. Aresult on H''-stable subalgebras of A®g,, B

We continue with the notation of definition 2.5.3. Let A and B be two H'/-module algebras
such that A, B € Obj(C’’). Recall from remark 2.4.4 and proposition 2.4.5 that A ®j,, B is an
H'’'-module algebra and also an H'' @ H''-module (but not necessarily an H'' ® H'’-module
algebra). For w € H® H let

Tw :A®R//B_>A®R//B
denote the linear endomorphism obtained by the action of w,3. Here by definition (x ® y);3 :=

r®1®y®1forx,y € H.

Lemma 2.6.1. Let (H,C,R) and (H',C',R') be locally finite braided triples and let
(H'',C"",R'") be defined as in definition 2.5.3. Let A,B € Obj(C'") be H''-module algebras.
Let V' C A and V} C B be finite dimensional H''-submodules such that V}', V' € Obj(C"").
We decompose V' and Vi as

Vi= @ Via®Viy and Vg = @ Vig® Vg,
IEQY JEQB

where V; 4,V g € Obj(C) and Vi’yA, VjCB € Obj(C’) fori € Q and j € Qg (here Qy and Qp are
index sets). Let wy,w,wy,w € H® H be chosen as in definition 2.5.1(ii) where

V.= @ Via and W:= @ Vi B.

i€y JEQ

For x,y € H let wy, € H® H be defined by wyy :=Wy,w(y ® x)wy,w. Then

((1?,{;24)71 o Tygy oRl’;fA> =T, forl<i<r.

Vé'®V,{'

Proof. By naturality of R’ it follows that
R — R d (R -1 — (p! -
(R54) vy = vy, an (R54) }v/;/@)vl;/— Vi)

Thus from (24) it follows that

<(Rl;:A) o ° Tx®y ° kéiA) |V.f,3®v,f/‘B®Vi,A®Vil,A - (RV/*B’V‘*A) ;31 © Tx®y © <RV/vB’V/¥A) 13°

The relation (23) and lemma 2.5.2 for the triple (H,C, R) imply the assertion of the lemma. [

Proposition 2.6.2. Let (H,C,R) and (H',C',R’) be locally finite braided triples and let
(H'',C'",R'") be defined as in definition 2.5.3. Let A,B € Obj(C'’) be H''-module algebras.
Let & be a subspace of A @y, B and let A denote the subalgebra of A @y, B that is generated
by &. Finally, let H be a sub-bialgebra of H.



J. Phys. A: Math. Theor. 57 (2024) 195304 G Letzter et al

(i) Assume that for every pair of finite dimensional modules V,W € Obj(C), we can choose
wy,w,Wy,w € H® H that satisfy definition 2.5.1(ii). If € is stable under the action of the
subalgebra HR 1 QH® 1 of H'' @ H'', then so is A.

(ii) Assume that for every pair of finite dimensional modules V,W € Obj(C), we can choose
wy,w,Wy,w € H® H that satisfy definition 2.5.1(ii). If € is stable under the action of the
subalgebra HR 1QH® 1 of H'' @ H'', then so is A.

Proof. Forr > Oset A, := Span{w(l) cew® o e gfor1 <i < r},sothat A := >0 Ar
We prove by induction on r that under the assumptions of (i) (respectively, of (ii)), the subspace
A,is (H® 1 ® H® 1)-stable (respectively, (H® 1 ® H® 1)-stable). For r = 0 this is trivial and
for r =1 this follows from the assumption on £. Next assume r > 1.

Choose any «, 8 € A ®p., B. We can express « and 3 as finite sums a =Y a®b and § =
> a’®@b’ where a,a’ € Aand b,b’ € B. For each pair (b,a’) that occurs in these summations
we also express Rl’gf A (b®a’) as a summation, that is,

Ry, (bwa')=) a"'@b", (25)
where of course the a’’ € A and the '’ € B depend on b and a’. For h,h’ € H we have
(h@1e@h'®1)-af = (h®1®h’®1)-(Z(a@b)(a’@b’))
=ho1oh 1) (Zaa”@b”b')
=Y (@)@ @ (0 2 1) (6"B)).
Since both A and B are H'’-module algebras, from the above calculation and (15) we obtain

(hol@h’ ©1)-af=3 (h®1)-a)((hhel)-a")o((hiel1)-b")((hhe1)-b')

~“S (e -ae)((hetehel)- (o) (1 ((e1)-b'),
(26)

where A(h) =Y h; @ hp and A(h’) =>" h{ @ h}. From lemma 2.6.1 it follows that for each
pair (h2,hy) that occurs on the right hand side of (26) there exists a two-tensor wy, ;/ =
Z Uny .} Y uhlz h/ in H® H such that

(e 1@h{©1)-> (@ @b") =Ry (@) ;- (boa)
— Ry, (((u,127h1, ® 1) -b) ® ((u;;%,,], ® 1) -a')) ey

Note that by lemma 2.6.1 the two-tensors Why,py Are of the form

Wiyt = Wv,w (h] @ hy) wy,w, (28)

where wy w,wy,w € H® H satisfy the constraint of definition 2.5.1(ii) for suitable H-modules
V, W. By comparing (26) and (27) and then using (15) we obtain

15
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(e1en’@1)-ap=>"((men-ae (b, 1)) (((4,,, e1)-a)e(mer) b))
=S ((merou,,,@1)-a) (4, @1ene1) ).

In what follows we complete the proofs of part (i) and part (ii).
(i) It suffices to prove that for h € H and i’ € H and w" ... .w(") € £ we have

ho1ah o1)- (w“)---w(’)) €A, (29)
We set
a:=wl) and g:=w?® ...,

Since A(H) C H® H, we can assume that 1{, h; € H, hence by considering the first component
on both sides of (28) we obtain Upy p! € H. Thus, by the induction hypothesis we have

(1@, ©1)-a)eeC AL and ((u,, @10me1)-8) A (30

The inclusion (29) follows from A A,_; = A,.
(ii) It suffices to prove (29) for h € H and h’ € H. We define o and 3 as in (i). As h € H,
we can assume that 1, hy € H, hence ”}/tz,h{ € H. Again the induction hypothesis implies (30)

and the inclusion (29) follows from A1 A,_; = A,. O

2.7 Braidings and matrix coefficients

Let (H,C,R) be alocally finite braided triple. As in (23) we set Ryw:=owyvo Ivi’V7W forV,We
Obj(C). Let H3 C H° denote the Z-span of matrix coefficients of the H-modules that belong to
Obj(C). Since C is closed under direct sums and tensor products, indeed H, is a sub-bialgebra
of H.

Let f € Hg be a sum of matrix coefficients of Vi,...,Vy € Obj(C), that is

N
f: § mvlf*,v[7
i=1

where v; € V; and vi € V;. Similarly, let g€ H; be a sum of matrix coefficients of
Wi,...,Wy € Obj(C), that is g = va My . Choose wy, W,wv w € H® H that satisfy the
condition of definition 2.5.1(ii) for V:= @}_, V; and W:= @"_, W;. We define

i=1 i=l1

R(f®g) :==wyw-(f®g) and R™'(f®g):=wyw-(f®g), 31)

where the actions of wy w and Wy w are by right translation on tensor components. This means
that for example if wy w = > r®r’ € H® H, then

(wyaw- (f@ ) (h@h') =Y f(hr)g(h'r').

Remark 2.7.1. (i) For x,y € H we have
(WV’W ' (mv?% © m”fi*’wf)) (x@y) = (i @w},(x@y)-Rvw(vi@w)), (32)

16
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hence the left hand side of (32) is independent of the choice of wy,w. Summing over i and j it
follows that R(f® g) is independent of the choice of wy w as well. The latter observation and
lemma 2.5.2 imply that R(f® g) does not depend on how f and g are expressed as sums of
matrix coefficients. An analogous statement holds for R~!(f® g).

(ii) From lemma 2.5.2 it also follows that the formulas (31) extend to linear maps

R,R™':HY @ HY — HY @ HR.
Indeed the latter maps R and R~' are mutual inverses.

We define
(f@g,R) = (R(fog))(1a1). (33)
In the rest of this subsection A°(f) = > fi ®f, and A°(g) => g1 ® g».
Lemma 2.7.2. Letf,g € Hy. Then the following relations hold.

(i) R(f®g) = fi®wg(fL®g,R).
(ii) fog =Y (R™'(fy ®81),R)f> ® g.

Proof. It suffices to verify the assertion when f and g are matrix coefficients of finite dimen-
sional H-modules V, W € Obj(C). Suppose that f:= m,« , and g := M= ,,. If Ry w(v@w) =
>~ v®w then by (32) we have R(f® g) = >_m,» ; ® M~ 3. Choose dual bases {v;} and {v}}
for V and V* and dual bases {w;} and {w}} for W and W*. Using the coproduct and counit
identities of H° we have

> fi@gi{h@gnR) =D My, @Mye ((VF,5)(w] )
=) )My, @ (W) My = D My 5@ My, = R(FRg) .
This proves (i). For (i) note that if Ry j,(v@w) =3 7®W then R~ (f@g) => M5 ®
m,,+ 7. Next we write R‘?'W(v,- ®@w;) =>_v'Y @w' for each pair of indices i,j. Then
DR (A ©) RAEDg =D My i @My s, RYMy= , @ My,
= Z(v*,v,}mvi’v ® (w*,wj)mwj*w =My, @My, =fR 8.
0

Fix finite dimensional H- modules V,W € Obj(C). Let {v;}%_, and {w;}%_, be bases of V
and W. Also, let {v¥}¢_, and {w} }¢_, be the dual bases of V* and W*. We denote the matrix

entries of Ry w in the basis v; @ w; by RU]’ so that

Ry.w(vi®@w)) ZR Ve @ wy.

Set tvb =My, and t” b= My= . Then R"l (tk i ® tlw ), so that as in [Ja96, lemma 7.12]
we have the well known relations

St R, => () @ty RIY A forallija,b. (34)
k,l k,l
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From (34) it follows that

D afilh®g,R) =Y herlfi®gi,R) forf.g € He. 35)

3. The g-Weyl algebra &2

In this section we construct &2 as a deformed twisted tensor product of the algebras &2 and
2 with respect to the univeral R-matrix of Ug. Recall that k := C(g).

3.1. The algebra Uq(gl,)

For n € N, the quantized enveloping algebra U,(gl,) is the k-algebra generated by E;, F; for
1 <i<n—1and KZ' for I <i< n, that satisfy the relations K, K-' = K_'K. =1,K. K., =
KE/'KE,"

o . K,—K!
K. EK.'= q[[’*’]]_[[l*”'lﬂEj , K FiK-' = q—[[l,/]]+[[z,1+l]]Fj , E;F; — FiE; = [i,j] q—iq_ll’
where K; := stKa_,il and
1 ifa=>b
[a,b] = . (36)
0 if a#b,

as well as the quantum Serre relations. For \ := 2?:1 mie; € Zey + - - + Ze, we set

n

Ky = ]]& €0

i=1

The Cartan subalgebra of U,(gl,) is the subalgebra spanned by the K for A € Ze; +--- +
Ze,. We denote the Cartan subalgebras of U, = U,(gl,,) and Ug = U,(gl,) by Uy 1, and Uy g,
respectively. Following [KS97] for the choice of the coproduct A on U,(gl,), we set

AE)=E®K+1RE , AF)=Fo1+K'oF , A(K.,): =K, ®K.,.

The counit and antipode of U,(gl,) are given by
c(E)=¢€(F)=0, e(k') =1, S(E)=-EK;' , S(F))=-KF;, S(K.,) =K.
3.2. The universal R-matrix of Uq(gl,)

Recall that a Hopf algebra H is called quasitriangular if it has a universal R-matrix, i.e. if there
exists an invertible 2-tensor R € H ® H satisfying

AP =RAR™" | (A®id)(R)=Ri3Rs , ([d®A)(R)=Ri3Rn. (38)

Strictly speaking, U,(gl,) is not quasitriangular because the formal series that is usually
called the universal R-matrix of U,(gl,) indeed belongs to a topological tensor product
Un(gl,,)®Uy(gl,) where Uy (gl,,) denotes the h-adic Drinfeld—Jimbo quantum group. However,

18
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it turns out that the setting of braided triples is a rigorous way to work with this universal
R-matrix.

Let C denote the full subcategory of the category of U,(gl,)-modules whose objects are
direct sums of irreducible finite dimensional U, (gl,)-modules with highest weight of the form
g2i=1NE where \; > --- > ), are integers. Such modules are sometimes called modules of
type (1,...,1). We define a braiding on C (") as follows. First we fix a formal series description
of the universal R-matrix for U,(gl,). For more details see [VY20, theorem 3.108] or [KS97,
section 8.3.2].

Definition 3.2.1. Given n € N, the standard root vectors of U,(gl,,) are

E. o =(—1y"" [Ei,[...,@_l]q,,] and Fe_i= (1) [F,-_l,[...,F,-]q ,
q q

where 1 <i<j<nand [x,y],+1 :=xy—g*'yx. We set

()
RO (ehELl Hf®Hf) [1Exp, ((9—4¢7")Es @ Fg,), (39)
i=1
with the conventions e" := K., ¢" := ¢, Exp, (x) := 3 - q¢) G 404 iz == g
= q* 2

for1 <i<j<n—1.Also,set

R .= (R(”)>71.
- 21

In what follows, we need R™ to define £ and 9, and we need E(”) to define &2 2" and
2 9. The formal series R™ and R" equip the category C") with two braidings which we
describe below. Given V, W € Obj(C™), the formal series (39) defines a linear map

Ry :VOW =V W.

To give sense to the action of R on V® W we make the following two observations. First, for
any v@w € V® W all but finitely many terms of Exp, ((q —q Eg ® FB[) vanish on v @ w.
Second, if v € Vand w € W are weight vectors of weights ¢* and ¢” with p:= Y "_, ju;¢; and
v:=YI_ v respectively, then the action of ¢"2i=1i®i on v @ w is by multiplication by
the scalar ¢{**) where

(p,v) := Zuiw. (40)
i=1

By a similar reasoning, the action of R™ yields linear maps

Ry VoW Ve W.
It is well known that by setting

Ry i=ovwoR\) and Ry :=ovwoR\) (41)
we obtain braidings on C™), which we will denote by R(") and E(n)
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Proposition 3.2.2. Set H := U,(gl,), C:=C™, and R:=R™ or R

locally finite braided triple.

. Then (H,C,R) is a

Proof. The only assertion that we need to prove is the property of definition 2.5.1(ii). Fix finite
dimensional V, W € Obj (C™). We construct an element of U, (gl,,) ® U, (gl,) thatacts on V®

W as Rg,")w Since Eg ® Fg vanishes on V® W when N; is sufficiently large, the exponential
factor

Exp, ((¢9—q ") Es ®Fp,)

can be replaced by a finite sum. Next we provide a finite two-tensor that replaces e/ 2i=1 Hi®H;
Let ..., 1™ be the distinct weights of W. Choose v € Ze; + - - - + Ze, such that the values
(v, u) are mutually distinct numbers. For 1 <i < N define T; € U,(gl,) by

©)
K, — gl
L= H <q<v7u("’> _q<V,u“)>> '

INNAN
JF#i

Then T; acts by 0 or 1 on the ;1)) -weight space of W, depending on if j # i or j = i respectively.
It follows that the action of Zg\;l K,»®TionV® W is identical to the action of e/ >i=1 Hi®H:
Thus the action of R on V® W is identical to the action of a (finite) two-tensor in U,(gl,) ®

-1 £1
U,(gl,). Analogous constructions can be given for (Rg,") ) and (Eg,")w) . O

As in section 2.2 let U, (gl,)° be the finite dual of U,(gl,).

Definition 3.2.3. Let U,(gl,)* C U,(gl,)° denote the sub-bialgebra that is spanned by matrix
coefficients of objects of C".

For f,g € U,(gl,)* we define (f® g,R(”)> and (f® g,R(”)> as in (33). For finite dimen-
sional V € Obj (C™) the right dual V* also belongs to Obj (C)). From this and the fact that
S and S~! are conjugate by an element of the Cartan subalgebra it follows that if f € U,(gl,)®
then fo S*! € U,(gl,)*. It is well known (see for example [KS97, section 8.1.1]) that

(), = (&) =) (") wma son(r)=(=")" @)

Consequently, for f,g € U,(gl,)® we have

(f@(goS™"), Ry = (g f,R™) and ((foS)®g,R™) = (gaf,R™). 43)

3.3. The involution x —s x"

It is well known (for example see [N096, section 1.4]) that there exists a unique k-linear iso-
morphism of Hopf algebras

Uy () = Uy (g1,)™ , x> 2%, (44)
such that
El:=gKF;, , Fl=q¢ 'EK' , K =K., (45)
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Lemma 3.3.1. S(x") = S~!(x)% for x € U,(gl,).

Proof. Both sides are automorphisms of the algebra U,(gl,). Therefore it suffices to verify
that they agree on the E;, the F;, and the K. This is a straightforward calculation. O

By the canonical duality between U, (gl,) and U,(gl,)°, the map (44) induces an isomorph-
ism of Hopf algebras U, (gl,)° — (U,(gl,)°)"". We denote the latter map by u +— u® as well,
so that

(U x) = (u,x") foruc U, (gl,) and x € U, (gl,). (46)

3.4. The algebras ZPnxn and Dnxn

From now on we denote the standard positive system of the root system of gl, by
Afi={e—¢g:1<i<j<n}

Let V(") denote the irreducible U,(gl,)-module of highest weight g~ (all highest weights are
considered with respect to A;"). Thus V(") = k" as a vector space and the homomorphism of
algebras U,(gl,) — Endy (V(”)) is uniquely determined by the assignments

Ks,v*—>1+((fl*1) Ei, , Ee—Eq,; , Fi—E,

where the E; ; are the elementary matrix units associated to the standard basis {e;}?_, of v
and 1:= 27: , Eii. Using (39) the R-matrix of V") @ V" can be computed directly, and we
obtain

RO o = > qEi®Ei+ > Ei®E +(¢—q") . Eyj®E;

1<ign 1<i#j<n 1<<ign

For 1 <i,j < nlet t;; denote the matrix coefficient Me> ¢ of V(. By (35) the #;; satisfy the
following relations:

(Rl) Ik ltkll qfk,]fk ir Li kt] k— qt],ktt k for i <J
(R2) titrj = tejti, tijteg — tetij = (@ —q~ )t,thJ fori<kandj<L

Similarly, let V(") denote the irreducible U,(gl,)-module with highest weight ¢°'. Again
V(") = k" as vector spaces, but the map U, (gl,) — Endy (V") is uniquely determined by the
assignments

K., —1+(q-1)E; , E—Ein , Fi—Ei,.
Indeed V(") = (V(”))*. The R-matrix of V(" @ V() ig

Rty = 2 4Eu@E+ 3 Eu@Byt(a-q') > EyeEs

1<i<n 1<i#j<n 1<i<j<n

If 0;; for 1 <i,j <n denotes the matrix coefficient Mg+ ¢, Of V(" then again from (35) it
follows that the 9;; satisfy relations similar to those between the 7; j, with g replaced by ¢~
Equivalently,
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(R1") OjOk,i = qOk,iOk.j» O0j k0 x = qO; k0;x for i <j.
(RZ’) 6kJ8i7l = 8,‘716&/',8](718,‘11‘ — (‘3,-J8k71 = (q — q_l)a/w‘au fori<k andj <l

Definition 3.4.1. Let &, denote the subalgebra of U,(gl,,)° generated by the ¢, ;, for 1 <
i,j < n. Similarly, let %,, denote the subalgebra of U,(gl,)° generated by the 0, , for 1 <
i,j <n.

It is well known (for example see [Ta92]) that the relations (R1)-(R2) yield a presenta-

tion of &, x, by generators and relations. Since Z,,x, = 9,‘;';,,, a similar statement holds for

Dyxn- From section 2.2 it follows that both &, ,, and 2, are bialgebras with the coproducts
satisfying

tijr— Ztl}k ®1t,; and &'J — Za,‘k ® 8,(2,»,
k k

and the counits satisfying #, ;,0;; — [[i,j]]. Henceforth we denote the coproducts of 2,, and
Duxn by A and Ag, respectively. In the proof of lemma 3.4.2 we use the relations

iy (Ke) = [ilg™ ™0 6 (B) = [ik+ 100K o 1y (Fo) = [iK] [k + 1]

Lemma 3.4.2. tii =1, and aﬁj =0

f f
), » where t; ; and (’9“- are defined by (46).

Proof. We only give the proof for the #; ;, as the argument for the 0, ; is similar. The assertion
follows if we verify that

(t:,x%) = (t4,x) forx € Uy (gl,). (47)

It suffices to check (47) when x is a generator of U,(gl,), because if (47) holds for x,y € U,(gl,)
then

(tij> 00)) = (1 00) = {0y )t ) = D (tais¥) (Ga0%) = (10,2),

a a

hence (47) also holds for xy. When x is one of the standard generators of U, (gl,,), checking (47)
is a direct calculation. For example for x = E; we have

<ti,jvE/E> = qz<ti,u,Kk><taJ7Fk>~

The right hand side vanishes unless j = k -+ 1 and i = k, in which case we have (t; J,E,E> =11t
follows immediately that <t,~z,-,E,E> = (t;;,Ex) for all i, j, k. O

According to remark 2.2.1, the canonical U, (gl,,) ® U,(gl,)-module structure of U,(gl,) by
left and right translation equips both &, , and Z,x, with U,(gl,) ® U,(gl,)-module algebra
structures. Our next goal is to describe the latter actions explicitly (all of the actions are from
the left side).

Let R4 be the action of U,(gl,) on Z,x, by right translation, as in remark 2.2.1. We have

Rg (x)u= Z(uz,x>u1 forxe U, (gl,), u € Dyxn,
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where as usual A(u) = > u; @ up. Similarly, let L4 be the action of U, (gl,) on Z,x, by left
translation. Thus

Lo (xX)u= Z(ul ,xh>u2 forxe U, (gl,), u € Dyxn.

By remark 2.2.1 both L4 and R4 equip %, with U,(gl,)-module algebra structures.
Next we define the left and right U,(gl,)-actions on ,,. For ¢ € k let £, denote the
unique automorphism of U,(gl,) defined by

gc (El) = CE,' y fc (Fl) = CilFi y fc( ) 51
Lemma 3.4.3. tjjo 55 = Ci_jll'd‘ and 8,'J' o fc = Cj_ia,'J.

Proof. We only give the proof of the assertion for the #;;. In this case we need to verify the
equality

1y (6 (x)) = ¢ 1 (x) (48)

for x € U,(gl,). This is a straightforward calculation in the special case where x is one of the
standard generators of U,(gl,). To complete the proof of (48) note that if (48) holds for x and
x’, then it also holds for xx’ because

lij (& ( xx th a(&e(x ta,] (e (x Z clima+(a)) lia (x )ta,j (xl) = ciijtilj (xx/) .

The map

2: U, (gl,) = Uy (al)™ ™, x> €14 (S(x))

is an isomorphism of Hopf algebras. Thus, the pullback of = induces an isomorphism of Hopf
algebras U,(gl,)° — (U,(gl,)°)™, given by u — uo =. Set

t(u):=uo= forue U,(gl,)". (49)
Lemma 3.4.4. We have
L(tij) =0 for1 <i,j<n. (50)

In particular, the restriction of L to P, is an isomorphism of bialgebras v : Py, — .@,‘l)i ;Op.

Proof. We need to verify #;;(2(x)) = 9;,(x) for x € U,(gl,). It suffices to check the latter
relation for the standard generators of U,(gl,), and this special case follows from a direct
calculation. O

Next note that the map
Lt P = Dy 1(u) 1= 1. (u)

is an isomorphism of bialgebras (indeed ¢(t;;) = 0; ). Let R - and L4 . denote the T-twists
of Ry and L (see remark 2.2.1), where we set 7(x) := S~ (x)? forx € U,(gl,).Foru € Z,,
and x € U,(gl,) set

Rop(X)u:=1""(Rg,x)e() and Lo x)u:=1"(Lgy,(x)(u)).
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By remark 2.2.1(ii), Ry, and Ly, equip Z,x, with U,(gl,)*°>-module algebra struc-
tures. It follows that R » and L4 equip &,x, with U,(gl,)-module structures. By a direct
calculation

Rg:(x)u:Z@(ugLS_l(x)>u1 and Egz(x)u:Z@(ul),S_l(x)h>u2,

for x € Uy(gl,) and u € P, . Using (49), lemma 3.3.1 and the relation $? = £,» we obtain
R (x)u= Z<u2 o f,l/q,xﬁtl and Ly (x)u= Z«ul of_q)h ,X)U.

3.5. The algebras &7 and 9

Our next goal is to extend the constructions of section 3.4 to the m X n case.

Definition 3.5.1. Let m and n be positive integers and set N := max{m,n}. We define the
algebra & := P, (respectively, P := D,,x,) to be the subalgebra of Py« (respectively,
PDnxn) that is generated by the 7 ; (respectively, the 0 ;) where 1 <i<mand 1 <j< n.

Note that by restricting the U,(gly) ® U,(gly)-module algebra structures on Py and
Dnxn we obtain Upg-module algebra structures on & and . Let us describe these Upg-
module algebras more precisely. For convenience we first assume that m < n. Then the sub-
algebra of Uq(g[n) generated by E,-,F,-,Kgf1 for 1 <i<m—1and 1 <j<misisomorphic to
U,(gl,,) = U.. With this identification of U; with a subalgebra of U,(gl,) we have the follow-
ing lemma.

Lemma 3.5.2. Suppose that m < n and we identify Uy with a subalgebra of U,(gl,,) as above.
Then Lo(x)P C D and Lo (x) P C P forx € Uy.

Proof. We only prove this for L4 (for L4 the proof is similar). Since &, is a U -module
algebra, it suffices to check that if i < m and x is one of the standard generators of Uy then
Ly(x)0;; € 2. M x=E;for 1 <k<m—1then

n n

Lo (E)Oj=> (OraE)0aj =Y (0a:qKcF)Daj=a Y > (0i5,Ki)(Op.ar Fi) D

a=1 a=1 a=1 b=1

(51

We have (0p 4, Fr) = (€}, Ex+1€a) = [a,k]|[D,k + 1]. In particular, (Op 4, Fx) = 0 unless a <
m — 1. It follows that the right hand side of (51) is a linear combination of the J,; where
a <m—1, hence it lies in &. The calculations for the cases x = F; for 1 <k<m—1 and
x= Kg:k1 for 1 < k < m are similar. O

Lemma 3.5.2 implies that &2 and 2 are Ug-stable subspaces of &, «, and Z,x,, where
we consider

ULR = Uq (g[m) 02y Uq (g[n) = UL b2 UR

as a subalgebra of U, (gl,) ® U,(gl,) via the aforementioned embedding U, — U,(gl,). Thus,
& and 2 inherit Ug-module algebra structures from &2, «,, and %, .

Henceforth we mostly drop the symbols £ g, L5, R % and R4 from our notation. Instead,
we use the notation

(x®y)-u
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to denote the action of x®y € Urg on u € & (or u € Z). The actions of x®y € Uy ® Ug on
u€ & and onv € 2 are given explicitly by the formulas

(@) u=3 (), S (1)) (us), ST ur =Y (w08 )" x) (s 061/, ¥}
(52)

and

(x®3)-v =3 1.8 (va,3)va = S0 sy, (53)

with (A ®@1)oAxu)=>u1Q@ueu; and (AgR1)oAg(v)=>vi@vmv; in
Sweedler notation, where A 5 and A4 denote the coproducts of &2, ,, and &, «,,, respectively.

Remark 3.5.3. In the case m > n the construction of the U, g-action is the same, except that
we embed U,(gl,,) ® U,(gl,) in Uy(gl,) ® U,(gl,,). However, formulas (52) and (53) remain
the same.

Definition 3.5.4. The map ¢y : Ug — Endg(2?) is the homomorphism of algebras induced
by the action (52).

3.6. U p-module decomposition of & and &

For any integer partition A satisfying £(\) < n, where ¢(\) denotes the length of A, let V)
denote the irreducible finite dimensional Ug-module of type (1,...,1) with highest weight
g>=i*& (with respect to AH). If X satisfies £(\) < m we use the same notation V' to denote
the analogously defined module of Uy.

The algebras & and 2 are naturally graded by degree of monomials. For d > 0 let
P2 (respectively, 2@) denote the graded component of degree d of & (respectively, 2).
Furthermore, let A4, be the set of integer partitions A such that £(\) < d and |\| = r, where
|A| denotes the size of A. The following proposition is well known and its proof can be found
for example in [NYM93, Ta92, Zh02].

Proposition 3.6.1. Ser d := min{m,n}. We have isomorphisms of Ug-modules

2= P vievy ad 7V == P VieVa

)\EAdy,- AGAd,r

Remark 3.6.2. The action of U, ® U on the generators of & and Z can be computed expli-
citly. For the subalgebra Ug = 1 ® Ug of U, the action is given by

Ei - 0ij = [k+1,j] Oi ks Fe- 01y = [kjlOipsrs Koy 0iy=q10,,
Ep-tij=—kjlq  tiarr, Fe-tij=—[k+ 1l qtix, Keo-tij=q "l

where | <k<n—1,1<i<mand 1 <j<n For U, = U, ®1 the formulas are similar but
the action occurs in the first index (thus, they are obtained by replacing 0, ; by 0;; and ¢, ;
by ljJ).

3.7 The algebras %% and 22
Forn>11let R™ and B(") be as in definition 3.2.1.
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Definition 3.7.1. We set C; := C¢m and Cg := C™_ Furthermore, we set
Ry=R"™ | R =R"™ | Rg:=R" . Rp:=R".

We define braidings R, and EL on Cy, and Ry and EL on Cg as in (41).

From proposition 3.2.2 it follows that (U.,Cz,R;) and (Ug,Cg,Ry) are locally finite
braided triples. Thus the product (in the sense of definition 2.5.3) of (UL,CL,RL) and
(Ur,Cr,Ry) is also a locally finite braided triple of the form (U.g,Crz, R, ), Where R, g is
defined as in (24). Furthermore, proposition 3.6.1 implies that &2, 2 € Obj(Crr).

Recall that 20 and 2" are U g-modules. Let v, : @(') x 21 5k be the Upg-
invariant k-bilinear form, in the sense of (19), that is defined by

Yo (Orjytey) =i,k [J,{]] for 1 <i,k<m,and 1 <j,I<n.
Definition 3.7.2. We define the algebras & 2¢" and & % by
PP =P Rr7 and PP :=PQp, 7, (54)

according to deﬁnitign 2'4;2 and definition 2.4.9, with A := P, E, .= 2 B:= 9, Ep :=
P, ap =)o, and R := R .

It turns out that there is an equivalent description of %2 and & ¢ by generators and
relations. Recall the notation [[a, b] that was defined in (36). We set

ol {7

Definition 3.7.3. The algebra 7% is generated by 2mn generators f;; and J;; for 1 <i<m
and 1 <j < n, modulo the relations (R1), (R2), (R1/), (R2’) of section 3.4 and the relations

aﬁl,ﬁztal,az = [[a]7a1 a27a2 Z Z Z Z <>] +|:| <>2+|:|2)tb1 bz& bza (55)

bizaip, >a, b>2@ b, >a,

where

Oi = lai,a@ll [[bi,bi]] [ai,bil], and 0= (1 - [ai,a]) [a:, b [[@,bi]] -

The algebra & Z# is also generated by 2mn generators ;jand 0 jfor 1 <i<mand 1 <j<n
modulo the same relations, except that [[a;,d]|[az,@>]] does not occur on the right hand side
of (55).

Remark 3.7.4. The relation (55) of &% can be written more explicitly as the relations (R3)—
(R6) below:

(R3) 867;,1‘,17,1 = l‘dvaaqb if b # aand ¢ 75 d.
(R4) aC,btc,a = qtc,aac,b + Z (q - q_l )tc/,aac’,b if b 7é a.

c'>c
(R5) Ocatda = qlaaOeat P (0= q M Ocar if c£d.
a’'>a
(R6) O gteq =1+ Z Z gl A+ dl (g =12l =ld"dly, 5,
c’'>cd’ >d
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For &2 %" the relation (55) has the same explicit form, except that (R6) should be replaced
by

(R6") Oy yteg = Z Z q[[C’yv]]H[d',d]] (g— q*I)Z*[[C'yc]]*[[d'»d]]tc/ 210ur a1
¢'>ed'>d
Proposition 3.7.5. definition 3.7.2 and definition 3.7.3 are equivalent.

Proof. We just need to explain how to compute the mixed relations (17) and (20). As a Ujg-
module,

W =y gy and 2N =y gyn),

where the isomorphisms are 0, ; — e; @ e; and t; j — e; @ e;. By a direct calculation using defin-
ition 3.2.1 we obtain

(RL)V(/”) V(M)_q Z E11®Ezz+ Z EIZ®E]J+ q—q 1 Z Ej,i®E',i~

1<i<m 1<i#j<m 1<i<j<m

The formula for (R )y v is similar, with m replaced by n. The mixed relations (20) of %
and (17) of ZZ2# can now be computed explicitly based on definitions 2.4.2 and 2.4.9. [

3.8. Bases of monomials for 22 and 2 2%

Consider the monomials

ai, 1 ain Am,1 Am,n yPm.n Din, 1 b1 b1 1 >0
B3ttt Ol =2 0 -0+ O0 Y aiy b €277 (56)

m,1 m,1 I,n
The expression (56) makes sense both as an element of £22 and an element of & 2%,
Proposition 3.8.1. The monomials (56) form a k-basis of Z 9.

Proof. By a standard straightening argument we can show that by using the relations (R1),
(R17), (R2), (R2’) and (R3)—~(R6) any product of the 7; ; and the 0; ; can be expressed as a linear
combination of the monomials (56). The fact that the latter monomials are indeed linearly
independent follows from Bergman’s Diamond Lemma and some straightforward (although
tedious) computations. This was also pointed out in [SSV04, section 10]. In [LSS22a] we give
a more conceptual proof of this assertion using the theory of PBW deformations of quadratic
algebras. O

Proposition 3.8.2. The algebra & has a basis consisting of monomials (56) where b; j =0
foralli,j. The algebra 9 has a basis consisting of monomials (56) where a;; = 0 for all i,j.

Proof. This follows from proposition 3.8.1. It is also proved for example in [NYM93,
theorem 1.4]. O

By proposition 2.4.8 the algebra & Z¢" is a quotient of the free algebra on 2mn generators
1;j and 0, ;. Note that by a slight abuse of notation we use the same notation for generators of
PP and P 2% . In the next proposition we describe a basis for this quotient.

Proposition 3.8.3. The monomials (56) form a basis of & D¢

Proof. This follows from the vector space decomposition X P =X R 2 and
proposition 3.8.2. O
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Remark 3.8.4. From the results of this subsection it follows that &2 2" has two realizations:

(1) According to definition 3.7.2 we have Z 2% = & ® 9 as a k-vector space. Thus, &2 2
is generated by 2mn generators #;; ® 1 and 1 ® 0; ;.

(i1) By proposition 2.4.8 we can realize &2 2¢" as a quotient of the free k-algebra generated by
2mn generators: the t; ; and the 0; ;.

Definition 3.8.5. Define a total order < on the set of pairs (i, f) w1th I<i<mand1<j<
as follows: we set (i,j) < (i’,j') if either i +j < i’ +j,ori+j=i"+j’ andl<l .

Remark 3.8.6. The algebra &2 has another basis consisting of monomials of the form

Hr"” Ha" , (57)

where the 0; ; (respectively, the ¢; ;) occur in ascending (respectively, descending) order relative
to the total order <. This can be deduced from proposition 3.8.1. Indeed by an elementary
argument one can show that any monomial of the ¢#; ; of total degree d that is sorted in the order
given in proposition 3.8.1 can be expressed as a linear combination of monomials of the #; ; of
total degree d that are sorted in the order given in (57). A similar assertion holds for monomials
in the 0, ;. Thus the monomials of the form (57) span & %. A dimension counting argument
implies that the latter monomials also form a basis.
By an analogous reasoning we can also show that &2 has a basis that consists of the
monomials
ot A O OO, iy by € 2P0, (58)

m,1 1,n m,1

Here the 0, j (respectively, the 7; ;) are sorted according to the lexicographic order (respectively,
the reverse lexicographic order) on indices.

3.9. The algebras <, and o,

In this subsection we consider two families of algebras, the 7%, and the fgz{,f;n, that slightly
generalize 9 and & 9%

Definition 3.9.1. Fix integers k,/,n > 1 and set m := max{k,[}. Let 7;; and 8,J be as in (5)
where a =m and b =n. We define 2 ; , (respectively, .;zf,flr ,) to be the subalgebra of 7 =

P Dxn (respectively, Z 7% = P @ ) that is generated by the 7;; and the Dy + j (respectively,
the 7, ; ® 1 and the 1 ® Oy 1 j) where

1<i<k , 1<i’<Il and 1<j<n. (59)
Proposition 3.9.2. The algebras <t ; , and .kag;n have the following presentations:

(i) D10 is isomorphic to the quotient of the free k-algebra generated by the symbols t; j and
O jwith i, U, j satisfying (59), modulo the relations (R1), (R2), (R1'), (R2') of section 3.4
and the relations (R3)—(R6) of remark 3.7.4.

(ii) éZ{k%in is isomorphic to the quotient of the free k-algebra generated by the symbols t; j and
O jwith i, U, j satisfying (59), modulo the relations (R1), (R2), (R1'), (R2') of section 3.4
and the relations (R3)—(R5) and (R6') of remark 3.7 4.
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Proof. (i) Denote the quotient of the free algebra by %, ,. Since <%, is a subalgebra of
P D = P Dyxn for m:= max{k,l}, from the explicit description of the relations of # 7 it
follows that there exists a natural epimorphism fy ;,, : Fy 1, — .1, that is uniquely defined
by the assignments #;; — t,,—i4j and Ops j — Om—i4+i’j. A standard straightening argument
proves that every element of .%; ; , is a linear combination of monomials of the form (56).
proposition 3.8.1 implies that f; ; , maps the latter monomials to a linearly independent set of
elements of % ; ,. Thus fy ; ,, is an isomorphism.

(ii) Similar to the proof of (i), with proposition 3.8.1 replaced by proposition 3.8.3. 0

Definition 3.9.3. Forany 1 < r < n we can identify U,(gl,) with a Hopf subalgebra of U,(gl,,)
via the monomorphism of associative algebras

Krn Uy (g[r) - U (g[n)a (60)

defined by k.4 (E;) := Eiyn—r, Krn(Fi) := Fipn—r, and K, (KE") := KE!

Eitn—r"
In the next proposition we establish the existence of the map (4). Recall from
remark 3.8.4(ii) that we consider both 2 and & 2" as algebras generated by 2mn gen-
erators f;; and 0; ;.

Proposition 3.9.4. Fix 1 <m'’

E'ixj,éideﬂggr )forlgzg

m’xXn’
s

"<n. Let 1,0, € P Dyrxns (respectively,

<mand 1<n
m j<n'beasin(5)fora:=m' and b:=n’, that

"and 1 <

tiji=tmipi—in'+1—j and Opj:=On f1—in'+1-j-

Also, let ZiJ,éiJ € P Dyuxn (respectively, fiJ,éiJ c 29¥

) for 1 <i<mand 1 <j<nbeas
in (5) for a == m and b := n, that is

Lij = tmpi—inti—j and Oij = Opipi—inti—j-
Then the following assertions hold.

(i) The assignments ?iJ- ’_ﬂi,i and &-J — (’5,-J- for 1<i<m’ and 1 <j<n' define unique
embeddings of algebras
€= Bﬁﬁ?n, : ‘@-@nﬂxn’ — gz@mxn and e := (egr)Zﬁ:ln/ : ‘@‘@;ir’xn’ - ‘@gr%trxn'
(ii) If we identify U,(gl,,,) ® Uq(gl,,) with a subalgebra of U,(gl,,) ® Uy(gl,) via Ky m @
Ky then the maps e and e are U,(gl,,,) ® U,(gl,,,)-equivariant.

Proof. We only give the details of the proofs of these assertions for & %. The arguments for
P P are analogous.

(i) From definition 3.7.3 and remark 3.7.4 it follows that the generators 7;; and 0;; of
P D s and P Dy, satisfy identical relations. It follows that there exists a homomorph-
ism of algebras PP, x,» — P Dxn- By proposition 3.8.1 the latter map takes a basis of
P Dy s to abasis of &P, «p, hence it is an injection. The uniqueness assertion is trivial.

(i1) We give the proof for e only, since the proof for e is similar. Since &P,/ x,,’ and
P Dmxn are module algebras it suffices to verify equivariance for standard generators of
U,(gl,, ) and U,(gl,) on the 7 ; and the d; ;. This can be done using the explicit formulas
of remark 3.6.2. O
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3.10. The action of 2% on 22 and the map ¢pp

Recall that by proposition 2.4.10, 2% is a U g-module algebra. We denote the action of
xe€UgonDe P byx-D.

Let .# denote the left ideal of &2 that is generated by 2(!). By proposition 3.8.1 we have
a Upg-invariant decomposition

PP=ISP.
This decomposition equips & = X9 /.7 with a & P-module structure given by
PIRYP - P, DR(f+F)—D-f forDe PPandfe Z, (61)

where D - f:= (Df) + .Z.

Definition 3.10.1. The map ¢pp : £ Z — Endi(Z?) is the homomorphism of algebras induced
by (61).

To simplify our notation, henceforth for X € % and fe &7 we write X - f instead of
oo (X)f.

Lemma 3.10.2. The map (61) is a Urg-module homomorphism.

Proof. This is a consequence of the following general fact: let H be a Hopf algebra, A be
an H-module algebra, and / C A be an H-stable left ideal of A. Then the canonical A-module
structure map A ® A/I — A/l is an H-module homomorphism. O

3.11. & is a faithful 22 2-module

The goal of this subsection is to provide a purely algebraic proof of proposition 3.11.4. This
proposition is also proved in [SSV04, theorem 2.6] using analytic tools.

Lemma 3.11.1. Ler 2N .= @\ 2O for k> 0. Then 9, - (<0 C (k=)
Proof. Follows by induction on k and the mixed relations (R3)—(R6) in section 3.7. O

Recall the total order < on the set of pairs (i, j) with 1 <i<m and 1 <j < n from defini-
tion 3.8.5.

Lemma 3.11.2. Assume that (i,,j,) < (i,j) for 1 <r<k. Then 0;;- (t; j, -t j) =0.

Proof. We use induction on k. From (i1,j;) < (i,j) it follows that either i > i; orj > j;. If i > i
then by the mixed relations (R3) or (R5) we have

Bl jy g = €1ty Ouglin ol jy 01,2 D liy jrOijoliy -+l
>

for some ¢y, c; € k. The claim now follows from the induction hypothesis, because i+ j’ >
i+ j and therefore (i,j) < (i,j'). When j > j; the argument is similar. O

For a € Z we set

c(a):= (62)

{Z?_o & ifa>0,

0 otherwise.
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Lemma 3.11.3. Assume that (i,,j,) < (i,j) for 1 < r < k. Then

8 (ta tllJl' 'lika):C(a—l)ﬂjlfﬁg,“'hm fora}l.

1

Proof. The mixed relation (R6) implies

a 2 a—1
it st o+ tivge =107 gy i + 4 fijaiﬁu iy i+ lig

( )Zf 01 jli; g gt (q —1)qu'3u iy i gy iy
i'>i Ji'>j

2
—1
+(‘I_‘] ) Z tt’u’al’g/tz,; Ly ji o lig -
i'>0,j>j

Since min{i’ +j,i +;',i’ +j'} > i+j, by lemma 3.11.2 the sums on the second and the third
line lie in the ideal .#. The assertion follows by induction on a. O

Proposition 3.11.4. & is a faithful & 9-module.

Proof. Let D € 2 and assume that D #0. Then D =} | 450 D, where each D, is a linear
combination of monomials of the form (57) with Zix/. bij=d.Setd, :=min{d : Dy # 0}. By
lemma 3.11.1, for f€ 2(4°) we have D -f = D, -f. Let T denote the set of all the mn-tuples
b := (b;;) for which a monomial of the form (57) occurs in Dy, with a nonzero coefficient.
We sort the components of the b := (b;;) according to < on the pairs (7,j). In other words,
we assume that b := (b17] 012,021, b1 0 D a1 abm,n)~ Let 6 = (E,’J) be the minimum
of 7T in the reverse lexicographic order. Thus, we have

Byn = min{b,,, : (b;j) €T},

Tand by, , = bm n} and so on. From lemmas 3.11.2

then also l;m,h,, =min{by_1, : (bij) €
20, O

i)
and 3.11.3 it follows that Dy, - [, ;"

3.12. Two U r-actions on 29 are identical

By proposition 3.11.4 the map ¢pp is an injection and consequently we can consider % as a
subalgebra of Endi (£?). Thus according to lemma 2.3.1 there exists another action of U g on
elements of & 2. We temporarily denote this action by xe D forx € U;g and D € . In the
following proposition, we show that the latter action is identical to the action that is defined in
the beginning of section 3.10.

Proposition 3.12.1. xeD=x-D forx € Ujgand D € Z 9.
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Proof. By lemma 3.10.2, for f € &2 we have

(xoD)-f= xi-(D-(S(x2)-N)) =D _(x1-D)-(x2-(S(x3)-f)
= @-D)-(e(n)f) =) (xie(x)-D)-f = (x-D)-f.
Since & is a faithful module over Endi(4?), it follows that xe D = x - D. O

Henceforth we only use the notation x - D to denote the Ug-action on Z .

3.13. The maps Py
Recall that X 7% =2 &7 © 9 as a vector space. Let

P:29% - 29 (63)

be the linear map uniquely defined by P(a ® b) :=ab fora € &2 and b € 2.
Proposition 3.13.1. The map P is an isomorphism of Upg-modules.

Proof. The map P is identical to the map (22) when A := &, B:= & and H := Ug. Hence
by remark 2.4.11 it is a homomorphism of U;g-modules. From proposition 3.8.1 and propos-
ition 3.8.3 it follows that P maps a basis of &2 2*" to a basis of # %, hence it is indeed an
isomorphism of U g-modules. O

Definition 3.13.2. Given k,l,n > 1, we set m := max{k, [} and define the map
Piin: ), — Fgn D> P(D), (64)
where P: 298 — P9 is as in (63).
For r,s € Z7° we set
P90 = POV GO and  AED = 8 AP, (65)
so that

P @ o = @A

r,s=>0 r,s =0

By proposition 3.6.1 we obtain an isomorphism of U,(gl;) ® U,(gl;) ® Uy(gl,) ® U,(gl,)-
modules

52 B (Viev)e(VieV,), (66)
AE Alg,r
ne A[,s

where k :=min{k,n} and [:=min{/,n}. Here we consider the left copy of Vi®V, as a
module for U,(gl,) ® U,(gl;) and the right copy of Vi ® V,, as a module for Ug ® Uy =
U,(gl,) ® Uy(gl,). Of course by restriction along the coproduct map Ug — Ug ® Uk we can
also consider the right copy as a Ug-module.
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Proposition 3.13.3. Fora®@a’ € 20 @5 2U) andb@b' € 2 @5 2 we have

mln{uu}
Pa®a’)P(bob')—P((a®a')(bob') @ pg=iv'=i) (67

where u:=r+sandu’ :=r' +s’.
Proof. We have P(a®a’)P(b®b’) =aa’bb’. Using the explicit relations of PP (see
remark 3.7.4) we can move the 0; ; past the ; ; to expressa’basa’b =Y a’’b'’ wherea’' € &
and b'’ € 9. Thus

Pla@a )P(b@b') Zaa”b”b'

Similarly, using the relations of & 2" we can move the 1 ® J;; past the #; ; ® 1 and as a result
we obtain (1®a’)(b® 1) =Y a"’ ®@b" where a’’ € Z and b’’ € 9. It follows that

P((a®a’)(bab") Zaa”b”b’

The only difference between the relations of 2 and £ 2% is (R6) vs. (R6”). Since (R6') is
the homogenized form of (R6”), it follows that

min{r’,s}
Za”b”_ZQ”b” c @ c@‘@(s—i,r’—i)_
i=1
From the latter inclusion (67) follows immediately. O

Recall that gr(.%,,) denotes the associated graded algebra corresponding to the degree
filtration on 2% ; , i.e. the filtration obtained by setting deg(#;;) = deg(J;;) = 1. Note that we
have a canonical isomorphism 7% , = gr(<’; ) since &7 , is graded.

The maps Py, : JZ{kgin — @ 1n do not induce isomorphisms of associative algebras.
However, the following statement holds.

Corollary 3.13.4. The associated graded map gr(Py ) induces a Ug-equivariant isomorph-
ism between ,;aflflrm %gr(%‘cﬁ’n) and gr(h ). When k=1=m, the latter map is Upg-
equivariant.

Proof. From proposition 3.13.3 it follows that the associated graded map gr(Py, ) is an iso-
morphism of associative algebras from gr(#f,) = &/, onto gr(#,,). The equivariance
statements follow from proposition 3.13.1. O

3.14. The algebras U,, Ug and U5
We set

Ug := ¢ (P2) :={x € Ug : duy(x) € PD}.
Also, we set

I?LZ:{XEULIX(@IEZL’]LR} and &RZ:{XGURZI(X)XGIOJLR}.
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Recall that the adjoint action of Uy is ady(x) := ) y;xS(y2) for x,y € Urg. Recall that we
equip Endy (2?) with the Upg-module structure of lemma 2.3.1 and we denote the latter action
by x- T for x € Urg and T € Endg(2?). Then it is straightforward from the definition of ¢y
that

¢u(ady (x) =y-dy(x) forx,ye Ur. (68)

Lemma 3.14.1. adx(f]LR) - i]LRfOV)C € Uprg.
Proof. Follows immediately from (68) and proposition 3.12.1. 0

Remark 3.14.2. When m < n, proposition 3.6.1 implies that the map £ : U, — Endg (&) is
an injection. The argument is similar to the proof of [KS97, theorem 7.1.5.13].

Let %, denote the kernel of R ¢ : Ur — Endg(2?). For the next proposition recall the nota-
tion .% (H,I) defined in (11).
Proposition 3.14.3. Assume that m < n. Then U, C Z(UL) and Ug C F (Ug, ).
Proof. Since the actions of Uyg on & and & are degree preserving, it follows that Z % is a
locally finite U z-module. The assertions of the proposition follow from the fact that the maps
UL 2y PP and U, ®/(Ur N, ) — PP are injective and U g-equivariant (this is equivalent
to (68)). O

The following proposition is a ‘no-go theorem’ that provides evidence that the commutative
diagram (1) cannot be fully quantized.

Proposition 3.14.4. There does not exist a k-algebra PP with the following properties:

(i) PP isa  locally finite Uyg-module.

(ii) & is a P D-module and the action map PG R P — L is a homomorphism of Upg-
module. _ -
(iii) There exists a homomorphism of algebras ¢ : Urg — PP such that the diagram

z® me%N 4—)D- f
PP P

is commutative.

Proof. Let us denote the U g-action of (i) by x- D for x € Urg and D € PY. Let ¥ C PG
denote the kernel of the map PG — Endi(Z?) that is induced by the 2 P-module structure
on &. We define a new Ujg-action on & 2 by setting

xeD:=Y ¢(x1))DH(S(x2)) forx€ Ugand D€ P 7.

By the proof of proposition 3.12.1 we obtain (xe D) — (x- D) € J# forx € Uigand D € P9,
In particular, for x,y € Uy if we set D := ¢(y) then we have

$(adi(y)) + H# =xeD+ X =x-D+.X. (69)
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Now assume that m < n, so that the restriction of (E to a map U, ® 1 — Endg (%) is faith-
ful. By (69) it follows that if y € U, ® 1 then the image of ¢(ady,g1(y)) in PP/ A is

finite dimensional. But ¢(ady, 51(y)) N % = {0}, hence ady, g1 (v) is also finite dimensional.
Consequently, we have shown that U, = % (U}), which is a contradiction. O

3.15. Relation between theorem A(i) and theorem A(ii)

Our goal in this subsection is to prove lemma 3.15.1 below, which implies that theorem A(ii)
follows by symmetry from theorem A(i).

From the symmetry of the defining relations of & %,,, with respect to the two indices of
the generators #;; and 0, ; it follows that there exists an isomorphism of algebras

Nm,n - g@mxn — f@@nxrm

such that 1, ,(t;;) = t;,; and 1), ,(0; ;) = 0;,i for 1 <i <mand 1 <j < n. Note that),, , restricts
to an isomorphism ,,x, = &, «m. This naturally results in an isomorphism of algebras
Endy(Pxn) = Endg(Pxm)-

Lemma 3.15.1. The following assertions hold.
(i) Forx®y € Uy(gl,,) ® Uy(gl,) and D € P Dy we have

N (X®Y) D) = (y@x)  Nhu,n (D) -

(ii) The induced isomorphism Endy (P xn) = Endy (P, xm) maps the images of U, (gl,,,) and
U,(gl,) in Endy(Pxn) onto the images of U, (gl,,) and U,(gl,) in Endi (2, 5m).

Proof. (i) It suffices to prove the assertion when x and y are selected from the standard generat-
ors of Uy,(gl,,) and U,(gl,), respectively. If D = ¢, ; or D = 0, , then the assertion follows from
symmetry of the effect of the generators on the indices of the ¢; ; and the J; ; (see remark 3.6.2).
For general D € # 9, «,, the assertion follows from the fact that 2 Z,,«, and &£ D, «,, are
module algebras over U,(gl,,) ® U,(gl,) and U,(gl,) ® U,(gl,,), respectively.

(i1) Follows immediately from (i). O

3.16. Relation to C[Matm n]q and Pol(Matm n)q

We can now relate our algebras &7 and # 2 to the C-algebras C[Mat,, ,|, and Pol(Mat,, , ),
(where 0 < g < 1) that are introduced in [SSV04, BKV06]. We remark that in [BKV06] only
the special case m=n is considered, and the latter algebras are denoted by C[Mat,], and
Pol(Mat,),, respectively. The algebra Pol(Mat,, ,), is defined in [SSV04, section 2] in terms
of the generators z} and (zj’)* where 1 <i<m and 1 <j < n. These generators satisfy the
relations (2.1)—(2.7) of [SSV04]. For the reader’s convenience we describe the relations of
Pol(Mat,, ,),. The relations among the zj (which are (2.1)—(2.3) of [SSV04]) are identical to
the relations among the ¢; ;, the only difference being that ¢ becomes a complex-valued para-
meter. In a similar way, the relations among the (zj’)* (which are (2.4)—(2.6) of [SSV04])
are identical to the relations among the 0; ;. The mixed relations (which correspond to (2.7)
of [SSV04]) are

@) d=a > 3 () () w @)+ Bala (0 -a).
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where rii =1, rij =g ! fori#j, r’,‘f =1—g2forj>i, and r;j, = 0 otherwise. The algebra
C[Mat,, ,], is the subalgebra of Pol(Mat,, , ), that is generated by the z]’

Throughout this subsection we set A := Z[q,q~']. The relations of #Z in definition 3.7.3
are defined over A. Thus we obtain an integral form &2 24 of &% by considering the free A-
submodule of &% that is generated by the monomials (56). Evaluation at g, for 0 < g, < 1

results in a ring homomorphism A — C. Set 7, , := PP @, C.

Corollary 3.16.1. The algebras @9%) and Pol(Mat,, ), are isomorphic by the assignments

1 1 *
z (z)

ti;f — \/TT% and 31-:,' — M.
Proof. Itis straightforward to check that these assignments intertwine the relations (R1)—-(R6)
with the relations (2.1)—(2.7) of [SSV04]. O

In the rest of this subsection we relate the actions of quantized enveloping algebras on &
and on C[Mat,, ,],. Set 24 := 2 N P P*. Then P is a free A-module, with an A-basis that
consists of the monomials

1 i,

ai,i ai,n
tm,l Tmn -

tl,] "'tl,n .

Let U#(gl,) denote the restricted integral A-form of U, (gl,). For integral forms of quantized
enveloping algebras see for example [CP94, section 9.3]. The explicit description of U‘; (gl,)
is given for example in [RT10]. We denote the analogous integral form of the algebra Uz =
U,(gl,) ® Uy(gl,) by Ufg. Thus

For 0 < g, < 1 set U, (gl,) := Uj(gl,) ®, C. By remark 3.6.2 the map Uz ® & — & that
describes the U z-module structure on & restricts to amap U}, @ P4 — 974, After the scalar

extension (—) ®4 C and using the isomorphism 24 ®, C = C[Mat,, ,],, We obtain a structure
of a Uy, (gl,) ® U,, (gl,)-module on C[Mat,, ,|,. that corresponds to a map

(Ugo () © Uy, (al,)) @ C[Maty, ], — C[Maty,], (70)

or equivalently a homomorphism of algebras

Gva. : Us, (al,) @ U, (g1,) = Ende (C Matya], ) a7

The next proposition relates the latter module structure to the one given in [SSV04, section
9-10] and [BKV06, section 3]. We remark that in [SSV04, BKV06], the module algebra struc-
ture on C[Mat,, , ], is with respect to U,_(gl,,)*P ® U, (gl,)*?. We denote the latter module
structure by the map

dssv : U (04,)° @ U, (1,)" = Ende (C[Maty,,], ).

Let x+ x* for n > 1 be the C-linear isomorphism of Hopf algebras U, (gl,) — U,, (gl,)*
that is given by the same relations as (45) but for g := ¢,.
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Proposition 3.16.2. With ¢U’<qo> and ¢ssy as above, we have

PUgo (x®Y) = pssv (V1 (S (x%)) @9k (S(O?))) forx®y€ U, (gl,) ®U,, (gl,).

where 91, and 9 are the automorphisms of the Hopf algebra U,_(gl,,) that are uniquely defined
by setting

1

I (Ei) :=qo Fui , OL(Fi):=qlE._i , UL(K):= K|

i/ Emt1—i”?

and

1 1
Ur(E):=qo°Fi , Ur(F;):=qE , 9J.(K.):=K.,.

Proof. Follows from comparing remark 3.6.2 with [SSV04, section 8] or [BKVO06, equations

(14), (15)]. Note that the coproduct of U, (gl,) in [BKV06] is co-opposite to the coproduct

considered in the present paper, but this is corrected by composing with x — S (x“). O

3.17 Some technical statements about the action of 2% on &

In this subsection we prove several technical statements about the interaction between the 0, ;
on Z. We will need these statements in the upcoming sections of this paper. In order to make
our exposition more organized we have collected all of them in one subsection. The reader
may find it easier to skip this subsection and return to it whenever there is a reference.

Recall that the action of D € 2% on f€ & is denoted by D - f (see section 3.10).

Lemma 3.17.1. Assume that either i € {a\,...,a,} or j&{bi,...,b,}, then Ojjta p, -+ ta, b,
belongs to the left ideal of Z P that is generated by the O jr satisfying i’ > i and j' > j.
In particular, 0;j - (ta, b, - ta,b,) =0.

Proof. We use induction on r. For r =1 the assertion follows from relations (R3)-(R6). Next
suppose r > 1. If i # a; and j # by then 0, jt,, », = t4, », 0;j and we can use the induction hypo-
thesis. If i = a; thenj & {by,...,b,} and we can write

O jtay.bn**tar by = Qi Oijtas s tar o + (0= G7) D tir by Oit jlasi*tay
i>i
and again the induction hypothesis is applicable to each summand on the right hand side. The
argument for the case j = by is similar. O
Lemma 3.17.2. Assume that either {i\,...,i;} ¢ {ai,...,a,} and {jy,....js} € {b1,...,b.}.
Then

8[1J] a .ai.vx/.r ! (talvhl o .tarybr) = 0'

Proof. Without loss of generality assume that i; & {ay,...,a,}. Relations (R1’) and (R2’)
imply that we can replace 0, ,0p. by either 9y .0; 4 or qF'0p :0; 4 OF Op o0y 0t (q—
g~ ") 40;, o Using the latter replacements we can express ji -+ 0ij, as a linear combina-
tion of monomials that belong to the left ideal %7 := Z;l:l 20;, jof Z. From lemma 3.17.1 it

follows that elements of .# annihilate oy by lay by O
For the following corollary recall that WJ is the quantum minor defined in (7).
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Corollary 3.17.3. Leti:= (i1,...,i,) and j := (j,,...,jr) be r-tuples of integers that satisfy

I<ii<---<i,<m and 1<j;<---<j,<n

ThenMl (tay by -~ tagp,) =0 whena; > iy + 1 forall 1 <i<s

Proof. This follows from lemma 3.17.2 since ﬁj is a linear combination of monomials of the
form O; -0; O

ic(yd1 " Vi dre

Lemma 3.17.4. Suppose that f,g € & satisfy 0, j, ---0,., - f = g for some 1 iy,...,i, <m
and 1 <jy,....jr <n.Thenforany 1 <i{ <...<i/<mand1<j{ <...<j! <nthatsatisfy
either min{j, }/,_, > max{j,}*_, or mm{zu}u > max{i,}3_, we have

Oiy gy O h/,'(ff' i) =8l ji -ty -

Proof. We assume min{j, }/_, > max{j,}$_, (the other case follows by symmetry). Recall
that .# is the left ideal of 2% generated by 2(1) (see section 3.10). Set f' := 9, , - f. Then

Oigf =1+ 2 jrybirjrOpr jr, where the byrj € P2 and the sum is over all pairs (i’,j’)
that satisfy i, <i’ < m and j, <j’ < n. In particular j' & {j{,...,j!}, hence by lemma 3.17.1
we obtain

! !
lrd»ﬁ/ /”'tix/’jf :ftil/xj] ’ t’/x//+ E : b/ lai/aj/til/zf{”.tifxif eftillxllll.”ti;/xfs/_kj'
/ /)

This means 0, j, - (fti/ j -+~ tiz j1) =f'tiz j: -+ tiz jr- The proof is completed by induction on r.
O

Recall the operators D; , from section 1. We have

Df,o"‘ (q2 - I)Df.,1 =1+ (6]2 - 1) Ztm,iam,i'

i=1

The next lemma is a consequence of [BKV06, theorem 1] but we give an elementary, independ-
ent proof. This also makes the proofs of theorems A and B independent of [BKV06, theorem
1].

Lemma3.175. SetD:=D],+ (¢° — 1)D{ |. ThenD - ta, p, -~ ta, 1, = gPrimlmaly, g,
Proof. By remark 3.8.6 the monomials
f=1ann, o amp) =l (0

form a basis of 2. From relations (R1) and (R2) it follows that it suffices to prove the asser-
tion for such monomials. By lemma 3.17.4 the assertion is reduced to the case where a;; =0
for i < m. For j > i we have t,, ;O itmj = G*ty jtm,iOm,i. By successive application of the latter
relation, followed by lemmas 3.11.3 and 3.17.4, we obtain

(¢* = 1) tw i O i f = @ Zi=+17 (g4 — 1)f.
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After summing up over 1 < i < n, the assertion of the lemma is reduced to the algebraic identity

n
1+ Zqzz}x:wlamﬂj (qzam,i _ ]) — q227=1“”w”
i=1

which can be verified by a straightforward computation.

Definition 3.17.6. Given any two ordered pairs of integers (i,7) and (i’,j), we write (i,j) <
(i',j) if i < i’ and j <j’ and at least one of the latter inequalities is strict.

Let .7, , denote the left ideal of &7 that is generated by the 0;; where i > a and j > b.

Lemma 3.17.7. Let a >0 and let 1 <k < n. Then al,kf;fkl = c(a)t] ; + D where c(a) is as
in(62)and D € F .

Proof. Follows by induction on a. For a = 0 the assertion follows from the relation

8],/(t],k =1+ qzl],kahk +D; where D, € Z @.@3,‘,@. (72)
(1,k)<1(i,2)

Suppose that fora givena > 0 we have 9y if{ , = c(a— l)t’f;1 + D, with D, € .7 ;. Using (72)
we obtain

al,kt”l’fkl = (1 +q2t17k81,k+D1) fl’,k = (l +q2c(a — 1)) t‘fﬁk—qutl,sz -‘rDltlf’k‘

From lemma 3.17.1 it follows that D1#{ ; € .#) ;. Finally note that ¢(a) = 1 +¢*c(a —1). O
Lemma 3.178. Leta,b > 0 and let 1 <k < n.
(i) Ifb>a then 97 111! € A

(i) If b<a then 8?}1#;1 = c(a,b)t‘ffkb +D for some c(a,b) €k, where D€ .9 ;.
Furthermore ¢(a,0) = ¢(a) and c(a,b+ 1) =c(a,b)c(a—b—1) for b<a.

Proof. (i) Follows from the equality 8{’11t‘11+kl =00 90¢ T ! and lemma 3.17.7.
(i) We use induction on b. For b =0 this is lemma 3.17.7. If b+ 1 < a then

b+2_ a+1 b+1 a+1
811 l‘ljg = 61,/(811 tl,JI:

=c(a,b) Oy ut{" + 0D =c(a,b)e(a—b—1)t{""" +¢(a,b) Dy + 0y 4D,

where D1,D € #; ;. Part (ii) follows immediately. O
Lemma 3.17.9. Let a,b > 0 and let 1 < k < n. Assume that f € & is a product of the t, j for
j < k— 1. Then the following hold:

(i) If b>a then O} 1 \f € S .
(i) If b<a then 8{’?,:5‘1121 :c(a,b)t‘l‘fkbf—i—D where D€ % and c(a,b) is as in
lemma 3.17.8.

Proof. (i) Follows from lemmas 3.17.8(i) and 3.17.1.
(ii) From lemma 3.17.8(ii) we have 9yt'tt'f = ¢(a,b)t{;"f+ Df. where D € .7} ;. The
assumption on f and lemma 3.17.1 imply that Df € .# ;. O
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Remark 3.17.10. It is easy to verify that ¢(a,b) = c(a)c(a—1)---c(a—b) fora > b > 0. We
extend the domain of ¢(a, b) to pairs (a, b) satisfying a,b > —1 by setting ¢(a,b) = 0 for —1 <
a < b and c(a,b) =1 for a > b= —1. Note that ¢(a,b) is always a polynomial in ¢*> with
integer coefficients. Furthermore, when a > b the degree of ¢(a,b) as a polynomial in ¢ is
(b+1)(2a—0b).

For a k-tuple of non-negative integers a := (ay, ..., a;), where k < n, we set 12 := t‘l’fk e t‘l’il
a . a a
and 0% := OY' --- Oy
Lemma3.1711. Let1 <k' <k, <...<ky <n.Also letay,...,ap >0andby,..., b, > 0. Set
a:=(ay,...,ax) and f:=1" := t?‘,;, ---1{"}. Then

b, —
it k’tl WO S =h+D,

where fi € & and D € 9 . If axr < b then f; =0. If axr > b then
f qu(lererb’)C(ak/ —l,b—l)l‘l{:kl "'l‘l{:krta/ where a’':= (al,...,ak/_l,ak/ —b)

Proof. The assertion is trivial for b =0. If by = --- = b, = 0 then the assertion follows from
lemma 3.17.9(ii) and remark 3.17.10. Next assume without loss of generality that »; > 1. First
suppose that b = 1. Using lemma 3.17.1 we obtain

b “1p -1 1 b b,
WA tlkf Gt s O 11 b W tlkaF 9—9 Z ik, O k’tlk W 0 S
1<i<m

—1.b by
_qtlkalk’tl ki t12k2 tl,kf—"_Dlv

where D € .%, ;,. By repeating the above calculation and then using lemma 3.17.7 we obtain

b b, b by b by
al’k/llikl .- 'tl,kf q et tllkl -t1$kr61$k/ta +D2,
=gt e (ap — 1) 8 1 BT 4Dy,
where D; € S/, a—e€y = (ay,...,ar—1,a, — 1) and we define ¢(—1) := 0. This com-
pletes the proof for b= 1. For b > 1 we just repeat the above argument. O

Lemma 3.1712. Let a:=(ay,...,a,) and b:=(by,...,b,) be n-tuples of non-negative
integers. Then the following statements hold.

(i) O° - =0ifb; > a; for at least one 1 <i < n.
(ii) Assume that a; > b; for all 1 <i < n. Then

P A= <q2?2<“fbf>(bl+“'+bf—l> [[ctai—1.6— 1)) AP, (73)
i=1
and
tbab . ta — (qz:’_z(Za,-—2h,')(b]+..<+hi—l) Hc (ai _ lzbi _ 1)) ta_ (74)
i=1
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Proof. (i) Follows from lemmas 3.17.9 and 3.17.11.
(ii) By lemma 3.17.11, 6°2 = ¢(a, — 1,b, — 1)0° t‘l":n_b”ta + D, where @’ := (ay,...,ay—1),
b’ := (b1,...,b,_1) and D; € .# . Again by lemma 3.17.11,

ro ’ _ 72 1 —bn—
P ttll:xn buja’ _ q(an bn)bn—lc(an_l —1,byy — 1)8b tclv,:n bntlll,nil @ 1D,

wherea’’ := (ay,...,a,_2),b"" := (by,...,b,_») and D, € .# ,_;. Continuing in this fashion
we finally obtain (73). For (74) we should compute the scalar relating 22° and 2. This is
straightforward using the relations #, ;t; j = gty jt; ; for i <j. O

4. Differential operators associated to the K,

Let IOJL, f]R and loJLR be defined as in section 3.14. The main goal of this section is to prove
that certain elements of the Cartan subalgebras of U, and Uy belong to U, and Ug. This is
established in proposition 4.1.1.

4.1. Cartan elements in UL, UR and ULR

Forl <a<mand1 < b <nweset
Aai=—) 26 and Agpi=—)» 2z (75)
i=a i=b

As in (37) these weights correspond to K, , € Uy, and K, , € Uy g, respectively.

Proposition 4.1.1. Let K, , € Upand K, , € Ugr beasin(75), where 1 <a<mand1 <b <
n. Then Ky, , € Uy and Ky, € Ug.

Proof. We only prove the assertion for K, , (for K, , the argument is similar). First we verify
the case a =m. By a straightforward computation based on remark 3.6.2 we have

h- [[mv“i}]t

2
KAL,m “lay by lagh, = 4 ar,by " lag b,

By lemma 3.17.5 the action of D{ ; + (¢ — 1)D{ | on 27 is the same as the action of K, .
Thus, by proposition 3.11.4 we obtain

ou (Kx,,, ®1) =Df,0+(q2— 1)Dy ;. (76)

To complete the proof, by lemma 3.14.1 it suffices to verify that for any a < m, the ad(Uy)-
invariant subalgebra of Uy that is generated by K, ., and K}, , also contains K}, ,. Denoting

the standard generators of Uy by E;, F;, Kl-il, we set

El_, = [Ei ... ,E,,l]q} and F,__ = [FH, ... ,Fi]q,l} S forl <i<j<m
q a-
Letu:=E. _ K . ., andv:=F[ _ K ., .Byasimpleinduction we can verify that

—1 o1
u=(1-¢*) adg,--adg, , (Ky,) and v=(1—¢"%) adp,_,--adr, (Kx..,),
so that u,v € U, by lemma 3.14.1. For x,y € Uy, set [x,y] := xy — yx. Since U, is an algebra,
[El . F. 1K co—c,Kn oy =wv—q *vuc Uy (77)

Ea—Em’" €a—Em
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But the left hand side of (77) is equal to

(G=a ") (Keyop =K VK ey e Knpus = (=07 (Koo, Ky — Kyl -

It follows that
KAL,a =— (q — qil) (uv — quvu) + K)\LMK)\M+l S lOJL.

O

Proposition 4.1.2. U} is generated as an algebra by Uy, and {K.,}I"_,. Similarly, Ug is gen-
erated as an algebra by Ug and {K.,}"_,.

Proof. We give the proof for U, (for Ug the proof is similar). Let A denote the subal-
gebra of Uy, generated by Uy and {K.,}",. Set p:=Y""_ ic;. Then K_5, = Ky, - K,
hence by proposition 4.1.1 we have K_,, € U,. Lemma 3.14.1 implies that E;K_,, = (1 —
¢*)"'adg,(K_,) € Uy, so that E; € A. By a similar argument we can prove that F; € A as
well. Also by our assumption K, € A for 1 <i < m, hence A= Uj. O

5. Explicit formulas for ¢y (K, , ® 1) and ¢y(1® K»,,)

In this section we compute explicit formulas for ¢y (K, , ® 1) and ¢y(1 ® Ky, ,), where K,
and K, , are defined in (75). These explicit formulas are used in the proof of theorem C.

5.1 Eigenvalues of Dy and g-factorial Schur polynomials

For any integer partition v such that ¢(v) < n, let s,, denote the g-factorial Schur polynomial
in n variables associated to v, defined by

det (TT75 7" (xi - ¢"))

1<ij<n
H1<i<j<n (x; — ;)

Sy (xlr"vxn;q) =

Recall that D(r,a,b) € 2 P, is the g-differential operator defined in (8). We will need the
following statement, which is a variation of [BKV06, theorem 1].

Proposition 5.1.1. Let A be an integer partition satisfying {(\) < n. Then the restriction of
D(r,n,n) € P Dyxn to the irreducible Upg-submodule Vi @ V3 of Pyx, is a scalar multiple
of identity, the scalar being

2
-1 rqr—r —2r(n—r) B
P (@) = ( )(1 —A (612“‘” '),---,qm"”*'),q”";qz)- (78)

Proof. We show that the assertion follows from an analogous result in the setting of operators
in Pol(Mat, ), acting on C[Mat,], (see section 3.16) that is proved in [BKVO06, theorem 1].
In the following proof we use the notation introduced in section 3.16. In particular we set
A:=TZlg,q7"].

Step 1. For each irreducible component V; ® V3 of &7,«, (see proposition 3.6.1) we choose
alowest weight vector vy € 222, for the Uy g-action and set W3 := Uy - v. From the explicit
formulas of the action of Uy (see remark 3.6.2) it follows that W4 C 224 . Furthermore, the

nxn*
canonical map W3 ®4 k — V3 ® V3 is an isomorphism.
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Step 2. By corollary 3.16.1 we obtain a map

PIp ey 222 PP, @4 C —— Pol (Mat,),_, (79)
that restricts to a map
P D28 PA L, ®©4 C — C[Mat,],_. (80)
We also have a commutative diagram
A A A
ULR ®A ‘@nxn '@nxn
()®A<Cl l()®AC

qu (g[n) ® U o (g[n) X C[Matn]% - C[Matn]qo

where the top horizontal map is the restriction of the Upg-module structure on &,
and the bottom horizontal map is (70) in the special case m=n. Let us denote both
of the maps (79) and (80) by B, . Then B, (1) = (1— q%)_%zj and B, (0ij) = (1-
q%)’%(zj’:)*. From the definition of D(r,n,n) it is clear that D(r,n,n) € 2 %4 . In addition
B,. ((l — qz)’D(nn,n)) =y,, where y, is the operator defined in [BKV06, equation (11)].

Step 3. From proposition 3.16.2 it follows that 3, (v») is the joint highest weight vector
for the irreducible submodule C[Mat, ], » of C[Mat,], thatis defined in [BKVO06, section 2].
Thus Step 1 and the commutative diagram of Step 2 imply that 3, (W3) = B, (U7 -vx) C
C[Matn]qm;\.

Step 4. Fix \ such that £()\) < n, choose any vector w € W4, and set

w = (1 - qz)’ (D(r,n,n) - ‘P/\’””) W

From Steps 1-2 above it follows that B, (w') =y, B, (W) — (1 —q2)@x ,..(q0)8,, (W).
Since 3, (w) € C[Mat],, x,by [BKVO06, theorem 1] we obtain 3, (w’) = 0. Since evaluations
at g, for infinitely many ¢, separate the points of 224, _ it follows that w’ = 0.
Step 5. By Step 4 we have D(r,n,n) - w = @, , ,(q)w for w € W}. Since W spans V; @ V3
over k, the same assertion holds for all w € Vi ® V3.
O

Remark 5.1.2. In our forthcoming work [LSS22b], we prove a broad extension of proposi-
tion 5.1.1 for Capelli operators on quantum symmetric spaces.

The polynomials s, are specializations of the interpolation Macdonald polynomials R)
defined in [Sah96] (see also [Kn97] and [Ok97]). In the rest of this section we follow the nota-
tion of [Sahl1, section 0.3]. Let Ry (xy,...,%,;¢,t) denote the unique symmetric polynomial
with coefficients in Q(g,7) that satisfies the following conditions:

(1) degRy = || '
(i) Ra(g",...,q"t =1 ... q"t' =" q,t) = O for all partitions p # A that satisfy |u| < |)|.
(iii) Ry can be expressed as Ry =my + Y ux Cu A, where the m,, denote the monomial
symmetric polynomials.
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It is known [Kn97, proposition 2.8] that

sx (X1, X q) = " IRIR (¢, g T X g,q)

The proof of lemma 5.1.4 below uses Okounkov’s binomial theorem for interpolation
Macdonald polynomials [Ok97]. We remark that in [Ok97] the interpolation Macdonald poly-
nomials are defined slightly differently, and are denoted by the P%, but one can show that

Py (X1, X q,) = Ry (x1, 00t x,t " g 1) (81)

For two integer partitions \, i such that £(\),4(u) < n, let [/ﬂ denote the (g, )-binomial
t

4
coefficient defined in [Ok97]. Thus
{/\} _Pule g &2
il Py(@,....q™q,1)
n n__ P o
Lemma 5.1.3. For 0 < r < n we have [i} v =g =) W.

Proof. The proof is a straightforward but somewhat tedious calculation based on a general
combinatorial formula in [Sah11, theorem 0.8] for the (g, f)-binomial coefficients. We give a
brief outline of this calculation. In the notation of [Sah11], the value of (82) can be expressed
as a sum of the form ) . wi(T), where 7 is a standard tableau of shape A\ .. For A := (1") and
w:= (17), there is only one such tableau. By direct calculation one obtains

) NN
11—t BV R B

)\i = (1”_i) s Cl)\i’)\iJrl =

From these, the assertion of the lemma follows immediately. O

Lemma 5.1.4. Set v, := (1) for 0 < r < n. Then
n
Zq7(2>7r(”7’)sur (q"ilxl v TG X q) = X1 X
r=0

Proof. This is stated in [BKVO06, proposition 10] without a proof. We show that it is a special
case of Okounkov’s binomial theorem [Ok97, equation (1.11)]. More specifically, from (81)
it follows that

P; (xb s axn;q7Q) = q(lin)rsl/, (qnilxla s 7%3‘1) .

We now consider the identity [Ok97, equation (1.11)] for 7:=¢ and X := (1"). Then the
left hand side of [Ok97, equation (1.11)] is equal to x; - - - x,,, whereas its right hand side is
equal to

o @Dl |
Z[lr]q,qq G) (qn_l)...(qn—r—i-l_l)sur (¢"  xr,.omiq) -

r=0
To complete the proof, we use lemma 5.1.3. O
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5.2. The explicit formulas

LetD, , and D,’,w be as in section 1. For 0 < r < m we set
D.:=D,, =D, . (83)

Proposition 5.2.1. ¢y(K),, ® 1) = pu(1 @Ky, ,) => 1 o(¢* = 1)'D,.

Proof. BothK),, ® 1 and 1 ® K, act on 2(@) by the scalar ¢* (this is easy to verify using
remark 3.6.2). Since 2 is a faithful 2 Z-module, by proposition 3.6.1 it suffices to verify that
for every partition \ that satisfies £(\) < min{m,n} and |\| = d, the restriction of " (¢* —
1)"D; to the irreducible U;g-submodule Vi ® V3 of & is multiplication by the scalar g*.

Step 1. First we prove the assertion in the case m = n. In this case D, = D(r,n,n), hence by
proposition 5.1.1 it is enough to verify that

qu—r—Zr(n—r)sU' <q2()\1+n—1)7”'7q2()\,,,1+])7q2)\,,;q2) — Pt (84)

Equality (84) follows from lemma 5.1.4 after substituting g by q%.
Step 2. Henceforth assume m < n (by lemma 3.15.1 the proof when m > n is similar). Let

e=e: PD— P Dyxn

ITl Xn

be the embedding of algebras defined in (4), so that e(#;;) = tiyy—m, and €(0;;) = Orn—m,-
Set D, := D(r,n,n). By corollary 3.17.3, ﬁj -(e(Z)) =0 unless i = (uy,...,u,) satifies u; >
n—m+ 1. Thus, for every f€ & we have D, - e(f) = e(D,) -e(f) when 0 < r<m, and D, -
e(f)=0whenm <r<n.

Step 3. Recall that .# denotes the left ideal of & 2 that is generated by 2(1). Let .# ' denote

the left ideal of #Z,,, that is generated by 2V lete: 29 — P D« be as in Step 2.

nxXn*

ForD € #2 and f€ & we have (D -f— Df) € .7, hence

e(D-fy—e(D)e(f)=e(D-f—Df) e I'.

But also e(D) -e(f) —e(D)e(f) € .#’. From the last two relations we obtain e(D) - e(f) —
e(D-f) € .#'. Butin addition e(D) - e(f) —e(D - f) € P,xn, hence e(D) -e(f) = e(D - f).
Step 4. Let f€ 2@ From Step 3 and Step 2 it follows that

e<2m:(q2—1)’n,-f>_e<zm:(q—1) ) (f) = Zq—l )'D,-e(f). (85)

From Step 1 it follows that S>"_ (¢*> — 1)'D, - e(f) = ¢*?e(f). Since e is an injection, from (85)
we obtain > (¢* — 1)'D, - f = ¢**f.

O
Proposition 5.2.2. For 1 <a <mand 1 < b < nwe have
m—a+1 n—b+1
(K, @)= Y (1) Diar, and ou(19Ky,,) = > (1) Dopirr
r:0 (86)
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Proof. We give the proof for K, , ® 1 only (the proof for 1 ® K, , is similar). Every element
of & is expressible as a linear combination of monomials of the form #; j, - - -#;, ;, where i} >
-+« > . Choose k" < k such that iy» > a and iy, < a. Then

([( ®1)ll_ 2k,t~~~--l"-
ALa i141 gk — 4 i1 /N

Set D:= """ (¢ —1)D],

m—a+1,~ From lemma 3.17.4 it follows that

D- (tilJl "'tika) = (D'tilJl ...tik’xjk’) tik'+lxjk’+l =L

Hence it suffices to prove that

’

2k
D-tiyj - ti, g, =9 tij -t (87)

It it

Setm:=m—a-+1. Let e = €2} : P Dnn — PP be the embedding of algebras defined

mxn

in (4), so that e(t; ;) = t; 141 and (8;) = Oiya_1,. Set D, := D(r,i,n) € P Djx,. Similar

to the proof of proposition 5.2.1 we have e(D,)=D, .., and e(D,-f)=e(D,):
e(f) for f€ Py proposition 5.2.1 for PPy, yields Z:":_O“Hf)r-f:qz"/f for f:=
ti—at1gy " tiy—at 14, € Pixn- By applying e to both sides we obtain (87). O

6. Some properties of polarization operators

In this section we investigate invariance and generation properties of the L; ;, the R; ;, and their
variants.

6.1. Invariants and the operators L;j, R;;
Recall from (3) that )2 denotes the centralizer of Z in ).
Lemma 6.1.1. Endy(2?)%* = Endy(2)? and Endy()%* = Endy(2)”.

Proof. We only give the proofs of the two assertions for .#. The inclusion Endy(2?)%* D
Endy ()< is trivial because .%, C .Z. To prove Endy(22)%* C Endy (%)%, choose any T €
Endy ()% . From proposition 5.2.2 it follows that T commutes with

bu (Ko, 1) =00 (K3, @1) (K, 1)) forl<a<m,

where we assume K, ., := 1. From proposition 3.6.1 (and also from remark 3.6.2) it follows
that ¢y(K., ® 1) is a diagonalizable operator whose eigenvalues are powers of ¢. In particular,
the eigenspaces of ¢y(Kr., ® 1) and ¢y (K., ® 1) are the same. Thus T also commutes with
¢u(K., ® 1). Finally, proposition 4.1.2 implies that T € Endy (2)~. O

As in section 2.3 set

PDe,y ={De€ PP :x-D:=¢(x)Dforxc UL},

where ¢; denotes the counit of U;. We define «@@(ek), (ﬂk,l,n)(e,g)’ (%‘%lr,n)( ) and
€R

( %glr,ysr,s)>( : similarly (where eg denotes the counit of Ug).
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Lemma 6.1.2. P 9% = P P< = y@(q) and P D% = P D7 = @.@(ER).

Proof. From lemma 6.1.1 it follows that Z 2%+ = 9% and P 9%+ = P 9. By propos-
ition 3.12.1, the action of Urg on &7 is the restriction of the action of Uz on Endy (%)
that is defined in lemma 2.3.1. Thus lemma 2.3.1 implies that # 2% = 2 9., and P 9% =
P D(er)- O

Lemma 6.1.3. (437;{717,,)(61?) is a subalgebra of < ; , and (;aﬁfh)( ) is a subalgebra of
€R ’

Ln*

Proof. Follows immediately from the fact that both 2% ; , and ,52{,5;’" are Ug-module algebras.
O

Recall that by definition, .27 , is a subalgebra of # 2¢ := 2 7

=, Where m := max{k, [}.
For 1 <i<kand1<,j<!Idefine I:?;efgafk"j’;nby

n n

~gr L~

Lij = Zl‘i,raj’r = ZtmfiJrl,ramfjJrl,r' (88)
r=1 r=1

Under the isomorphism of corollary 3.13.4 the I:',g; correspond to the gr(|~_,~l,~) € gr(Hfin)-
Lemma 6.1.4. L% ¢ (%%l‘,n) oy @ € (i) o for | i< kand 1 <<l

Proof. Recall that ,kag;n is a Ug-module algebra because it is a Ug-stable subalgebra of &2 2¢.

For I:lg; the assertion follows from the formulas of remark 3.6.2. For example

n n n
~gr o~ B ~ ~ ~
E;- LiJ’ =E;- Zti,raj,r = Z (Er : ti,r) (Kv ' aj,r) + Zti,r (E\" : aj,r)
r=1 r=1

r=1
- (—q’lfi,,,_s) (qé‘,n-u—s) + (tin—s) (5j,n+l—s> =0.

Since the map Pk,;,nzﬁfkﬁn%%%n is a Ug-module homomorphism, we have L;; €
(’Q{kvlv”)(ER)' D

Lemma 6.1.5. The U, -submodule of & that is generated by L, ,,, contains L; j for 1 <i,j <
m. Similarly, the Ug-submodule of & 9 that is generated by R, , contains R for 1 <i,j <n.

Proof. We only give the proof for the assertion about the Ug-submodule generated by R, ,
(the other assertion is proved similarly). Denote this submodule by .#. First we prove the
following relations for the Ug-action:

EJ..RI'J_H :RiJand Fi'Ri-l-l,/':*qRi,iforj#i y Fi'Ri+l,i:*qRi,i‘i’qilRi—i—],H-l'
(39)

The proofs of these relations are similar and based on the explicit formulas given in
remark 3.6.2. For example using A(F;) = F;® 1 + Ki_l ® F; we have

Fi-Riy1,i=F;- Zfr,i+13r,i = Z ((Fi - tri1) (Ori) + (Ki_l triv1) (Fi-0pi))

r=1

n
= Z (=qtr,i0ri+q "tri410ri41) = —qRii + ¢ ' Ris1 1.
r=1
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Since R, , € ., from the second relation in (89) for j =n we obtain R; , € .# for i < n. Then
using the first relation in (89) successively forj =n—1,...,i4+ 1 we obtain R; ; € .# fori <.
The above argument can be repeated with the roles of E; and F; switched. This yields R;; € .#
for i > j. Finally, from R,, , and the third relation in (89) we obtain R; ; € .# for 1 <i<n. O

Corollary 6.1.6. L;; € £, forall 1 <i,j <mand R;j € % for 1 <i,j<n.

Proof. From (68) it follows that %, is U, -stable. By (76) we have ¢y(K»,,, ® 1) = 1 + (¢* —
1)Ly m, hence Ly, ,» € Z,. Hence by lemma 6.1.5 we have L, ; € .Z,. The proof of R;; € Z,
is similar. O

6.2. The Uq(gl,) ® Uqg(gl))-module decomposition of (szkg;n)( )
Ay

Given two irreducible Ug-modules V', and V,, the canonical isomorphism (V3 ® Vﬂ)(ek) =
Homy, (Vy,V,,) implies that
. 1 if A=p
dim(V; @V = ’ 90
(V% I»L)(GR) {O it A (90)

Thus, from (66) it follows that as U,(gl;) ® U,(gl;)-modules we have

(g{]j’;’y’s)) =0for r+#sand (%g;rgrr)> o @ Vi ®V,, where d:=min{k,/,n}.
(er) (er) NeAg,
On

7. Themap I'y,,
Let k,I,n > 1 be integers such that &,/ < n. In this section we define a map

) or
Vipn: Prsct = A,

that is a bijection onto the subalgebra (;szgrn)(q) of «7f . A similar map was also used

in [LZZ11]. The ideas of the proofs of lemmas 7.1.1 and 7.1.5 are taken from [LZZ11]. Recall
from definition 3.7.2 that ZZZ%.,, = P, .., @ Dyxn as a Vector space.

nxn

71. Construction of Ty ;

Forn > 1 set

Ly: Pousn = PDisn, Lni=(1®1) 0 A, 92)
where ¢ : P, — Dyxn 1 the anti-isomorphism of bialgebras defined in (50) and A & is the
coproduct of &, ,. In particular in Sweedler’s notation we have T, (u) = > u; ® t(uy) for
ue P,n.

Lemma 7.1.1. Let eg be the counit of Dyxn. Then the map 1 @ eq : P D5,

on —> Puxn 18 a left
inverse to I',,. In particular, T, is an injection.
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Proof. This is equivalent to the relation Y €4 (¢(uz))u; = u for u € &, «,. Since ¢ is a linear
bijection, it suffices to verify that > ep(¢(u2))e(u1) = ¢(u). Since ¢ is an anti-isomorphism of
coalgebras, the latter relation follows from the defining property of the counit €. O

Recall from proposition 3.9.4(i) that the assignments 7+ 7;j and 9, ; ~ 0;; result in an
embedding of algebras

eZi}’ : z@.@kw% e@.@an. 93)
We denote the restriction of the map (93) to the subalgebra Z«; by the same notation, that is
eziln : @kxl — t@nxn- (94)

Lemma 7.1.2. Fore = e, asin(94) we have T, (e(Pix1)) C

T
n

Proof. For a monomial #; j, - -, j, € Pyxn We have

Aty g tig) =Dt g) - A6g) = Y el @layj, o,

Setm’ :=n—kand n’ := n — I. From the above equality it follows that

Ly (e (tiy i) = Z tivtm’ay* tiptm’ a4, @ Bptn' g, Ojy o’ ay -
1<ay,...,ar<n
Thus T, (e(ti, j, - 1i,,)) € ], (see remark 3.8.4). O

Lemma 7.1.2 justifies that the following definition is valid.

Definition 7.1.3. We define I'y;,, : Pis; — %g;n to be the unique map that makes the diagram

nxn
€rxl Ty

‘@’H,XTL

Fk’lm‘ N /

gr
k,l,n

PDE

nxn

Prxi

commutative.
Lemma 7.1.4. The map L'y , is injective.

Proof. Since e} ] is an injective map, this follows from lemma 7.1.1. O

Lemma 7.15. Ty, (2\9) = ( %gjj,ﬁd*”) o Jord=0.
€R

Proof. First we prove that 'y ; ,( Pyx;) C (mfkgj’n)( - By definition 7.1.3 it suffices to prove
€r

that I'y(Puxn) € (2 25,) (cr)- BY standard properties of the antipode of U,
> xS (x1) =er(x) 1 forx € Ug. (95)
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It follows that for x € Ug and u € 22, ., we have

= (u” (L(ulz),Sfl(xl») ® (L(uz)l (L(uz)z,JQ)) (By (52) and (53))

=Y ((u2), S (x0)) (t(uz), 2y @ 1(ug) (By coassociativity)

=) er(®)(u(u2), Dy @ 1(u3) (By (13) and (95)

= egr(x) Zul ® t(uy) = er(x)T(u). (By counit relation of Z,x,)
Thus we have proved x - I', (1) = eg(x) Ty (u), that is, Ty () € (2 Z5,,) (er)- From (92) it fol-

lows that I'y 7, (,@,E;)l) C %%;:,Er’r). Consequently,

Diia (28)) C & 0 (225,) ., = (50 9
k,,n kxl) = ““Tkln ( n><n> (er) k,ln (&) . ( )

By lemma 7.1.4, to complete the proof it suffices to verify that the two sides of (96) have equal
dimensions. Since &,/ < n, from (91) and proposition 3.6.1 it follows that both of these vector
spaces have dimension equal to 3y,  d(Ak)d(A,[) where d(),k) (respectively, d(A,7))

denotes the dimension of the U,(gl;)-module (respectively, U, (gl;)-module) associated to .
O

8. The product x; , , on Py,

Throughout this section we assume that m =n (so that U, = Ug = U,(gl,)) and 1 < k,I < n.

8.1. An explicit formula for the product of 2 7%,

Recall that &y, and Z,x, are subalgebras of Uq(g[n)' (see definition 3.2.3 and defini-
tion 3.4.1). Also recall that given f,g € U,(gl,)*, we define (f® g,R(")> and (f® g,R(”)>
as in (33).

Proposition 8.1.1. Leta,a’ € Py, and b,b’ € Dyx,,. Then the product of P D%, satisfies
(@@b) (@ ®b) = 3 (@) @ (), RO (o (al) © b5, R™)aa) © bab',

where (Ap®@1)oAgp(a’)=> al®@a,®a; and (Ap @1)oAzm(b)=>) b @b, Rbs,
with A g and A4 denoting the coproducts of P, x, and Dy, respectively.

Proof. We need to compute (RLR)BA(b®a’) where B := %,«, and A := £,,,. Recall
from (24) that R, p = (R;)13(Rg)24. The map

yan — Uq (g[n)o , d Haogfl/q

intertwines between the Ug-module structures R » and right translation on U,(gl,)°, in the
sense of remark 2.2.1. Thus lemma 2.7.2 implies that

(Re)ps (b®a") =Y by @af(by® (az0&1/g) , R™). 97)
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Similarly, the maps
Dosen = Uy (g1,)° , bbb and Py — U, (gl,)° , ars (aoé_,)"

intertwine the actions L4 and L4 (on 2, %, and &, «, respectively) with right translation.
This is because the map « — u% on U,(gl,)° that is defined in (46) is an anti-automorphism of
the coalgebra structure of Uy (gl,)°. Thus

(Ry)s(b@a") =Y by @aj{(b)' @ (af 0 &p)", R™). (98)
From (97) and (98) it follows that

(a®b)(a’@b") = 2:<(l71)tl ® (af of,q)h JRMY by (a30&_1/4) JRMVaa) @ byb'.
99)

Since $%(x) =&, (x) for x € Uy(gl,), we have ((v)oS=vo&_ 08" =vol_, for ve
U,(gl,)°, and thus lemma 3.3.1 implies that (vo£_,)f = (1(v) 0 S)¥ = 1(v)F 0 S~!. By a sim-
ilar argument vo £/, = ¢(v) o S~!. Thus in (99) we can substitute (a] 0 {_;)* by t(af)? 0 S~!
andajo&_y,,by(az)o S~1. After these substitutions, the assertion of the proposition follows
from (43). O

8.2. The product x ; , on Py and the map L'y n
We start by defining a binary product
Prxn @ Pruxcn = Pruxcn s WRV = Udky V.

Definition 8.2.1. For u,v € &2, we set

u*nv::Z<L(v1) , )>< R( )>u1vz7 (100)

where the sum ranges over summands of (Ae @ 1)oAgp(u) = u; @u; ®uz and (A ®
1) OA@(V) = ZV[ X Vy @ v3.

For the next proposition recall that T, : 2,5, — P Z%, , is the map defined in (92).
Proposition 8.2.2. T',(ux,v) =1, (u)T,(v) for u,v € P, «p.
Proof. By proposition 8.1.1 for a :=uy, b := t(uz), a’ := vy and b’ := 1(v,) we obtain
L@y (v) =Y (w1 @ () (v @1 (v2))
=D ) @ (ua)" RO (v3) @1 (1), R )urvy @ 1 (u3) . (va)

Since u — ¢(u) is an anti-automorphism of algebras, by (100) we also have
Ly (uxv) = Y (o) @0 (a), RO (1 (v4) @ 1 (u3) RO Yuyvy @ . (v3) 2 (u2)

After changing the indices as (uj,up,us,us) = (uy,up1,up,u3) and (vi,vy,v3,va) =
(vi,v2,v31,v32) by coassociativity, the equality T, (u %, v) = T',,(u)T',,(v) reduces to

Z<L (V31) Rt (I/tzl) 7'R,(n)>L (Ltzg) L (V32) = Z<L (V32) [ (uzz) ,R(n)>L (V31) L (uzl) . (101)
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Setf:=t(v3) and g := ¢(uz). Since u — +(u) is an anti-automorphism of coalgebras, from (43)
it follows that (101) is equivalent to

D (heenRM)ei = (fi©e,R")fe,

which is a consequence of (35). O

Recall that throughout this section 1 < k,/ < n.
Lemma 8.2.3. Lere := e} | be as in (94). Then e(u) *, e(v) € e(Pxi) for u,v € Pixi.

Proof. Set D :=T",(e(u)x,e(v)). By lemma 7.1.5 we have

T, (e (M)) = Fk,l,n (M) S (%%Ir)n) (n) and I, (e (V)) = Fk,l,n (V) S (”%k%;,n) () .

Lin®

Since (&7,5{7,,)( : is a subalgeba of 7% . from proposition 8.2.2 it follows that D €
€R ’

(%ﬁu) o Again by lemma 7.1.5 there exists w € P, such that D =T ,(w) =T, (e(w)).

€R

From injectivity of T',, (see lemma 7.1.1) it follows that e(u) x, e(v) = e(w). Consequently we

obtain e(u) x, e(v) € e( Prx). O
Lemma 8.2.3 validates the following definition.

Definition 8.2.4. For u,v € &, we define a binary product
Pix1 @ Pt = Pixt s UV = Uk, V,

by setting ux; ;v :=e"" (e(u) x, e(v)) where e := e} ]’ is the map (94).
Proposition 8.2.5. Let u,v € Pyy. Then the following statements hold:
@) Lirn (o v) = Tin @)L hpn(v).

) If uce 9,5;)1 and vE 3”,5;), then  ux,,vE€ (@,5;7?) and Ty n(u Xt v) €
( %gn(rﬂ,rﬂ)) _
(er)

k,,n
Proof. (i) By proposition 8.2.2 we have

Fk,l,n (u *k,l,n V) = Fk,l,n (e_l (e (M) *u € (V)))
=T (e(u)xne(n)) =Tu(e()Tn(e(v)) =Tirn()Tern(v).

(ii) By definitions of % ; , and I' ; , the assertions reduce to proving that for u € 3”,52,1 andv ¢

2 we have ux,ve 2T and T, (ux, v) € PEUT) The latter assertions follow
from (100) and the fact that for d > 0 we have A 5»(2\9 ) C 2D & 29 m
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8.3. Themap Y
Let T : Puwn @ Pusxn = Puxn @ Puxn be the map defined by

Tev) =Y (o) @), R™) () @), Ry @vy.  (102)

Lemma 8.3.2. Let M,xy: Poxn @ Prxn — Puxn denote the usual product of the algebra
P wn- Then the following statements hold.

(i) uk, v=m,x, o T(u®v) for u,v € P,x,.

(i) ux,;,v= e ! (m,,x,,(T(e(u) ®e(v)))) foru,v € Py where e := e} ] is as in (94).
Proof. Straightforward from definition 8.2.1. O
Lemma 8.3.3. (0, j, -0, 1) = O unless when iy = ji for 1 <k <r.

Proof. Follows immediately from the definition of the J;; and the canonical pairing (,-)
between U, (gl,)° and U,(gl,). O

Proposition 8.3.3. Lete:=e}}} beasin(94). Set Wy, 4, = gzkxl ® @k for dy,dr > 0and
Wyt g, = (e@€)(Waya). Then Y (W 4,) S Wy 4,

Proof. From the defining formula of Y and the fact that the coproduct of &7, x,, maps 2

nxXn

into 29 @ 29 we obtain T (9 ® gz,f};n) c 2\ @ 2" The claim follows if we
prove that

Teu)e(v) ce®e(Pixi® Pixi) foru,ve Py (103)

It suffices to prove this assertion for monomials u =¢#;, j, -+ ;. j, and v =1, 4, -ty 4 0 Prxy.
Setm’:=n—kandn’:=n—1I. Then

(A®1)oA)(e Ze ), @e(u);,
where for indices 1 < ay,b1,...,a,,b, < n we have

e(u), =twtisatm'tipa, €Wy =tay b lab, €Uz = 1o nrijy o nr 4,

Similarly,
(A@1)oA)(e(v) = e ), ®e(v)s,
where for indices 1 < ¢y,dy,...,cs,d; < n we have
€(V)) =tmrapietmiape, » €W =led T, s €V)3=1lan+q  lan'+q,-

In the rest of this proof we set
a:=(ay,...,a,) , b:=(b1,...,by) , c:=(c1,...,¢5) , d:=(dy,...,dy).
Step 1. From (102) it follows that

T (e Z M(b,c)M’ (a,0,d) 1/ 1iay -t/ iy 0, Doy dy - ey d,» (104)
a,b,c,d
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where using the fact that the map u +— u® of (46) induces an isomorphism between U(gl,,)°
and (U(gl,)°)*" we have

M(b,C) = <8m’+px,cy : "8m’+p1761 ® abr,n’ﬂr ’ "abl,n”rjl »R(n)>
and
M’ (a,b,d) := (Dpr 1 gd, Onrrgrdy @ Oy iy g » RM).

Note that by definition, both of the R-matrix pairings M(b,c) and M’(a,b,d) correspond to
the action of U,(gl,,) on Z,x, C U,(gl,)° by right translation R (see section 2.7).

Step 2. We prove that if ¢, <m’ for some 1 <7<s then M(b,c)=0. To this end,
we investigate the effect of the action of R on the first component in M(b,c), i.e. on
Om'+prcs** Omrtpy - Recall that R( acts by a product of 2-tensors of the form Eg ® Fj,
where 3 = ¢y, — ¢y, for 1 <4 < £y <n, followed by e"2i=1#i®H: (which acts by scalars
on tensor product of monomials in the 9’s and we can ignore it in the argument that fol-
lows). The s-fold coproduct of Eg is a sum of s-tensors of the form X:=X,®---®X
with components in {Eg,Kg,1}. From remark 3.6.2 it follows that the action of X on any
monomial O,/ 4p, ¢, Om’+p, e, does not increase the indices ¢, ..., ¢, and leaves the indices
n' +pi,...,n’ + ps unchanged. Thus lemma 8.3.3 implies that M(b,c) = 0.

Step 3. We prove that if d; < n’ for some 1 <7< s then M'(a,b,d) = 0. The argument is
similar to Step 2, by investigating the action of root vectors Eg on the first component of
M’'(a,b,d), thatis on Oy/4g,.d,** On'+qr.d,-

Step 4. We prove that if b, < n’ for some 1 < ¢ < r then M(b,c) = 0. Again the argument is
similar to Step 2. This time use the fact that the action of the root vectors F 3 does not decrease
the indices n’ +ji,...,n" +j..

Step 5. We prove that if a, < n’ for some 1 < ¢t < r then M(b,c)M’'(a,b,d) = 0. The proof
is slightly more complicated than Steps 2—4. By Step 4 we can assume that min{b,...,b,} >
n’ + 1. As in Steps 2—4 we can express M’(a,b,d) as a sum over the values

CaE,aF,ﬂl,mﬁN (<(E51 "'E5N> -0, 1>) (<(F51 "'FﬁN) -OF, 1>)7 (105)

where Og := Op/14,d,*** On'+q1.d1» OF = Op,.a,* Op, o, and Co, o, 8,,....3, 1 a scalar in k that
results from the action of e 2-i=1 #i®Hi (again, this scalar does not play a role in the argument
that follows). For 8 =€/, — ey, with 1 < £} < ¢, < n we have

0 if 0,0,
Eﬁ~8€/,g//: {(_1)82@1185,4 lf gzzg// (106)

and

0 it 0 £ 0,
Fﬂoagl,[//: {(_1)5251185,4 lf glzg// (107)

First suppose that there exists 1 <N’ < N such that Sy, =&, —ep, with ¢ <n’. Then
by (106) and an argument similar to Step 2 we obtain ((Eg, ---Eg, ) - Og, 1) = 0, hence the cor-
responding value (105) vanishes. Next suppose that for all 1 <N’ < Nwe have Sy = e, — &y,
where ¢; > n’ + 1. The r-fold coproduct of Fg, - - - F3, is a sum of r-tensors X =X, ® - -- @ X
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whose components are products of the Fg,, and the KENI,. If no Fg,, occurs in X; then

lemma 8.3.3 implies that (X-Op,1) =0 unless @, = b, > n’ + 1. If at least one Fg , occurs
in X; then from (107) it follows that (X - Or, 1) = 0 unless a, > n’ 4+ 1 (because we must have
a, = £1). Since we have assumed that g, < n’ we obtain ((Fg, ---F,) - O, 1) = 0. Thus all the
values (105) vanish and we have M'(a,b,d) =0.

Step 6. From Steps 2-5 it follows that the only two-tensors on the right hand side of (104)
that have a nonzero coefficient are those that belong to (e ® ) (Pyx; ® Pixi)- This completes
the proof of (103).

O
Proposition 8.3.4. T induces linear bijections 3”,5?, ® @,s;)n — 3”,52 ® @,E‘;)nfor allr,s > 0.

Proof. Since %5’,2 ® @,5;),1 is finite dimensional, it suffices to prove that Y is an injection. Set
T = ("'®:7) oY o (L ®¢) with ¢ as in (49). Since ¢ is an antiautomorphism of bialgebras
and preseves the grading of &7, «,,, we have

T 20,0 Dl = D © D)

nxn nxn?

T @v) =Y (1) © ), R @ uz, R™ yus @ vs.

It suffices to prove injectivity of Y*.
Step 1. Define YV : 21) @ 2% — 9 & 5)

wxn = Dusin @ Dnxen BY
T (u@v) = Z(ul @1, R™Yuy @ v,
From lemma 2.7.2(i) we have
Y hioaeonRM) =0 (3 6 ©fil0nR)
—0oR" (gof) = (RV) (o).
From this and lemma 2.7.2(ii) it follows that
TO oY (uv) = ((va)' @ ()", R™) (v @ 12, R™) (13 @ v2, R Yus @ 3
= S e ) RON(RD) 1 210) ROy v
= () @ () RD)uy @ vy,
Step 2. Define T : @,Erx)n ® @,E;)n — .@,E;)n ® .@,f;)n by Y@ (u®v) :=u? @v. Set
o= (1) o (1001 )0 1O
Since u — u? is an antiautomorphism of coalgebras on %, «,, we obtain

Tuov) = Z<(V2)h @ U, Ry @ vy
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Step 3. From lemmas 3.4.2-3.4.4 it follows that the assignment v — (v o S)? induces an iso-
morphism of coalgebras &2, «, — 9, «, that preserves the grading. Define a map

TG . g0

nxn

28 590 99%, 1O (uev) =uw ((VOS)h) -

nxn nxn

Using (43) we obtain
-1
(T(3)) 0YoY® (u®v)= Z((vz oS ® uz,R(")>u1 Qv = Z<”2 ®vz,R(")>u1 Q1.

Lemma 2.7.2(i) implies that (T()) oY oY@ (u@v) =R (u®v). Since the map u®
vy R (u®v) is an injection, Y* is also an injection. O

Corollary 8.3.5. Lete := e} be asin (94) and let My : D1 @ Pixi — Pix be the usual
product of Py« Then the following statements hold.

(i) uky, v ="mixs0 (e '@e )oY (e(u)@e(v)) for u,v € Prx..
(ii) Forr,s > 0 the map '@15;)1 ® ﬁ,&)l — @,E;ts) given by u@v — uxk v is surjective.

Proof. (i) By proposition 8.3.3 we have Y (e(u) ® e(v)) € (e @ €)(Pix1 @ Pixi). The asser-
tion follows from the relation My ; = e~ oM,y , 0 (e ®e) and lemma 8.3.2(ii).
(ii) By propositions 8.3.4 and 8.3.3 the map

Tiin:= (e_1 ®e‘1) oYTo(e®e)

is a linear bijection on ﬁ‘,f;)[ ® 5”,5“;)1 From (i) it follows that ux; ; ,v = Misci(Lh 1 n(@V)).

The latter equality reduces the assertion to surjectivity of My, : 3”,5;)1 ® L@k(;)l — @,f;ts),

which is a trivial statement.

9. Proofs of theorems A and B

We begin by describing our strategy for proving theorems A and B. Lemma 3.15.1 implies that
theorem A(ii) follows by symmetry from theorem A(i). Furthermore, lemma 6.1.2 implies
that theorem A(i) is the special case of theorem B for k =/ = m. Thus, it suffices to prove
theorem B.

We now give an outline of the proof of theorem B. By corollary 3.13.4 we have a Ug-
equivariant isomorphism of k-algebras gr(.2% ;,,) = 77 - Recall that by definition, <77  is a
subalgebra of Z9¢ := 2% | where m := max{k,[}. theorem B for gr(.<; ) is equivalent
to the following assertion for <77 .

Theorem B'. The algebra (szkglrn) : is generated by the |~_lg; for 1 <i<kand 1<j<],

€R

where I:lg; is defined as in (88).
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Let BC &% denote the subalgebra generated by the I:lg; for 1 <i<kand 1<j<L.

Lemma 6.1.4 implies that B C (%,) . Let &) be defined as in (65). Since by (91)

we have (,;zf,f?,gr’s)>( = 0 for r # s, to prove theorem B’ it suffices to verify that
1, «

(,Qf,f;;,ﬁ””)( (B forr>0. (108)

We will verify (108) in the case n > max{k,/} in section 9.1 and in the case n < max{k,!}
in section 9.2. This completes the proof of theorem B’ in both cases. Then in section 9.3 we
reduce theorem B for <% ; , to theorem B'.

9.1. Proof of theorem B’ when n > max{k,/}

We prove by induction on r that
(%%;:,Ehr)>( ) - Br for r= 0,
€R

where

B,::Spank{l:gr LY 1<y in <K, 1<j,,...,j,<1}.

i1 41 irdjr

For r = 0 the assertion is trivial. For r = 1, from lemma 7.1.5 it follows that (,kag;’n(l’l)) o is
€R

spanned by the IN_?; =Ty (i) for 1 <i<kand1<j<I where 7;; is defined as in (5) for
a:=kand b := [. Finally, assume r > 1 and choose any D € (.;a/k(lr;)) o By lemma 7.1.5 we
€r

have D =TI’ ,(u) for some u € 9,5;)1 By corollary 8.3.5(ii) the linear map
P ® P = P u@visun v

is a surjection. Thus, we can express u as a sum of products of the form u’x, ,  u’’ where
w' e 2 andu’ € 2" By proposition 8.2.5(i),

x1

Lt (1 *ein ") =Thpn (") Do ().

From lemma 7.1.5 and the induction hypothesis it follows that I'y ; , (u”) € By and T'y ; ,(u’’) €
B,_1. Consequently, D =T ; ,(u) = > T (u’ Xt ') =>"Trun(w ) Trin(u'") € B,

9.2. Proof of theorem B’ when n < max{k,/}

Set k:=min{k,n} and [:=min{/,n}. We use a reduction to theorem B’ for the case of
;zf,f,rn, which follows from section 9.1. This technique is also used in [LZZ11]. However,
théférguments of [LZZ11] do not extend routinely to the present setting. The reason is that
unlike [LZZ11], the products of the generators I:,g; are not weight vectors for the Cartan sub-
algebras of U,(gl,) and U,(gl;). As explained below, in order to circumvent this technical
difficulty we use proposition 2.6.2.
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Set m := max{k, [} and m := max{k,}. Recall that by definition, 7 , is a subalgebra of
PP = P Dy, and ) is a subalgebra of P 7, . Let

mxn mxn*

e = (e5)"" . PG PG

mxn mxn mxn

be the map defined in proposition 3.9.4(i). By checking the images of generators of ;a/kgylryn we
obtain o

gr gr gr
€ (%Jm) S Lin

Lemma sz, e (1) )= (o1,) e (41,).

Proof. This follows from Ug-equivariance of the map e®" (see proposition 3.9.4). O

Recall that ZZ2¢" is a module over Uig @ Upg = U, @ Ur ® Uy @ Ug. Let ng’l) be the
subalgebra of Uyg ® Urg defined by

U i= g (U (a1)) 16 s, (U al)) @ 1.

Proposition 9.2.2. The ng’l) -submodule of & 9" that is generated by e%" <(,;szglrn>( )) is
kbn) ..
equal to (ﬁ/kg;n) .
"/ (er)
Proof. Set d :=min{k,/} = min{k,/,n}. First note that by (90) and (91) we have isomorph-
isms of U, (gl;) ® U,(gl;)-modules

(,g{,flr:i”‘v)) o 0 forr#s and (Vaf,f,‘;,ﬁ”’)) = @ VA®@Vy, (109)

(ex) AEA,

where V3 (respectively, V,) denotes an irreducible U,(gl;)-module (respectively, U,(gl;)-
module). Similarly, using the equivariance of e from proposition 3.9.4(ii) we obtain

() N () =0 forrsts,

€r

and an isomorphism of U, (9[11) ® Uy (g[L) -modules
(%glrn) (€ Nesr (%gjlr’,'gr,r)) — e ((%gjlr’,'gr,r)) (GR)) o ‘7’;\ ® *)\, (110)

where V3 (respectively, Vu) is an irreducible U, (g[&) -module (respectively, U, (9[1) -
module). In the latter relation we use the bar on V3 and V, to distinguish U, (gl,)-modules
from U,(gl;)-modules and U,(gl;)-modules from U,(gl;)-modules. To complete the proof,
we need to verify that the summand V§ ® V, of (110) generates the summand V5 ® V, of
(109) as a U, (gl,) ® Uy, (gl;)-module. In what follows, we prove the latter assertion. Let v} be
a highest weight vector of the U,(g[;)-module V} and let v, be a lowest weight vector of the
U,(gl;)-module V,. It suffices to prove that

Vi®@v, € Vi®V,. (111)
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The weight of v, with respect to the standard Cartan subalgebra of U,(gl;) is obtained by
applying the longest element of the Weyl group S; to the coefficients of quizl Aigi (which is
the highest weight of V). hence the weight of v, is ngzl e-i+1Xi By a similar reasoning,
the weight of v} with respect to the standard Cartan subalgebra of U,(gl;) is ¢~ Yo s A
Sincek —k < k—d,wehave K., - vy = v} for K., € U,(gl;) satisfying 1 <i < k — k. Similarly,
from [ — [ <1 —d it follows that K, - v, = v, for K., € U,(gl;) satisfying 1 <i<[—[. Next
we express vy @ v, as a linear combination of the basis of &2 Z*" that consists of the monomi-
als (56) (see proposition 3.8.3). Since v} ® v, € szkgj,n, the monomials that occur must satisfy
ai,=>b,=0 forl<i<m—k, 1<j<m—-1, 1<r<n. (112)
By remark 3.6.2 each of the occurring monomials is a joint eigenvector for the action of
Kign (Ke)) @ 1@ Ky (K—e,) ® 1 where 1 <i<kand 1 <</,

with eigenvalue

= > (@m—ktirtom—14j,r)
q r=1 ) Js

If this eigenvalue is 1 for i < k — k and j </ — [, then we must have
Anttiv = b, =0 for | <i<k—k 1<j<I-L 1<r<n.  (113)

From (112) and (113) (and the general fact that joint eigenfunctions with distinct eigenvalues
are linearly independent) it follows that all of the occurring monomials belong to egr(f;sz‘%;n).
Consequently, vy ® v, belongs to the left hand side of (110). In addition, vy ® v, is the tensor
product of a lowest weight vector for a U, (g, )-module isomorphic to V% and a highest weight
vector for a U, (gl;)-module isomorphic to V. From the decomposition of the right hand side

of (110) we obtain that v} € V3 and v, € V,. This completes the proof of (111). O

We are now ready to complete the proof of (108). From theorem B’ for M,ﬁn (which is
established in section 9.1) it follows that o

e (o), ) <5

Thus, by proposition 9.2.2 it suffices to prove that B is stable under the action of ng’l). The key
idea to prove this is that the span of the generators of B is stable under an algebra larger than
Uik’l). This enables us to use proposition 2.6.2. Let i/ﬁ"’” be the subalgebra of Upg @ Upg =
Up ® Up ® Up ® Ug defined as follows:

(i) If k < I, then f],(_k’l) = U, ®1® UL ® 1 where Uy, is the subalgebra of U, = U,(gl;) that
is generated by

-1 -1 I
{Ei}i:l U {Fi}i:l—k—H U {KEf}izl :
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(ii) If k > I, then l~]£k’1) = U, ®1® Uy, ® 1 where Uy, is the subalgebra of U, = U,(gl;) that
is generated by

k—1 k—1 k
{Ei}i:kflqtl U {Fi}izl U {Kfi}izl :

Note that in both cases we have Ug(’l) c l~]£k’l).

Proposition 9.2.3. B is stable under the action of Uék’l).

Proof. This follows from proposition 2.6.2 by setting H := Uj, C:=C" where m:=
max{k,l},R:=R;, H :=Ug, C':=C", R :=Rp,A:=P,B:= 9, H:= Uy, and

Szzspank{tf;:1<i<kand1<j<l}.

Checking that £ is stable under the action of fJi"*” is a direct calculation based on remark 3.6.2.
Also, according to proposition 3.2.2 we can choose wy,w,wy,w € H ® H satisfying the condi-
tion of definition 2.5.1(ii) to be finite linear combinations of 2-tensors of the form

KF,@F,B'FB”"'®K/EﬂEﬁ’Eﬁ”'”,

where 8,3',8"’,... are positive roots (see definition 3.2.1) and K, K’ are in the Cartan subal-
gebra. Verifying that the assumptions of proposition 2.6.2(i) and proposition 2.6.2(ii) on wy,w
and wy,w hold is then a direct calculation based on the formulas that express the root vectors
as commutators of the E; and the F; (see definition 3.2.1). O

9.3. Proof of theorem B for <

In this subsection we deduce theorem B for % ;, from theorem B’. Let K be any field. As
usual a K-algebra A is called filtered if it has a filtration

AcAlCcAC..

such that A4/ C A for i,j > 0. We assume that filtered algebras always satisty A% = K.
As usual gr(A) :=@;2 | A/ A denotes the associated graded algebra of A, where by
convention A~! = 0. The following general lemma is standard and can be proved by induction.
Lemma 9.3.1. Let A be a filtered algebra and let ay, . . . ,a, € A' be such that their images in
A/ A° generate gr(A). Then ay, ..., a, generate A.

The passage from theorem B’ to theorem B relies on the folowing proposition.

Proposition 9.3.2. Ler A:=@;°, AW be a graded K-algebra and let B be a filtered K-
algebra. Set A' .= @;zo AD for r>0, so that K := A° C A' C A> C --- is a filtration of
A. Let F : A — B be a filtration-preserving linear map such that gr(F) : gr(A) — gr(B) is an
isomorphism of algebras. Suppose that ay,...,a, € A" generate A. Then F(ay),...,F(a,)
generate B.

Proof. Set F := gr(F). Since A = gr(A), we can consider F as a map A — gr(B). Set b; :=
F(a;) for 1 <i < r. Then b; + B° =F(q;), hence by + B°,... b, + B° generate gr(B). Thus
lemma 9.3.1 implies that by, ..., b, generate B. O
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We return to the proof of theorem B for Ay ; ,. We verify that the assumptions of propos-
ition 9.3.2 hold for A := (%%;m)( Bi= (i) and Fi= Py, Since Py o7, -

€r
& 1. is an isomorphism of Ug-modules, we have F(A) = B. For r > 0 set

A0 = %%vlr:,gr,r) NA A= @A(x) , B .— Pein <%%;7,,Er,r)) and B’ 1= @B(S).
s=0 s=0
(114)

Since the Ug-action on szkglrn leaves the subspaces %g;’,sr’s) stable, we have A = @20 A0,
Define a filtration on B by setting B := F(A") for r > 0. Since we also have B = F(A), the
map gr(F) : gr(A) — gr(B) is an isomorphism of graded vector spaces. Next we prove that
the latter map is an isomorphism of algebras. To this end, it suffices to verify that

F(D)F(D')—F(DD') e B! forDe ADand D’ € AV, (115)

By proposition 3.13.3 the left hand side of (115) belongs to B+~ Since A1 18 a Ug-module
algebra and F is a Ug-module homomorphism, we have F(D),F(D’),F(DD’) € B. It follows
that the left hand side of (115) also belongs to B. But since the map Py, : kaglfn — G nisa
bijection, "

B'NB=P, (%%;,7;Er7r)) NPrin(A) =Prin (ﬂfzfzr:ém) n A) CB" forr>0.

For r =i+ j— 1 this implies the inclusion (115). Thus we have proved that the assumptions
~gr
of proposition 9.3.2 hold for A, B and F : A — B chosen as above. By theorem B’ the LigJ

for 1 <i<kand 1<j</generate A, hence by proposition 9.3.2 the L;; generate 3. This
completes the proof of theorem B for .27 ; ,,.

10. Proof of theorem C

In this section we give the proof of theorem C(i). The proof of theorem C(ii) is analogous. As
a byproduct, in corollary 10.4.1 we obtain explicit generators for ¢;,' (%} +) and ¢, (% e ).
Henceforth we use E;, F; and the K for \ € Ze| + --- + Ze, to denote elements of Uy =

U‘I(g[n)

10.1. Parity condition on the \

For A\, pu € Zey + -+ + Ze, expressed as A := Y ', Nig; and pu:=>_;_ pe; we define (X, 1)
as in (40). We also set A < p if there exists 1 < r < nsuchthat \; = p; foralli < rand A\, <
tr+1- This defines a total order on Ze| + - - - + Ze,. The following lemma is trivial.

Lemma 10.1.1. Let S be a finite subset of Ze\ + - -+ Ze, and let Amax denote the max-
imum of S with respect to <. Let i,...,Yn € Z be such that v, >1 and ~; > 1+
maxy ,es {Zi<j<n |)‘j - /Ljh/j} for i<n. Set Y= Z?:l Vi€i- Then </\max/7> > <,ua'7> for all
W € S such that p1 # Amax-

Proposition 10.1.2. Let T be a finite subset of Zey + - -+ + Ze,. Let x :== ZAEI oKy € Uy

where ¢y € k* for X\ € Z, and assume that x € f]R. Then forall \:=> Ne; € Zand 1 <i<
n—1wehave \j — \i1| € 2729.
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Proof. Step 1. Set D:= ¢y(x). By (68) we have ¢y(ady(x)) =(1®y)-D for y € Ug.
Since 2 is a locally finite Ug-module, ¢y(ady,(x)) is a finite dimensional subspace of
9. Furthermore for every f€ 2, if we set Wy :=ady,(x) - f:= {ady(x) - f : y € Ug}, then
dim Wy < d, where d,, := dim(¢y(ady,(x))). Note that the upper bound d,, on dim Wy is inde-
pendent of f.

Step 2. Fix a; := ¢; — ;41 where 1 <i < n— 1. It suffices to prove that (\, ;) € 2Z>° for
A €Z.Forr>1wehave

r—1
adEfK)\ = H (1 _ q(A,ai>*2j> E{K)\Ki_r-
j=0

Now take a nonzero Uy g-weight vector f€ & of weight ¢~ for :=>"!_, vie;, where

(71,---,7) is an n-tuple of non-negative integers. We have
adEr ' (Z c,\adErK,\>
AET

r—1

rered |37 engm ) H(l_q</\aai>_2j> E-f. (116)

\eT j=0

Step 3. For any \ € Z, if (\, ;) € 2Z7 then H]r;(l) (1 — gt - %) = 0 for all sufficiently
large r. Thus, if we set Z' := { A € T : (X, ;) & 2Z7°} then there exists ro = ro(Z) such that
for all » > r, we have

r—1

S e 0 T (1-ghe ) = e o T[(1-g00 ). am)
Jj=0

\eT j=0 AET’

Note that the lower bound r, is independent of ~.

Step 4. Assume that Z’ # &. Choose r, € N according to Step 3. Without loss of generality
we can also assume that r, > d,. Next choose r > r,. After possibly scaling x by a nonzero
element of the polynomial ring C[g] we can assume that the ¢, are nonzero elements in C[g].
Let Apax denote the maximum of Z’ with respect to <. Choose 7 as in lemma 10.1.1 (with
S :=17"). Since the condition on the coefficient +; only depends on ; for j > i, we can also
assume that 7; — ;11 = 1. For A € Z' let ¢V (A) be the lowest power of ¢ that occurs after
expanding and simplifying ¢xg— H;;(l) (1 — q<’\’”">_2j). We have

N(r7 /\max) < _<)\max; > + ngC)\mX ( )

because the lowest power ¢""*») is obtained as follows: from each factor (1 — g™ =%) we
can choose 1 if (\, ;) —2j > 0 and ¢** =% otherwise. For all other A € Z’ we have

N(r,A) = —degex (g7") — (A7) = rl(X\ i) = r(r—1).
By the choice of v, for A € Z’ such that A # A\p.x we have (Amax,7) = 1+ (A, 7). Thus

<>\maxak'y> > k+ </\,k’Y> for k € N.
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Next choose k € N such that k > 2r, and

—1
k> AEII'I,I/%;AW {degcn,.. (9) +degen (g7") +2r0[(N, i) | +2r0 (210 — 1)} (118)

If we substitute v by kv, from (118) we obtain that N(r, Apax) < N(r,A) for all A € '\ { Apax }
and r, < r < 2r,. Together with Step 3, this proves that for the latter choice of v we have

Zqu <)‘“’1_[( ghen 2/)7&0 for ro <r<2r,,
j=0

AET

because the coefficient of g¥(""*») is nonzero.

Step 5. The ~ chosen at the end of Step 4 satisfies ~; —7viy1 > 2r,, or equivalently
(—7,04) < —2r, (because k > 2r,). Choose f& & of Uy g-weight g~ (for example f:=
(A t"’" ' ). A standard argument based on representation theory of U, (sl,) implies E} - f# 0
fdr 0< r < 2r,. Since the vectors Ej - f for 0 < s < 2r, have distinct Uy g-weights, they are
linearly independent. From Step 2 and Step 4 it follows that the vectors adg: (x) - ffor ro <s <
2r, are also linearly independent. Consequently, dim Wy > r, 4+ 1 > d,, + 1. This contradicts
Step 1. O

10.2. Proof of A\ <0
We begin with the following observation.

Remark 10.2.1. Let D € Z % and let a := (ay,.. an) be an n-tuple of non-negative integers.
We use the notation 9% := 9", --- 0", and 2 := 1{" ---#{', for an n-tuple of integers (a1, ..., a,).
Assume that D - 2 = ¢f2 for some ¢ € k. Recall the basis of 2% that consists of the monomi-
als (58). We can write D as D = D + D, + D3 where

(i) D is a linear combination of basis vectors of the form 9P where b’ is an n-tuple of
non-negative integers,
(i) D, is a linear combination of basis vectors of the form 2'9°" where a’ and b’ are n-tuples
of non-negative integers and a’ # b’, and
(iii) Ds is a linear combination of the remaining basis vectors in (58).

Using lemma 3.17.1 and then lemma 3.17.12 we obtain D -2 = (D + D5) -2 = D; - 2.

Example 10.2.2. Set A\:=¢;+---+¢, and x:= K\ € Ug. Then x-#] , =¢q 'f{ | for r > 1.

From remark 10.2.1, lemma 3.17.12 and remark 3.17.10 it follows that if ¢ (1 ®X) € Ko

then the eigenvalue of 7] ; with respect to ¢y/(1 ® x) should be a ratio of two polynomials such
as ¢1(q)/¢p2(q) where deg ¢, is bounded above (independently of r). Thus, ¢y (1 @x) & Z,

and in particular Z, C Z. Consequently, K is a locally finite element of Uy that does not
belong to Ug.

Proposition 10.2.3. Let 7 be a finite subset of Zey + - - - + Ze,. Let x := ZAeI c Ky € Upp
where ¢\ € k* for A € Z, and assume that x € iJR. Then for all \:=>_ \e; € T we have
A <0.

Proof. Set D := ¢y(x), so that D € #29. Write D = Dy 4+ D, + D3 as in remark 10.2.1 and
suppose that Dy = - Za*0% where Z is a finite set of n-tuples of non-negative integers
and the z, € k*. After scaling x by a nonzero element of C[g] if necessary, we can assume that
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the c) and the z, are nonzero polynomials in g. Recall that 7 := t’{:’n e t’lyj] for v := Zl’.':l Yi€i
in Zey + - -+ Ze,. Then

D= ch%mm,
AeT

Also, by lemma 3.17.12 and remark 10.2.1 we obtain D- 1" =Dy -1 =Y _ > Za(q)¢a(q*)1",
where the ¢, are polynomials in ¢ with integer coefficients. Note that the z, are independent
of ~, but the ¢, can depend on ~.

Set \:= Amax Where A, is the maximum of Z according to the total order introduced
in section 10.1. By lemma 10.1.1 we can choose ~ such that we have (\,~y) > (u,~) for all
€ Z\{\}. If the assertion of the proposition is not true, then A; > 0 and thus by choosing
v, sufficiently large we can also assume that <5\, ) > 1. Thus, for all sufficiently large k € N

k)

the lowest power of ¢ that occurs in ), ;¢ Ag~ MK is from the summand c;\q*< , and

is equal to d — k(),y), where d is the lowest power of ¢ that occurs in c5. By comparing with
> aza(q)¢alg?) it follows that

~ _ B
d—k(\,7) > min{—degza(q7')}

The right hand side is independent of k and . However, this is a contradiction since k can be
chosen arbitrarily large and (\,~) > 1. O

10.3. Proof of \y € 22<°
In this subsection we strengthen proposition 10.2.3, as follows.

Proposition 10.3.1. Let 7 be a finite subset of Zey + -+ + Ze,. Let x := Z/\eI cxKy € Upr

where c) € k™ for A € Z, and assume that x € IOJR. Then for every A :=>_ \ie; € T we have
Al E 2759,

Proof. We assume that the assertion is false, and arrive at a contradiction.

Step 1. Recall from proposition 4.1.1 that the K., for 1 <b <n are contained in f]R.
The K, € Uy g satisfying \; — \iy1 € 2Z7° for 1 <i<n— 1and \; € 2Z<° can be expressed
as products of the K, ,. Thus by propositions 10.1.2 and 10.2.3 we can assume that A\, €
{-1,-3,-5,...} forall A e Z.

Step 2. Set D := ¢y(x) so that D € L2P. Write D as D = Dy + D, + D5 according to
remark 10.2.1. Suppose that D; = Zbe =z zbtbab, where Z is a finite set of n-tuples of non-
negative integers and the z, € k*. After scaling x by a nonzero element of C[g] we can
assume that the ¢ and the zp, are nonzero elements of C[g]. We keep using the notation ¢ for
v = Z?:l 7i€; from the proof of proposition 10.2.3. Then D- 1" =3, ; exg~ MY From
lemma 3.17.12(ii) and remark 3.17.10 it follows that °0° - £ = ¢ (¢*)t” where ¢y, € C[g] and

deg%:;%(bl-f—“'-i-bi)—;(bi(bl-f—"'-l-bi)—bi(biz_l)) (119)
For b € Z define \, € Zey + -+ + Ze, by

Ao :=bigr+ (bi+by)er+-+ (bi+ -+ ba)en.
By (119) we have deg ¢, = (Ap,7) + C(b), where C(b) is independent of ~.
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Step 3. Let A € Z be such that —X is the maximum of —Z := {—\ : A\ € Z} with respect
to the total order < of section 10.1. Using lemma 10.1.1 for —Z, we can choose ~ such that
—(A\y) > —(u,) forall € Z\{A}. Since \; € {—1,-3,-5,...}, by choosing the parity of
~1 suitably we can also assume that — (), ) is an odd integer. Then for k € N sufficiently large,

Aky) A key)

the highest power of ¢ that occurs in ) _, 7 exg ¢ is from the summand c;\q_< , and

is equal to d — k(\,), where d := degcs.

Step 4. Let byax € Z be such that A\p_ = max{\, : b € Z}, where the maximum is taken
with respect to <. Note that the map b — A, is an injection. From (119) and lemma 10.1.1
applied to the set {\, : b € Z} it follows that we can choose «y and k in Step 3 such that the
following additional property holds: the highest power of ¢ that occurs in Y _ > 2o () ¢ (q%)
is from the summand zy__ (q) ¢, (¢°), and is equal to d’ + 2deg ¢y, , where d’ := degzy,
Note that the values deg ¢y, depend on ~ and k, but the values degz, only depend on x and in
particular they are independent of the choices of  and k.

Step 5. Recall that 7 is an eigenvector of D, hence D-1*Y =D £ =
> bez Zo(q)Pp(g*)f* by remark 10.2.1. By comparing the highest power of ¢ in the eigen-
value of #*7 from Step 3 and Step 4 it follows that

'max *

d' +2degdp, =d—k(\7). (120)

'max

Since d’ is independent of + and k, the parity of the left hand side of (120) does not change

by varying k and ~. However, recall that (\,~) is an odd integer and the only constraint on k
is that it should be sufficiently large. Thus, we can choose k such that the parities of the two
sides of (120) are different. This is a contradiction. O

10.4. Completing the proof of theorem C(i)
Theorem C(i) is an immediate consequence of the following corollary and proposition 5.2.2.

Corollary 10.4.1. Let T be a finite subset of Zey + - -+ + Ze,. Let x := Z,\ez Ky € Ug

where c) € k* for A € T, and assume that x € Ug. Then x belongs to the subalgebra of Uy g
that is generated by the Ky, , for 1 <b < n.

Proof. Follows immediately from propositions 10.1.2 and 10.3.1. O
Corollary 10.4.1 implies that {K Arob }2:1 is a generating set of the algebra Ug. An analogous

statement holds for U,. That is, {K A }Zq:l is a generating set of the algebra Ur.
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Appendix. Commonly used notation

In this section we list the commonly used symbols and notation along with the subsection in
which each item is defined.

Introduction: k, Uy, Ug, Urr, L, #. Le, Ko, Lij, Rijy V=, €)%y Lij, M, M, D(r,a,b),
Dy, Dy, R, Ly, Ly, By Lty00 Ky -

Subsection 2.1: ad,(x), .% (H,I), % (H).

Subsection 2.2: V*, (v¥,v), m,- ,, A°, H°.

Subsection 2.3: V().

Subsection 2.4: Ry, A ®3 B, A k. B.

Subsection 2.5: Ry w, wy,w, Wy,w.

Subsection 2.7: HY, (f® g,R).

Subsection 3.1: U,(gl,), €, [a,b], K-, Ki, Kz, E;, F;, Uy 1, Uy k.

Subsection 3.2: C(, R R, Exp,., (u,v), R, E(").

Subsection 3.3: x".

Subsection 3.4: AT, E; iy Psns Duxcns tijs 8iJ, ij 8w, Lo R, Lo, Rap, Ap, Ay, &, E,
Ly L.

Subsection 3.5: &, Z,,«n, D, Duxn»> Pu-

Subsection 3.6: ()), 2D, 2D, vy, Ay, | Al

Subsection 3.7: C;, Cg, R, Ry, Ri,» Ri» Ri» Ry» Ri» Ri» Rirs Rig» Rir» Rig» PP,
PY.

Subsection 3.9: % 1 1, ) > Korns (€5)007 00

Subsection 3.10: ¢pp, X - f.

Subsection 3.11: 2(SY, <. ¢(a).

Subsection 3.13: P, P, ;,,, 22 2&"("9), %‘%,r,’,(f’s),

Subsection 3.14: i]L, IOJR, i/LR.

Subsection 3.15: 7,, ,,.

Subsection 3.17: <, ¢(a,b), 2, 0.

Subsection 4.1: Ar 4, Arp, Ky, ,» Kxg,

Subsection 6.1: Z9(.,), PP (c,), €L- €r (427}(,;,,,)(6,(), (,kaglrn)( ; (;zf,(%;:éns))( - PP,
PGE, P DL, PGP, L.

Subsection 7.1: ', T'y ; .

Subsection 8.2: ux, v, uxy ,v.
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