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Abstract
The open spin-1/2 XXZ spin chain with diagonal boundary magnetic fields is
the paradigmatic example of a quantum integrable model with open boundary
conditions. We formulate a quantum algorithm for preparing Bethe states of this
model, corresponding to real solutions of the Bethe equations. The algorithm
is probabilistic, with a success probability that decreases with the number of
down spins. For a Bethe state of L spins with M down spins, which contains a
total of

( L
M

)
2M M! terms, the algorithm requires L + M2 + 2M qubits.

Keywords: quantum state preparation, boundary Heisenberg spin chain, coordi-
nate Bethe ansatz, quantum computer

(Some figures may appear in colour only in the online journal)

1. Introduction

The existence of exactly solvable (or quantum integrable) interacting many-body quantum
models, the first example of which appeared already 90 years ago [1], is remarkable. There
are infinitely many such models, since they originate [2] from solutions of the Yang–Baxter
equation [3], of which there are infinitely many. These models have had, and continue to have, a
significant impact in theoretical physics, ranging from condensed matter physics and statistical
mechanics to string theory [4].

Although much is already known about quantum integrable models, there is much that
remains unknown. This is due largely to the fact their exact solutions depend on solutions
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of corresponding Bethe equations; and the latter are generally hard to solve. Hence, despite
the fact that the models are ‘exactly solvable’, significant effort is generally still necessary to
explicitly compute quantities of physical interest.

Quantum computers hold the promise of addressing a variety of heretofore intractable
problems [5, 6]. These include quantum simulation of many-body systems, which occur in
molecular and solid-state contexts [7, 8]. It is natural to ask whether quantum computers could
also help address the problem of computing quantities of physical interest for quantum inte-
grable models. While solving Bethe equations remains an interesting open challenge [9], an
important recent development is the discovery of an efficient quantum algorithm for construct-
ing exact eigenstates [10]. This algorithm could potentially be used for explicitly computing
correlation functions, which would otherwise be out of reach.

Integrable models could also impact quantum computing by providing a testbed for quan-
tum simulators. While there is a large ongoing effort to develop near-term algorithms, such as
variational quantum eigensolvers (VQEs) [11, 12], to solve many-body problems, it is not clear
whether a quantum advantage can be achieved by VQEs on near-term hardware. On the other
hand, obtaining quantum advantage for generic simulation problems on fault-tolerant quan-
tum computers is believed to be enormously costly in terms of quantum resources [13–15].
An additional benefit of integrable models for early quantum computers beyond the noisy
intermediate-scale quantum era [16] is that their classically solvable quantities can be used
for validation and verification purposes. It is therefore natural to investigate special classes
of problems, such as integrable models, for earlier demonstrations of quantum advantage.
A key first step is to find quantum algorithms that solve such problems and to quantify the
required resources.

The algorithm in [10] is for the closed spin-1/2 XXZ spin chain, which is an anisotropic
version [17] of the model solved by Bethe [1], and which is the paradigmatic example of a
quantum integrable model with periodic boundary conditions. The extension of quantum inte-
grability to models with open boundary conditions is also interesting and nontrivial, see e.g.
[18–21] and related references.

In this paper we formulate a quantum algorithm for constructing exact eigenstates of
the open spin-1/2 XXZ spin chain with diagonal boundary magnetic fields, which is the
paradigmatic example of a quantum integrable model with open boundary conditions.
The (ferromagnetic) Hamiltonian H for a chain with length L is given by

H = −1
2

L−2∑
n=0

(
σx

n σ
x
n+1 + σy

n σ
y
n+1 +Δσz

n σ
z
n+1

)
− 1

2

(
h σz

0 + h′ σz
L−1

)
, (1.1)

where as usualσx
n , σy

n , σz
n are Pauli matrices at site n. The Hamiltonian has three parameters: the

anisotropy parameter Δ, and the boundary magnetic fields h and h′, all of which are assumed
here to be real.

An interesting feature of this model is that, for the special values of the boundary magnetic
fields

h′ = −h =
1
2

(q − q−1), where Δ =
1
2

(q + q−1), (1.2)

the model has the quantum group symmetry Uq(su(2)) [22, 23]. Consequently, the spectrum
has the degeneracies of an isotropic (su(2)-invariant) model, even if Δ �= 1.

While there are many similarities between the closed-chain and open-chain algorithms,
the latter has some new features due to the greater complexity of open-chain Bethe states.
As in [10], we restrict here to solutions of the Bethe equations that are real, which can be
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efficiently determined classically, and which serve as inputs for the quantum algorithm. The
quantum algorithm has as outputs exact eigenstates of the Hamiltonian (1.1), with a probability
that decreases with the number of down spins. We expect that these eigenstates could be used
to explicitly compute the model’s correlation functions, beyond what can be done analytically
[24, 25].

The outline of the remainder of this paper is as follows. In section 2, we briefly review the
model’s coordinate Bethe ansatz solution [19], and we recast it in a form that is convenient for
our algorithm. We present the algorithm in section 3. In section 4, we summarize the results
of our simulations of this algorithm. We conclude in section 5 with a discussion of our results.
The complete circuit for the simple case L = 4, M = 2 is provided in appendix A.

2. Coordinate Bethe ansatz

We briefly recall here the coordinate Bethe ansatz solution [19] of the model, and recast it in a
form that is convenient for our algorithm, see (2.20)–(2.22) below. (The solution for the case
without boundary magnetic fields was found in [18], and the algebraic Bethe ansatz solution
was formulated in [20].) The Bethe states are exact eigenstates |M〉 of the Hamiltonian (1.1)

H|M〉 = E|M〉, (2.1)

which are given by

|M〉 =
∑

0�x0<x1<···<xM−1�L−1

f (x0, . . . , xM−1)|x0, . . . , xM−1〉, (2.2)

where x0, . . . , xM−1 denote the location of the M down spins. In other words,

|x0, . . . , xM−1〉 = σ−
x0
. . . σ−

xM−1
|0 . . . 0〉, (2.3)

where σ−
n = 1

2 (σx
n − iσy

n) is the spin-lowering operator at site n, and |0 . . . 0〉 is the ferromag-
netic ground state (i.e. the reference state with all L spins in the up-state |0〉 =

( 1
0

)
). Moreover,

the wave function f (x0, . . . , xM−1) is given by

f (x0, . . . , xM−1) =
∑

P

εP A(k0, . . . , kM−1)ei
∑M−1

j=0 k jx j , (2.4)

where the sum is over all permutations and negations of k0, . . . , kM−1, and εP = ±1 changes
sign at each such mutation. For example, for M = 2, the wave function is given by

f (x0, x1) = A(k0, k1)ei(k0 x0+k1x1) − A(−k0, k1)ei(−k0x0+k1 x1)

− A(k0,−k1)ei(k0 x0−k1x1) + A(−k0,−k1)ei(−k0 x0−k1x1)

− A(k1, k0)ei(k1x0+k0x1) + A(−k1, k0)ei(−k1x0+k0 x1)

+ A(k1,−k0)ei(k1 x0−k0x1) − A(−k1,−k0)ei(−k1 x0−k0x1). (2.5)

In general, there are 2MM! terms for fixed x0, . . . , xM−1, while the wave function for the corre-
sponding closed chain has only M! terms, since in the latter case there is a sum only over the
permutations.
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The coefficients A(k0, . . . , kM−1) are given by

A(k0, . . . , kM−1) =
M−1∏
j=0

β(−k j)
∏

0� j<l�M−1

B(−k j, kl)e−ikl , (2.6)

where

B(k, k′) = s(k, k′) s(k′, k) , s(k, k′) = 1 − 2Δeik′ + ei(k+k′). (2.7)

The so-called Bethe roots k0, . . . , kM−1 satisfy the Bethe equations

α(k j)β(k j)
α(−k j)β(−k j)

=

M−1∏
l=0;l �= j

B(−k j, kl)
B(k j, kl)

, j = 0, . . . , M − 1, (2.8)

where

α(k) = 1 + (h −Δ)e−ik, (2.9)

β(k) =
[
1 + (h′ −Δ)e−ik

]
ei(L+1)k. (2.10)

The eigenvalues are given by

E({k j}) = −1
2

[
(L − 1)Δ+ h + h′]+ 2

M−1∑
j=0

(Δ− cos(k j)). (2.11)

The identity

s(k′, k)
s(k, k′)

= eiΘ(k,k′ ), (2.12)

where k, k′,Δ are real and Θ(k, k′) is defined by

Θ(k, k′) = 2 arctan

⎡
⎣ Δ sin

(
k−k′

2

)
Δ cos

(
k−k′

2

)
− cos

(
k+k′

2

)
⎤
⎦ , (2.13)

implies that the ratio of B-functions appearing in the Bethe equations is given by

B(−k, k′)
B(k, k′)

= ei[Θ(k,k′)+Θ(k,−k′)]. (2.14)

We observe the further identities

α(k)
α(−k)

= eiΦ(k,h) ,
β(k)
β(−k)

= eiΦ(k,h′) ei2(L+1)k, (2.15)

where k, h, h′ are real and the function Φ(k, h) is defined by

Φ(k, h) = −2 arctan

[
(h −Δ) sin(k)

1 + (h −Δ) cos(k)

]
. (2.16)
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Taking the logarithm of the Bethe equation (2.8) using (2.14) and (2.15), we obtain
(assuming that all Bethe roots k0, . . . , kM−1 are real)

Z(k j; {kl}) = 2πJ j, j = 0, . . . , M − 1, (2.17)

where Z(k; {kl}) is the so-called counting function

Z(k; {kl}) = 2(L + 1)k +Φ(k, h) +Φ(k, h′) +Θ(k,−k)

−
M−1∑
l=0

[Θ(k, kl) +Θ(k,−kl)] , (2.18)

and J j are distinct integers satisfying {J0, . . . , JM−1} ⊂ {1, . . . , L}. In contrast with the corre-
sponding closed chain, the counting function (2.18) involves both Θ(k, kl) and Θ(k,−kl), and
includes terms that depend on the boundary magnetic fields h and h′.

In our algorithm for constructing the Bethe states on a quantum computer, we compute
the Bethe roots classically by solving (2.17) numerically by iteration. Namely, starting from
k(0)

j = J j, we solve

Z(k(n+1)
j ; {k(n)

l }) = 2πJ j, j = 0, . . . , M − 1, n = 0, 1, . . . , (2.19)

which converges rapidly. In this work we consider examples with M � � L
2 �.

We observe that the coefficients (2.6) satisfy

A(k0, . . . , k j, kl, . . . , kM−1)
A(k0, . . . , kl, k j, . . . , kM−1)

= eiΘ(k j,kl ), (2.20)

as well as

A(k0, . . . ,−k j, . . . , kM−1)
A(k0, . . . , k j, . . . , kM−1)

= eik j(2L+2) eiΦ(k j,h) V(k j; k j+1, . . . , kM−1), (2.21)

where

V(k j; k j+1, . . . , kM−1) = ei
∑M−1

l= j+1 [Θ(−k j,kl)+Θ(kl ,k j)]. (2.22)

While the relation (2.20) is true also for the corresponding closed chain, the relation (2.21) is
a new feature of the open chain. Our algorithm for constructing Bethe states is based on the
relations (2.20)–(2.22).

3. Algorithm

Our algorithm for preparing the L-qubit Bethe state (2.2) requires a minimum of L + M2 + 2M
qubits (hence, M2 + 2M ancillas), which are allocated as follows:

• L ‘system’ qubits (designated by s), whose state becomes the Bethe state (2.2) on
successful completion of the algorithm

• M(M + 1) ‘permutation-label’ qubits (designated by p), which are used to implement the
sum over all possible permutations and negations in the wave function (2.4), and to apply
the phases in (2.20)–(2.22) and the signs εP in (2.4)

• M ‘faucet’ qubits (designated by f ), which are used to apply the phase ei
∑M−1

j=0 k jx j in the
wave function (2.4).

5
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Algorithm 1. Preparation of the Bethe state (2.2).

1: Determine the real Bethe roots {k0, . . . , kM−1} by classically solving (2.19)
2: Prepare the ‘system’ qubits in the Dicke state

∑
0�x0<· · ·<xM−1�L−1|x0, . . . , xM−1〉s

3: Prepare the ‘permutation-label’ qubits in a superposition state representing all possible permutations
and negations; apply the phases in (2.20)–(2.22) and the corresponding signs εP in (2.4)

4: Apply the phase e
i
∑M−1

j=0 k jx j in (2.4) using the ‘faucet’ method
5: Reverse the operations on the ancillas (without phases)
6: Measure the ‘permutation-label’ qubits, with success on |00 . . . 0〉p

In our implementation of the algorithm, we make use of two additional ‘work’ qubits, in
order to reduce the gate count.

The algorithm consists of the steps outlined in algorithm 1, and which are described in more
detail below.

Step 1. As already discussed in section 2, given real values of the parameters Δ, h and h′

and a set of M distinct integers {J0, . . . , JM−1} ⊂ {1, . . . , L}, the first step of the algorithm is
to determine the corresponding set of real Bethe roots {k0, . . . , kM−1} by classically solving
(2.19). The corresponding energy eigenvalue is given by (2.11).

Step 2. This step of the algorithm is to prepare the ‘system’ qubits in the so-called Dicke
state

|DL,M〉s =
1√(
L
M

) ∑
0�x0<···<xM−1�L−1

|x0, . . . , xM−1〉s,

which is the same as the Bethe state (2.2) but with all the coefficients f (x0, . . . , xM−1) set to

1/

√(
L
M

)
. This state is an equal-weight superposition of the

( L
M

)
L-qubit states with M 1’s

and L − M 0’s. For example,

|D3,1〉 =
1√
3

(
|001〉+ |010〉+ |100〉

)
.

A deterministic algorithm for constructing this state is already available [26], see [27] for an
improved gate count.

Step 3. The goal of this step of the algorithm is to prepare the ‘permutation-label’ qubits in
the state

1√
2MM!

∑
P

εP A(k0, . . . , kM−1)|P〉p.

As in [10], the phases εPA(k0, . . . , kM−1) are kicked back onto the ‘system’ qubits, while |P〉p is
used in step 4 to apply controlled gates. However, here |P〉p represents not only permutations,
but also negations. The ‘permutation-label’ register consists of M subregisters, each of which
consists of M + 1 qubits, for a total of M(M + 1) qubits. In each subregister, the first M qubits
in the subregister, which we call the ‘hot’ qubits, store an integer in the set {0, . . . , M − 1}
by means of ‘one-hot encoding’. As an example, for the case M = 3, the possible states of
the ‘hot’ qubits are |0〉 ≡ |001〉, |1〉 ≡ |010〉, |2〉 ≡ |100〉. These integers serve to label the
M down spins in a given eigenstate and are used to efficiently generate the phases arising from
the permutations that appear in (2.4). The last qubit in each subregister is a ‘reflection’ qubit,

6



J. Phys. A: Math. Theor. 55 (2022) 055301 J S Van Dyke et al

whose state indicates the presence (when |1〉) or absence (when |0〉) of a negation associated
with the given down spin in the corresponding term of (2.4).

To obtain an efficient method for state preparation of (2.2), we first implement the phases
associated with negations on the various down spins, while the permutation part is trivial
(i.e. represents only the identity permutation). We then execute the permutations and corre-
sponding phase gates on the permutation-label, to fully produce all terms in (2.2). Starting
with the ‘permutation-label’ qubits in the initial state |00 . . .〉p, we encode the identity permu-
tation by storing the values 0, . . . , M − 1 in ascending order (from right to left). We next apply
Hadamard gates to the reflection qubit in each sublabel to generate the superposition of having
reflected/not reflected each down spin label. Again for the case M = 3, the ‘permutation-label’
qubits are in the state

(
H|0〉|100〉

) (
H|0〉|010〉

) (
H|0〉|001〉

)
. (3.1)

We next apply the phases in (2.21). The factor eik j(2L+2) eiΦ(k j,h) is simply implemented
by applying to the jth ‘reflection’ qubit a phase gate with angle k j(2L + 2) +Φ(k j, h) + π;
the additional phase π implements the corresponding sign εP in (2.4). The factor
V(k j; k j+1, . . . , kM−1) is implemented via an iterative process. Working backwards from down
spin j = M − 2 to j = 0, the exponential factors for l > j in (2.22) can be implemented using
a phase gate acting on the reflection qubit of spin j. In principle, one ought to control on the
state of the reflection qubit of spin l, since kl could be negative. However, owing to the identity
Θ(−k j, kl) = Θ(−kl, k j) for real ki and Δ, one has that

Θ(−k j,−kl) +Θ(−kl, k j) = Θ(−k j, kl) +Θ(kl, k j), (3.2)

and so the factor ultimately appearing in (2.22) is the same regardless of the sign of kl. Thus,
the summation in (2.22) can be performed classically and a single phase gate can be used to
produce V(k j; k j+1, . . . , kM−1) for fixed j. In fact, the corresponding phase can be added to
others appearing in (2.21), so that all these can be implemented simultaneously (along with
the sign εP).

Starting from the state representing the identity permutation such as (3.1), we now generate
a state representing a superposition of the M! permutations by iteratively swapping subreg-
isters, as explained in [10]. To implement the phase in (2.20), we apply phase gates with
angles Θ(ε jk j, εlkl) + π after the subregisters j and l have been swapped; these gates are con-
trolled in part by ‘reflection qubits’ to ensure the proper signs ε = ±1. The additional phase
π implements the corresponding sign εP in (2.4).

Step 4. This step of the algorithm is to apply the phase ei
∑M−1

j=0 k jx j in (2.4). We use the faucet
method [10], which exploits the fact that each x j is an integer; hence, the phase eiε jk jx j can be
applied by performing xj repeated applications of the phase eiε jk j . All M ‘faucet’ qubits are
initially turned on (i.e. placed in the state |1〉). We then loop through the L ‘system’ qubits.
At each step, we check to see if the current system qubit represents a down spin (is in the
state |1〉). If so, the next faucet qubit is turned off (set to |0〉), as the complete phase eiε jk jx j for
the given kj value has been produced. Moreover, as we loop through the ‘system’ qubits, we
also apply controlled phase gates with angle ε jk j on the ‘hot’ qubits that are controlled by the
jth ‘faucet’ qubit (must be on), and by the jth ‘reflection’ qubit (determines the sign ε j).

Step 5. This step of the algorithm is to reverse the operations on the ancillas, except
without applying any phases. After this step, the ‘faucet’ qubits (but not necessarily all the
‘permutation-label’ qubits) are in the |0〉 state; and the state |Ψ〉 of the quantum computer is
given by

7
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Figure 1. Success probability of the open chain Bethe ansatz state preparation algorithm
as a function of eigenstate energy, for M = 2, 3 and L = 6. Other parameters are
Δ = 0.5, h = 0.1, h′ = 0.3.

|Ψ〉 = α|00 . . . 0〉p|00 . . . 0〉 f |M〉s + · · · , (3.3)

where |M〉s is the normalized Bethe state (2.2), α is some complex number, and the ellipsis
denotes additional terms that are orthogonal to the first one.

Step 6. The final step of the algorithm is to measure the ‘permutation-label’qubits. It follows
from (3.3) that the ‘system’ qubits are in the target normalized Bethe state |M〉s on the outcome
|00 . . . 0〉p, with success probability |α|2.

4. Simulations

We have implemented algorithm 1 using Qiskit, and we have executed the quantum circuit on
the Statevector Simulator for values of M up to M = 3, and for values of L up to L = 8. We
have verified that the state obtained by projecting the final state (3.3) to the subspace with all
ancillas in the state |0〉 is indeed an exact eigenstate of the Hamiltonian (1.1), with eigenvalue
(2.11).

Figure 1 shows the success probability |α|2 of the algorithm as a function of eigenstate
energy for M = 2, 3 down spins and L = 6 sites. As in the closed chain, there is a clear decrease
of success probability with M, as well as with energy. Figure 2 illustrates the success probability
for fixed M = 2 and varying L = 4, 5, 6. This also agrees with findings from the closed chain,
in that the minimum success probability does not vary strongly with L. This suggests that at
reasonably small M one can maintain a high success probability for large L systems, beyond
what is classically tractable with numerical methods. Furthermore, amplitude amplification
can be straightforwardly applied to enhance the success probability for the open chain, as was
demonstrated explicitly for the closed case [10].
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Figure 2. Success probability of the open chain Bethe ansatz state preparation algorithm
as a function of eigenstate energy, for L = 4, 5, 6 and M = 2. Other parameters are
Δ = 0.5, h = 0.1, h′ = 0.3.

5. Discussion

We have formulated a probabilistic algorithm for preparing exact eigenstates of the Hamil-
tonian (1.1). Due to the significant depth of the circuit, its implementation on existing and
near-term hardware may not be feasible. However, we expect that a fault-tolerant quantum
computer with a few hundred qubits will outperform any classical computer on this task, given
that the algorithm requires only L + M2 + 2M qubits, while the Bethe eigenstate (2.2) is given
by a sum of

( L
M

)
2M M! terms. This algorithm is a generalization of the one for the correspond-

ing closed chain [10], which requires L + M2 + M qubits. The additional M ancilla qubits in the
open chain case are the reflection qubits that are used to keep track of the negations appearing
in (2.4).

We expect that it will be possible to use the eigenstates furnished by this algorithm to
explicitly compute ground-state correlation functions. Indeed, at least for some range of param-
eter values, the ground state of the antiferromagnetic Hamiltonian (i.e. −H, with H given
by (1.1)) is described by M = L/2 real Bethe roots, and can therefore be obtained using this
algorithm. Moreover, standard routines exist for evaluating expectation values of products of
Pauli operators on a quantum computer.

Of course, not all eigenstates of this Hamiltonian can be described by real Bethe roots. It
remains an interesting challenge to prepare generic eigenstates, which would require solv-
ing two main problems: (1) finding an efficient algorithm for determining the (complex)
Bethe roots; and (2) generalizing the state-preparation algorithm to the case of complex Bethe
roots. Indeed, for the former problem, neither a classical nor a quantum algorithm is available;
even for the simpler case of the closed XXX chain with periodic boundary conditions, the com-
plete set of Bethe roots is known for at most L = 14 sites [28]. Regarding the latter problem:

for complex Bethe roots, the factors in (2.20), (2.21) as well as ei
∑M−1

j=0 k jx j are no longer phases,
and therefore those factors can no longer be simply implemented using controlled phase gates.
Overcoming this problem would have the additional benefit of allowing the treatment of the

9
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Figure 3. Quantum circuit to prepare an eigenstate of the open XXZ chain for L = 4 and
M = 2. Other parameters are Δ = 0.5, h = 0.1, h′ = 0.3. The eigenstate is specified
by the Bethe roots k1 = 0.872 565 541 952 2633 and k2 = 1.828 163 494 869 0795. The
various steps of the algorithm, which are separated by barriers, are labeled; these steps
are described in the corresponding parts of section 3.
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Uq(su(2))-invariant case (1.2) with q a root of unity. In that case the boundary magnetic fields
h, h′ are no longer real, and therefore the Hamiltonian (1.1) is no longer Hermitian. Neverthe-
less, its spectrum is real, and can be related to the spectra of c < 1 minimal conformal field
theories [19, 22].

We expect that the algorithm presented here for preparing Bethe states of the model (1.1)
can be extended to other quantum integrable models with open boundary conditions that have
been solved by coordinate Bethe ansatz (e.g. [29, 30]). It would also be interesting to formulate
such algorithms that are based instead on algebraic Bethe ansätze, with which models have also
been solved (see e.g. [20, 31–34] and references therein). Although a deterministic approach
for constructing algebraic Bethe ansatz states seems difficult [9], a probabilistic approach based
on the linear combination of unitaries method [35, 36]—the strategy employed here and in
[10]—may be more feasible.
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Appendix A. Circuit for L = 4, M = 2

The complete circuit for the simple case with L = 4 and M = 2 is shown in figure 3.
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