
Journal of Physics A:
Mathematical and Theoretical

     

PAPER • OPEN ACCESS

Analytical solution of the SIR-model for the
temporal evolution of epidemics: part B. Semi-time
case
To cite this article: R Schlickeiser and M Kröger 2021 J. Phys. A: Math. Theor. 54 175601

 

View the article online for updates and enhancements.

You may also like
Economic valuation of mangrove
ecosystem environmental services based
on green economy
Irma Sribianti, Muthmainnah, Hikmah et al.

-

Grain Bulk Modulus of Marine Sediment
Masao Kimura

-

Corrigendum: Detection of nosemosis in
European honeybees (Apis mellifera) on
honeybees farm at Kanchanaburi,
Thailand (2019 IOP Conf. Ser.: Mater Sci
Eng. 639 012048)
Samrit Maksong, Tanawat Yemor and
Surasuk Yanmanee

-

This content was downloaded from IP address 3.17.183.24 on 25/04/2024 at 14:55

https://doi.org/10.1088/1751-8121/abed66
https://iopscience.iop.org/article/10.1088/1755-1315/886/1/012116
https://iopscience.iop.org/article/10.1088/1755-1315/886/1/012116
https://iopscience.iop.org/article/10.1088/1755-1315/886/1/012116
https://iopscience.iop.org/article/10.1143/JJAP.39.3180
https://iopscience.iop.org/article/10.1088/1757-899X/639/1/012055
https://iopscience.iop.org/article/10.1088/1757-899X/639/1/012055
https://iopscience.iop.org/article/10.1088/1757-899X/639/1/012055
https://iopscience.iop.org/article/10.1088/1757-899X/639/1/012055
https://iopscience.iop.org/article/10.1088/1757-899X/639/1/012055
https://iopscience.iop.org/article/10.1088/1757-899X/639/1/012055


Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 54 (2021) 175601 (24pp) https://doi.org/10.1088/1751-8121/abed66

Analytical solution of the SIR-model for
the temporal evolution of epidemics: part
B. Semi-time case

R Schlickeiser1,2 and M Kröger3,∗

1 Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik,
Ruhr-Universität Bochum, D-44780 Bochum, Germany
2 Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität
zu Kiel, Leibnizstr. 15, D-24118 Kiel, Germany
3 Polymer Physics, Department of Materials, ETH Zurich, Zurich CH-8093,
Switzerland

E-mail: rsch@tp4.rub.de and mk@mat.etz.ch

Received 22 December 2020, revised 22 February 2021
Accepted for publication 10 March 2021
Published 12 April 2021

Abstract
The earlier analytical analysis (part A) of the susceptible–infectious–recovered
(SIR) epidemics model for a constant ratio k of infection to recovery rates is
extended here to the semi-time case which is particularly appropriate for mod-
eling the temporal evolution of later (than the first) pandemic waves when a
greater population fraction from the first wave has been infected. In the semi-
time case the SIR model does not describe the quantities in the past; instead
they only hold for times later than the initial time t = 0 of the newly occurring
wave. Simple exact and approximative expressions are derived for the final and
maximum values of the infected, susceptible and recovered/removedpopulation
fractions as well the daily rate and cumulative number of new infections. It is
demonstrated that two types of temporal evolution of the daily rate of new infec-
tions j(τ ) occur depending on the values of k and the initial value of the infected
fraction I(0) = η: in the decay case for k � 1 − 2η the daily rate monotonically
decreases at all positive times from its initial maximum value j(0) = η(1 − η).
Alternatively, in the peak case for k < 1 − 2η the daily rate attains a maximum
at a finite positive time. By comparing the approximated analytical solutions for
j(τ ) and J(τ ) with the exact ones obtained by numerical integration, it is shown
that the analytical approximations are accurate within at most only 2.5 percent.
It is found that the initial fraction of infected persons sensitively influences the
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late time dependence of the epidemics, the maximum daily rate and its peak
time. Such dependencies do not exist in the earlier investigated all-time case.

Keywords: coronavirus, statistical analysis, COVID-19, pandemic spreading

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently [1]—hereafter referred to as part A—new analytical solutions of the standard sus-
ceptible–infectious–recovered (SIR)-model without vital dynamics have been derived. The
SIR model has been developed nearly 100 years ago [2, 3] to understand the time evolution of
infectious diseases in human populations, but has also been applied to other societal phenom-
ena such as the spread of rumors [4–6]. The new analytical solutions in part A allow for an
arbitrary time dependence of the infection and recovery rates but assume that the ratio of the
two rates is independent of time. Moreover, in part A we calculated explicitly the daily differ-
ential rate and the corresponding cumulative number of newly infected persons, quantities that
regularly are monitored during outbreak of diseases such as the recent COVID-19 pandemic.
These differential and cumulative numbers of infected persons are related with a typical delay
time to the differential and cumulative death rates [7].

The SIR system is the simplest of the compartmental models used for the mathematical
modeling of infectious diseases and had been solved numerically using various approaches,
including Monte Carlo methods, wavelets, fuzzy control etc [8–27] and approximate solu-
tions had been proposed [28, 29]. The considered population of N � 1 initially unrecov-
ered/unremoved persons is assigned to the three compartments S (susceptible), I (infectious),
or R (recovered/removed). Persons from the population may progress between these com-
partments. Results from the SIR-system are fundamental as they can easily be generalized
to more sophisticated models [30] such as (i) the susceptible–infected–recovered–deceased-
model (SIRD-model), where R and D denote the group of people that have survived or died
from the infection, respectively, and (ii) the susceptible–exposed–infectious–recovered-model
(SEIR-model) [31], where E denotes the subgroup of people infected but not infectious and I
the group of persons infected and infectious.

The basic equations of the SIR-model describe the time evolution of individuals in a
fixed population of N initially unrecovered/unremoved persons. I(t), S(t) and R(t) denote the
infected, susceptible and recovered/removedfractions of the N persons involved in the infection
at time t subject to the sum constraint

I(t) + S(t) + R(t) = 1. (1)

Different to part A we adopt the initial conditions

S(0) = 1 − η, I(0) = η, R(0) = 0 (2)

with 0 < η � O(1/N) � 1 denoting the initial seed infection fraction of the population, and
where R(0) = 0 does not pose any restriction, as all quantities in this work describe fractions
of the initially unrecovered/unremoved population, rather than a total population. The initial
conditions (2) make the treatment here different from part A. This semi-time case is particularly
useful and appropriate for modeling the temporal evolution of later (than the first) pandemic
waves when a greater population fraction from the first wave has been infected. We do not
assume here that the SIR model was describing the quantities in the past; instead they only
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hold for times later than the initial time t = 0 of the newly occurring wave. In the earlier all-
time case the initial conditions (2) are incompatible within the SIR model as discussed in
detail in part A. Still, the initial conditions (2) are useful to forecast the future dynamics of an
epidemics. While negative times existed in part A, we consider only semipositive times t � 0.

Within the all-time case treated in part A the initial conditions for S, I, and R were proven
to be interrelated, S(0) = e−ε was the only initial condition that had to be specified with no
restriction on the value of ε � 1. Moreover, the initial conditions (2) are not compatible with
part A where the assumption R(0) = 0 is forbidden.

Some but not all of the equations can be adopted from part A with the identification

η = 1 − e−ε, ε = − ln(1 − η). (3)

Moreover,η and ε are basically identical for small values of η � 1 considered in the semi-time
case, since ε ∼ η +O(η2), while the all-time case was not restricted to small ε. Although part
A and B are qualitatively very different, in the limit of small η � 1 the results are similar for
small values of the inverse reproduction number.

We are applying the semi-time SIR model to real data as part of our supplementary
information (https://stacks.iop.org/A/17/175601/mmedia).

2. General SIR-equations

If a(t) and μ(t) denote the time-dependent infection and recovery rates, respectively, the SIR-
model is defined with the two dynamical equations [2, 3, 32]

İ(t) = a(t)S(t)I(t) − μ(t)I(t),

Ṡ(t) = −a(t)S(t)I(t). (4)

Here and in the following the dot stands for the derivative with respect to t. The third equation
for the dynamics of R(t) follows from the sum constraint (1), i.e.

Ṙ(t) =
d
dt

[1 − S(t) − I(t)] = − d
dt

[S(t) + I(t)] = μ(t)I(t), (5)

where we inserted equation (4). The second equation (4) can be written as

Ṡ(t)
S(t)

=
d ln S(t)

dt
= −a(t)I(t), (6)

so that

I(t) = − 1
a(t)

d ln S(t)
dt

, (7)

implying that equation (5) becomes

Ṙ(t) = −K(t)
d ln S(t)

dt
(8)

with the ratio of infection and recovery rates

K(t) =
μ(t)
a(t)

. (9)
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The first term on the right-hand side of the first dynamical equation (4) denotes the daily
differential rate of newly infected persons from the desease, i.e.

J̇(t) = a(t)S(t)I(t) = −dS(t)
dt

, (10)

where the second equality results from the second equation (4). It is this rate J̇(t) that is
monitored during the outbreak of a pandemic wave.

We emphasize that the half-time model here only considers semipositive times and adopts
the two initial conditions (2) for S(0) and I(0). In contrast to part A it allows also for values of
the ratio K(t) > 1 to investigate the temporal behavior of the pandemic wave.

2.1. Special case

As in part A we assume that the infection and recovery rates have the same time dependence, so
that their positive ratio k, the inverse reproduction number, is time-independent and constant:

K(t) = k =
μ0

a0
=

1
r0

∈ (0,∞). (11)

As indicated k = 1/r0 equals the inverse of the SIR-basic reproduction number r0. We empha-
size that this special case includes the standard case used by most analysis before that both,
the infection and recovery rates, are constants with respect to time.

The assumption (11) still allows us to take into account an arbitrary time-dependence of the
infection rate a(t) which, of course, then is identical to the time dependence of the recovery
due to assumption (11). Then it is convenient to introduce for arbitrary time dependence of the
infection rate a(t) the new time variable

τ (t) =
∫ t

0
dξ a(ξ), (12)

so that

1
a(t)

d
dt

=
d

dτ
. (13)

Equations (4), (5) and (7) then read

d ln I(τ )
dτ

= S(τ ) − k, (14)

I(τ ) = −d ln S(τ )
dτ

,

dR(τ )
dτ

= kI(τ ) = − d
dτ

[k ln S(τ )], (15)

respectively. In equation (15) (dln S/dτ )τ=0 = −η in order to meet the initial condition (2) for
I(0) = η. Equation (15) can be written as

d
dτ

[R(τ ) + k ln S(τ )] = 0, (16)

or with the integration constant c0

R(τ ) = c0 − k ln S(τ ). (17)
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Because of the initial conditions (2) for S(0) = 1 − η and R(0) = 0 the integration constant
equals c0 = k ln(1 − η), so that

R(τ ) = k[ln(1 − η) − ln S(τ )] = k ln
1 − η

S(τ )
= −k[ε+ ln S(τ )] (18)

or

S(τ ) = (1 − η)e−
R(τ )

k . (19)

From the invariant J̇(t)dt = j(τ )dτ we obtain with equation (12) in the form dτ/dt = a(t)
for differential rate of newly infected persons from the desease

j(τ ) =
dJ(τ )

dτ
=

J̇(t)
a(t)

= S(τ )I(τ ) = −dS(τ )
dτ

(20)

with the initial value j(0) = η(1 − η). The cumulative distribution corresponding to j(τ ) is
given by

J(τ ) =
∫ τ

−∞
dτ ′ j(τ ′) = J(0) −

∫ τ

0
dτ ′

dS(τ ′)
dτ ′

= J(0) + S(0) − S(τ ) = 1 − S(τ ), (21)

where the initial condition J(0) = I(0) = η had been used, in accord with equation (2).

2.2. Analytical solution

As in part A we introduce the quantity G(τ ) by

G(τ ) = − ln S(τ ), S(τ ) = e−G(τ ) (22)

with the initial condition G(0) = −ln(1 − η) = ε. According to equations (15) and (18) then

I =
dG
dτ

, R = kG + k ln(1 − η) = k(G − ε), (23)

so that the sum constraint (1) provides the dynamical equation

dG
dτ

= 1 + kε− kG − e−G (24)

or

dG/dτ
1 + kε− e−G − kG

= 1. (25)

Integrating equation (25) over τ then provides

τ + c1 =

∫ G

0

dx
1 + kε− e−x − kx

, (26)

where the integration constant c1 has to be determined from the initial condition G(0) = ε, so
that

c1 =

∫ ε

0

dx
1 + kε− e−x − kx

. (27)
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With equation (27) we obtain for equation (26) the formal solution

τ =

∫ G

ε

dx
1 + kε− e−x − kx

(28)

with τ =
∫ t

0 dξ a(ξ) according to equation (12).
This solution (28) generalizes the known analytical solutions in the literature [2, 3, 29] as it

holds for arbitrary time-dependence of the infection rate a(t). The mentioned known solutions
can be reproduced with equation (28) by setting τ = a0t on its left-hand side resulting from
a constant injection rate a0. As non-pharmaceutical interventions (NPIs) during the pandemic
wave generate a time-changing infection rate, the generalized solution (28) is highly valuable
to assess quantitatively the effect of the NPIs on the time evolution of the disease. Substituting
y = 1 − e−x and using equation (21) in the form

J = 1 − e−G (29)

we obtain for the solution (28)

τ =

∫ J

η

dy
N(y)

, (30)

N(y) = (1 − y)[y + kε+ k ln(1 − y)], (31)

where we have introduced the inverse integrand N(y), that is parameterized by k and η. Taking
the derivative with respect to τ highlights the fact that the inverse integrand in (30) is nothing
but the differential rate of newly infected persons in terms of J(τ )

j(τ ) =

(
dτ
dJ

)−1

= N(J) = (1 − J)[J + kε+ k ln(1 − J)]. (32)

Once J(τ ) and j(τ ) are determined from equations (30) and (32), respectively, one obtains
for the other interesting quantities according to equations (21), (20) and (18) that

S(τ ) = 1 − J(τ ),

I(τ ) = J(τ ) + kε+ k ln[1 − J(τ )],

R(τ ) = −k ln[1 − J(τ )] − kε. (33)

3. Exact results for final and maximum values

3.1. Maximum value G∞

The solution (28) indicates that the maximum value G∞ = G(τ = ∞) of the function G is
attained when the denominator of the respective integrand vanishes, i.e.

1 + kε− e−G∞ − kG∞ = 0. (34)

Consequently,

G∞ =
1
k
+ ε+ W0(α), (35)

6
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Figure 1. Final τ →∞ values G∞ (thick colored), J∞ = R∞ (solid black), and S∞
(dashed colored) vs k for three choices (different colors) of η ∈ {10−4, 0.01, 0.1}.
Also shown is the asymptotic behavior of G∞, R∞, and J∞ (solid gray) according to
equation (37). For large k � 1 the three coincide.

where W0 is the principal solution of Lambert’s equation and α given in terms of k and ε as

α = −e−
1
k −ε

k
= − (1 − η)e−1/k

k
. (36)

The argument α of the Lambert’s W0 function in equation (35) is negative for all k and ε.
Accordingly, W0 ∈ [−1, 0] is negative as well, while G∞ � 0. As ε � 1 the maximum G∞(k)
is predominantly determined by the inverse basis reproduction number k. In figure 1 we show
the maximum G∞ as a function of k and three different small values of η � ε. It can be seen
that G∞ has values significantly greater than unity for k � 1, while it reaches G∞ ≈

√
2ε+

O(ε) at k = 1. The dashed black line shows the asymptotic behavior of G∞ ∼ 1/k at small
k � 1. Significant deviations from the asymptotic behavior set in at k ≈ 1/3. Note, that the
α defined by equation (36) is just 1 − η = S(0) times the α that occurred in part A. This will
have qualitative consequences for the asymptotic behaviors, to be discussed later below.

For large values of k � 1 the argument (36) is negative and |α(k � 1)| � (1 − η)/k � 1.
With the asymptotic expansion (A-G10) of the Lambert function for small arguments
W0(|z| � 1) � z we obtain in this limit

G∞(k � 1) � ε+
1
k
− e−(ε+1k)

k
� ε

(
1 +

1
k
+

1
k2

)
, (37)

in excellent agreement with the numerical results for G∞ shown in figure 1 for values of k � 2.

3.2. Final values

The knowledge of G∞ from equation (35) and the solutions (28) and (30) allow us to derive a
number of exact results. Equation (29) readily provides

J∞ = 1 − e−G∞ = 1 − e−
1
k −ε−W0(α) = 1 + kW0(α), (38)

7
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where we used the identity e−aW(z) = (W(z)/z)a. Likewise, according to equation (30) J∞
fulfills the transcendental equation

J∞ + kε+ k ln(1 − J∞) = 0, (39)

which is consistent with equation (38). Then according to equations (32) and (33)

j∞ = j(τ = ∞) = 0, I∞ = I(τ = ∞) = 0 (40)

and

S∞ = S(τ = ∞) = 1 − J∞ = e−G∞ = 1 − k(G∞ − ε),

R∞ = R(τ = ∞) = 1 − I∞ − S∞ = k(G∞ − ε), (41)

where we have used equation (34). In contrast to the all-time case in part A the final values J∞,
R∞ and S∞ depend not only on the inverse basic reproduction number k but also on the fraction
of initially infected persons ε = −ln(1 − η). Inserting G∞ from equation (35) we obtain with
equation (38)

R∞ = 1 + kW0(α) = J∞,

S∞ = 1 − R∞(k) = −kW0(α) = 1 − J∞. (42)

For large values of k � 5 we note

J∞(k � 1) = R∞(k � 1) � G∞(k � 1) � ε

(
1 +

1
k

)
,

S∞(k � 1) � 1 − ε

(
1 +

1
k

)
, (43)

where we used equation (42). In figure 1 we plot the fractions R∞ and S∞ from (41) as a
function of k ∈ [0, 10].

If the final values were known, one can calculate the corresponding k upon inverting the
relationship between S∞ and k as

k =
S∞ − 1

ln(S∞) + ε
. (44)

3.3. Differential rate of newly infected persons

Equation (32) can also be used, even without the explicit inversion of equation (30), to derive
generally valid expressions for the time of maximum and the maximum level of the differential
rate (20). The maximum of the differential rate (20) occurs when the derivative (d j/dJ)J0 = 0
vanishes. With equation (32) we find

d j
dJ

= 1 − 2J − k(1 + ε) − k ln(1 − J), (45)

yielding for J0 the transcendental equation

−2J0

k
= ln(1 − J0) + ε+ 1 − 1

k
, (46)

8
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or

e−
2J0

k = −eε+1− 1
k [J0 − 1]. (47)

With the methods detailed in appendix G of part A the analytic solution of this equation can
be expressed in terms of the non-principal solution W−1 of Lambert’s equation

J0 = 1 +
k
2

W−1(α0), α0 =
2α
e

(48)

with α from (36).
Inserting equation (48) in equation (32) and making use of equation (46) yields for the

maximum value in reduced time

jmax = j(J0) = (1 − J0)(1 − J0 − k) =
k2

4

{
[1 + W−1(α0)]2 − 1

}
. (49)

All these expressions for J0, jmax, and the J∞ etc are exact, as there are no approximations
involved. Since W−1(α0) < −2 for all k, the jmax is positive. But the time, at which jmax is
reached, need not be at positive τ , i.e. it may have passed already. As the SIR model of the
present part B is not valid for negative times, we have to simply ignore jmax for such cases, as
opposed to part A where jmax was uniquely determined by any choice of initial conditions.

However, for a maximum to occur at finite positive times τ 0 > 0, the derivative d j/dτ has
to be positive at times 0 � τ < τ 0. With equations (45) and (46) we readily find

d j
dτ

=
dJ
dτ

d j
dJ

= j
d j
dJ

= j[1 − 2J − k(1 + ε) − k ln(1 − J)]

= j

[
2(J0 − J) − k ln

1 − J
1 − J0

]
. (50)

Since the requirement of a maximum jmax to exist at positive times is identical to the require-
ment of a positive d j/dτ at τ = 0, we can insert J(0) = η into the second line of equation (50)
to find

k <
1 − 2J

1 + ε+ ln(1 − J)

∣∣∣∣
τ=0

= 1 − 2η, (51)

where the relationship (3) between η and ε had been used. For inverse reproduction numbers
k greater than 1 − 2η, the daily rate is monotonically decreasing at all times from its initial
value j(0) = η(1 − η). Consequently, depending on the values of k and η we have two different
cases:

(a) The ‘decay’ case for large values of k � 1 − 2η, where the daily rate of newly injected
persons monotonically decreases at all positive times from its initial maximum value j(0),

(b) The ‘peak case’ if k < 1 − 2η where the daily rate of newly infected persons attains a
maximum at a finite positive time.

In table 1 we summarize the main relations between the various epidemical quantities
as well as their minimum and maximum values.

9
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Table 1. An attempt to help the reader to guide through this document. Peak time is meant to be the
time where j reaches its maximum. Note that J0, equation (48), is very well approximated also by J∗,
equation (62). The coefficients a0,1,2 entering the quoted equations are given by equation (58), coefficients
b0,1,2 are given by equation (63) (version I) and equation (65) (version II), remaining constants written
down in equation (72). The exact τ in terms of J is given by equation (30). The peak time does not exist in
the future when k < 1 − 2η, according to equation (51), or equivalently, when τ ∗ < 0. The two versions I
and II distinguish themselves only during decay times, and differ qualitatively mainly in their asymptotic
behaviors at large times τ � τ ∗. The reduced time τ is given in terms of physical time t via equation (12),
which allows to model arbitrary time-dependent infection rates a(t).

Quantity X = S I R J j G

In terms of J 1 − J Eq. (33) Eq. (33) id. Eq. (32) Eq. (22)
Initial value X(0) 1 − η η 0 η η(1 − η) ε
Minimum value Xmin S∞ η 0 η 0 ε
Maximum value Xmax 1 − η 1 − k[1 − ε+ ln k] R∞ Eq. (41) Eq. (49) G∞
Final value X∞ Eq. (41) 0 Eq. (41) Eq. (38) 0 Eq. (35)
Peak time τmax � τ ∗ — — — Eq. (73) —
Value at peak time 1 − J0 Eq. (33) Eq. (33) J0 jmax Eq. (22)
In terms of τ (τ � τ ∗) Via J Via J Via J Eq. (70) Eq. (74) Via J
In terms of τ (τ � τ ∗) Via J Via J Via J Eq. (71) Eq. (74) Via J
Asymptotic τ →∞ behavior e(1−k−J∞)τ

4. Approximate analytical solution

We are seeking for approximants for the time evolution of all SIR functions, including J(τ )
and j(τ ), that are compatible with the above solution (30)

τ =

∫ J

η

dy
N(y)

, (52)

N(y) = (1 − y)[y + kε+ k ln(1 − y)] (53)

with ε = −ln(1 − η). We have already shown by equation (32) that the inverse integrand at
y = J is the differential rate of newly infected persons j in terms of J.

In the following we are going to split this integral into two regimes (a) rise and (b) decay,
corresponding to times τ characterized by a rising and decaying number of newly infected
persons in the course of time. To this end we split the integral self-consistently at some J∗ so
that the analytically known position J0 and height jmax = j(J0) of the maximum are exactly
reproduced by the approximant. The rising part will thus be absent when J∗ < η. The two
approximants of the inverse integrand will be denoted by ja(y) and jb(y) in regimes (a) and (b).

4.1. Requirements for an ideal approximant

An ideal approximant of the integrand must have several features:

(a) The integral τ (J) must exist in analytic form,
(b) The τ (J) function must exhibit an analytic inverse J(τ ),
(c) The exact and approximated reciprocal integrands must coincide at y = η to make sure

the initial j(τ ) is correctly captured,
(d) The exact and approximated reciprocal integrands must coincide at y = J∞ to make sure

J approaches the exact J∞ at large times,

10
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Figure 2. Detail concerning the development of the approximants. Exact (black solid)
and approximated (colored) integrands 1/N(y) of equation (30) over their range of
definition, y ∈ [η, J∞], multiplied by jmax for three different k and (a) and (b) η = 0.001
and (c) and (d) η = 0.1. While (a) and (c) depict the situation for version I (coefficients
a0,1,2 from equation (58) and b1,2 from equation (63)), (b) and (d) show it for version
II (same coefficients a0,1,2 and b1,2 from equation (65)). In this representation version
II captures the integrand more precisely than version I, but version I has the advantage
that the asymptotic behavior of τ (J) for J → J∞ is correctly captured. Note that a col-
ored function is made of two parts that meet at y = J∗ where the integrand achieves its
minimum.

(e) The exact and approximated reciprocal integrands should have the same slope in the vicin-
ity of the integral bounds, as these coefficients determine the asymptotic behavior of all
SIR functions.

If the integrand is approximated by two functions over disjunct regimes (a) and (b)
separated by some y value (denoted by J∗) there are further requirements:

(f ) The two approximants must possess identical values at y = J∗ to prevent a discontinuity
in J(τ ), and

(g) They should have also the same first derivative at y = J∗ to prevent a discontinuity in j(τ )
when calculated via J′(τ ).

Requirement (g) can be circumvented upon using the exact relation (32) or alternatively,
and more conveniently,by just using j(τ ) as given by the approximant, i.e., j(τ ) = ja(J(τ ))
within regime (a), and j(τ ) = jb(J(τ )) within regime (b). We shall present below two
approximants that both offer all but one of these ideal features. While the first approx-

11



J. Phys. A: Math. Theor. 54 (2021) 175601 R Schlickeiser and M Kröger

imant (referred to a version I) has (a)–(f), the second approximant (referred to as version
II) has (a)–(d) and (f) and (g). The situation is depicted for both versions in figure 2.

4.2. Analytic inversion

To account for (a) and (b), with a side-view to the remaining requests, we note that the following
indefinite integral, carrying a 2nd order polynomial in the denominator of the integrand (with

the abbreviation c3 =
√

c2
1 − 4c0c2),

Tc(J) ≡
∫ J dy∑2

j=0 c j(y − yc) j
= − 2

c3
tanh−1

[
c1 + 2c2(J − yc)

c3

]
, (54)

can be inverted analytically to yield

Jc(T) = yc −
c1 + c3 tanh(c3T/2)

2c2
. (55)

The derivative is thus

jc(T) =
dJc(T)

dT
= − c2

3

4c2 cosh2(c3T/2)
. (56)

We will make use of these identities in the following section. Here, c is a placeholder for either
(a) rise or (b) decay.

4.3. Expansion around ya = η

To account for the requirements (c) and (e) we use an optimized Taylor-expansion, i.e., Tay-
lor expansion subject to a constraint [33], of the reciprocal integrand in equation (53) about
y = ya = η. Up to 3rd order in y − η one has

N(y) = ja(y) +O(y − ya)3

ja(y) =
2∑

i=0

ai(y − η)i, (57)

where the coefficients follow from these requirements

a0 = (1 − η)η, (58)

a1 = 1 − k − 2η, (59)

a2 =
jmax − a0 − a1(J0 − η)

(J0 − η)2
. (60)

While a0 and a1 arise from the Taylor expansion, a2 ensures that equation (57) evaluated at
y = J0 yields jmax, where both J0 and jmax are known from equations (48) and (49). This a2 is
only slightly different from the a2 one obtains via the Taylor expansion. While a0 is positive, a2

is negative, and a1 may have either sign, depending on k. The abbreviation a3 =
√

a2
1 − 4a0a2

will be used.

4.4. Expansion around yb = J∞

To account for (d) and (e) we also expand the reciprocal integrand about y = yb = J∞ to write,
again up to 3rd order,

12
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N(y) = jb(y) +O(y − yb)3

jb(y) =
2∑

i=1

bi(y − J∞)i (61)

,where the sum does not involve b0 as the denominator N(y) vanishes at y = J∞. For the same
reason b3 = |b1|. We could mention here the exact values for b1 and b2 resulting from Tay-
lor expansion. But this would not help solving our problem. If we would go for using the
approximant ja(y) within some range of y ∈ [η, J∗] values, and jb(y) within the remaining
range y ∈ [J∗, J∞], the approximant would not share values and derivatives at y = J∗, if the
Taylor coefficients are used, and thus violate requirements (f) and (g).

Our solution to this discontinuity problem stems from the observation that ja(y) with coef-
ficients given by equation (58) approximates the reciprocal integrand very well up to its
extremum ja(J∗) located at

J∗ = η − a1

2a2
. (62)

In accord with our previous statements, a peak time occurs at positive times only when J∗ > η
implying that a1 has to be positive (because a2 is negative), corresponding to k < 1 − 2η in
light of (59). We note that this requirement agrees exactly with our earlier condition (51).

4.5. Coefficients b1 and b2 for version I

To fulfill condition (f) we need to require that jb(J∗) = ja(J∗). If we ignore the requirement
(g) but take into account (e), then we arrive at our version I,

b1 = 1 − k − J∞, (63)

b2 =
a2[2a1b1 − a2

3 + 4a2b1(J∞ − η)]
[a1 + 2a2(J∞ − η)]2

(64)

where b1 is a true Taylor coefficient. The abbreviation a3 =
√

a2
1 − 4a0a2 has been used. Note

that b1 � 0 while b2 may have either sign, depending on k and η. This version thus implies
correct asymptotic behavior at large y at the expense of a jump in the derivative of J with
respect to τ upon approaching J∗ from different sides, J > J∗ and J < J∗. This jump does
however not occur here, as we do not use a derivative to calculate j from J at J = J∗, but two
functions that meet at J∗; the continuous j is already given by the approximants of the inverse
integrand, ja and jb, which do not possess any jumps, and meet exactly where we split the
integral, as this was the basic requirement leading to the coefficients in the present paragraph.
Because this version I exhibits an exact Taylor coefficient b1, that determines the behavior in
the vicinity of J∞, or equivalently, in the long time limit τ →∞, we can deduce the asymptotic
behavior of the exact solution of the semi-time SIR model in section 5.4.

4.6. Coefficients b1 and b2 for version II

The opposite case of fulfilling (g) while ignoring (e) yields version II

b1 =
a2

3

a1 + 2a2(J∞ − η)
, (65)

b2 =
a2a2

3

[a1 + 2a2(J∞ − η)]2
. (66)

13
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Also for this version, b1 � 0 and b2 may have either sign, depending on k and η. This version
implies a continuously differentiable J, serves to reproduce the exact J up to times well beyond
the peak time, but does not exhibit the correct asymptotic behavior at long times. This formal
drawback is something that does not matter as long as k is not very small. We moreover know
the asymptotic behavior j(τ ) ∼ eb1τ of the exact solution, that helps to rate when version II
begins to fail.

5. Results

5.1. Approximants for J(τ ) and j(τ ) (versions I and II)

Based on the considerations in the last section we are in the position to immediately write down
the approximants for both versions. An approximant consists of two parts, Jrise(τ ) to be used
at τ � τ ∗, and Jdecay(τ ) to be used at τ > τ ∗, where

τ∗ = τ (J∗) = Ta(J∗) − Ta(ya) (67)

according to equation (54). We will simplify this expression for τ ∗ further below. To under-
stand how we write down the approximant using the above equations, we recall that our
approximation evaluates the integral τ in equation (52) via

τ =

⎧⎪⎪⎨
⎪⎪⎩

∫ J

η

dy/ ja(y), J � J∗∫ J∗

η

dy/ ja(y) +
∫ J

J∗
dy/ jb(y), J � J∗

, (68)

where the 2nd order polynomials ja(y) and jb(y) are characterized by coefficients a0,1,2 and
b1,2, respectively, and where all these five coefficients as well as the J∗ were chosen to fulfill
our criteria for an approximant, and explicitly expressed already in terms of k and η. Using
equation (54) and τ ∗ = τ (J∗) we can write equation (68) as

τ =

{
Ta(J) − Ta(η), 0 � τ � τ∗

τ∗ + Tb(J) − Tb(J∗), τ � τ∗
(69)

because c → a (and ya = η) has to be used for the rising J < J∗ (or equivalently, τ < τ ∗)
regime, and c → b (and yb = J∞) afterwards. For the rising regime τ < τ ∗ we can thus write
τ + Ta(η) = Ta(J), where Ta(η) is a constant. According to equation (55) the inversion is

Jrise(τ ) = η − a1 + a3 tanh
{ a3

2 [τ + Ta(ya)]
}

2a2
, (70)

where ya = η has been used, and because the τ + Ta(η) has overtaken the role of T in
equation (55).

Similarly, within the decay regime τ � τ ∗, equation (69) can be written as τ − τ ∗ +
Tb(J∗) = Tb(J), where τ ∗ and Tb(J∗) are constants. According to equation (55) the
inversion is

Jdecay(τ ) = J∞ − b1

2b2

[
1 + tanh

{
b1

2
[τ − τ∗ + Tb(J∗)]

}]
, (71)

where yb = J∞ has been used, and because the τ − τ ∗ + Tb(J∗) has overtaken the role of T in
equation (55).
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It seems useful to explicitly write down the constants appearing in the above final expres-
sions

Ta(ya) = − 2
a3

tanh−1

(
a1

a3

)
,

Ta(J∗) = − 2
a3

tanh−1

[
a1 + 2a2(J∗ − η)

a3

]
= 0

Tb(J∗) = − 2
b1

tanh−1

[
b1 + 2b2(J∗ − J∞)

b1

]
, (72)

where we made use of equation (62) to simplify Ta(J∗), and where J∗ was already expressed
in terms of the coefficients in equation (62). As an aside we emphasize that by construction,
more precisely, requirement (f), the two expressions Jrise(τ ∗) = Jdecay(τ ∗) agree. Inserting the
coefficients from equation (72) we obtain for the maximum relative time (67) the simplified,
still identical expression

τ∗ =
2
a3

tanh−1

(
a1

a3

)
(73)

so that Ta(ya) in equations (72) and (70) turn out to be just identical to −τ ∗. These are final
expressions for J(τ ) in terms of the known coefficients, valid for both versions. If τ ∗ lies in
the past, or equivalently, if k < 1 − 2η, then J(τ ) � Jdecay(τ ) is the only contribution to our
approximant.

With this approximant for J(τ ) at hand, the differential number of newly infected persons is
simply given by jrise(τ ) = ja[Jrise(τ )] with the 2nd order polynomial ja from equation (57), and
jdecay(τ ) = jb[Jdecay(τ )] with the 2nd order polynomial jb from equation (61). More explicitly,

jrise(τ � τ∗) =
2∑

i=0

ai[Jrise(τ ) − η]i, (74)

jdecay(τ � τ∗) =
2∑

i=1

bi[Jdecay(τ ) − J∞]i. (75)

Because version II has the property (g), the differential number of cases is alternatively
given by equation (56), i.e.,

jrise(τ ) = − a2
3

4a2 cosh2[a3(τ − τ∗)/2]
, (76)

jdecay(τ ) = − b2
1

4b2 cosh2{b1[τ − τ∗ + Tb(J∗)]/2}
. (77)

For version I, the daily new number of cases is not properly described by dJ/dτ , but instead
is obtained from J via equation (74). For version II, equations (76) and (77) are just identical
to equation (32) and also identical to equation (74) when J(τ ) from equations (70) and (71) is
used.

We recall that the remaining SIR quantities are directly obtained as well from J(τ ) via
S(τ ) = 1 − J(τ ), I(τ ) = J(τ ) + kε+ k ln[1 − J(τ )], and R(τ ) = 1 − S(τ ) − I(τ ).
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Figure 3. (a) Peak time τmax versus k, compared with its approximant, τ ∗ given by
equation (73), for a few η values. The exact peak time τmax is obtained by solving
equation (30), or alternatively, the SIR time evolution equations (14)–(15) numerically.
(b) J at peak time, J0, compared with its approximant, J∗ stated by equation (62). Note
that J∗ � η for the semi-time SIR, while J0 < η, or equivalently, k > 1 − 2η, marks the
regime where the peak time does not lie in the future. Under such circumstances, there
is only a regime of decay (J∗ = η). Note also, that J0 can get negative here, as opposed
to part A, which corresponds to a choice of initial conditions that are incompatible with
the all-time SIR model. (c) Relative error of the approximant τ ∗ and (d) relative error
of the approximant J∗, now in the full k–η parameter space. The two shown quantities
τ ∗ and J∗ are identical for both versions I and II, and they only exist for k < 1 − 2η.
Outside this regime, there is no peak in j.

5.2. Peak time and values at peak time

While the value jmax of the maximum of j(τ ) at peak time τmax is captured exactly by construc-
tion of our approximants, the approximate peak time τ ∗ given by equation (73) is compared
with the numerically exact peak time τmax of the differential number of cases j(τ ) in figure 3(a)
for some selected values of η, to appreciate the dependency on k. The relative error for the
selected parameter η values is well below 2% for all k. Such relative error of our approxi-
mant τ ∗, now as function of k and η, i.e., capturing the whole parameter space, is shown in
figure 3(c). For these calculations and comparisons, the exact peak time τmax is obtained by
solving equation (30), or alternatively, the SIR time evolution equations (14) and (15) numer-
ically. As is visible from figure 3(c), the relative error of τ ∗ does not exceed 2.5% in the worst
case, which is located close to k = 0.6 and η = 10−1.5 ≈ 0.03. For both small and large k the
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relative error is extremely small, well below 0.1%. Our simple analytical approximant τ ∗ for
the peak time of daily newly infected persons can thus be considered precise for all practical
purposes. As is obvious from figure 3(a), the peak time decreases with increasing η = I(0), for
a given k.

The same holds true for the approximant J∗ of the cumulative number of infected persons at
peak time, for which we know the exact analytic expression J0 as well. The two are compared
with each other in figure 3(b) for some selected values of η, to appreciate the dependency on k.
The relative error of our approximant J∗ over the whole parameter space is shown in figure 3(d).
Note that J∗ � η for the semi-time SIR, while J0 < η, or equivalently, k > 1 − 2η, marks the
regime where the peak time does not lie in the future. Under such circumstances, there is only
a regime of decay (J∗ = η). Note also, that J0 can get negative here, as opposed to part A,
which corresponds to a choice of initial conditions that are incompatible with the all-time SIR
model. More specifically, J0 < 0 for k < 1 − 2η, which is just fine and irrelevant, while J∗ = η
within this regime, which is characterized by a purely decaying J(τ ). As shown by figure 3(b),
the cumulative number of infected persons at peak time decreases with increasing η = I(0),
for a given k.

5.3. Daily rate and cumulative number of infections

By our construction, the jrise(τ ) achieves its maximum at time τ ∗, where jrise(τ ∗) = jmax is iden-
tical to the exact analytic result (49). The peak time τmax of the unapproximated j(τ ) (if a peak
time exists) is not exactly located at τ ∗, because J∗ is not exactly identical to J0 (figure 3(b)),
as we discussed already. When there is no maximum in j at positive times, J∗ = η.

In figures 4(a) and (b) we plot the daily rate j(τ ) of newly infected persons for the more
relevant cases where a peak time is ahead in the future. These figures compare the time evolu-
tion of our approximants (version I and II) with the exact numerical solution of the SIR model.
Decay cases are shown in figures 4(c) and (d), again for selected values of the parameters k and
η. To make sure that we did not just pick suitable parameters here, the mean relative error of
our approximant for j(τ ) is evaluated as function of k and η in figures 4(e) and (f) for both ver-
sions, and over the whole range of parameter space. The relative errors of the approximant is
below 0.3% everywhere for version II, and below 1% for all k > 0.02 for version I. As already
known from figure 3(a) the peak time increases with increasing η and increasing k before drop-
ping sharply when k approaches unity. There is no future peak time anymore for k > 1 − 2η,
reflected by a negative τ ∗ in that case.

Similarly, in figure 5 we compare the approximations (70) and (71) for the cumulative num-
ber with the exact time dependence J(τ ) obtained by the numerical integration of equation (30),
for both versions I and II. While figures 5(a) and (b) focuses on the case where the peak times
lies in the future, figures 5(c) and (d) is concerned with the decay cases. It is visible how the
cumulative number at peak time, J0, approximated by J∗, decreases with increasing k, in accord
with figure 3(b), and is only weakly affected by the initial condition for η � 1. The accuracy
of the approximant is below 0.3% for any choice of parameters, if version II is used, while it
exceeds 1% for version I but only for small k < 0.1.

Relative errors for all other SIR quantities are similarly small, and need not be discussed
here, as all the S, I, R, G functions can be derived from J(τ ), as table 1 mentioned already.

5.4. Asymptotic behavior

Overall, the difference between versions I and II is not easily appreciated from these figures,
and therefore of minor relevance in practice. Both versions are in any case formally very
similar as they only differ in the values of their polynomial coefficients b1 and b2, and thus

17



J. Phys. A: Math. Theor. 54 (2021) 175601 R Schlickeiser and M Kröger

Figure 4. (a)–(d) Differential number of cases j(τ ) given by equation (74) (solid black)
versus τ , compared with its approximant equation (74) (colored). (a) and (b) Represen-
tative cases k < 1 − 2η that exhibit a future peak time and (c) and (d) cases k > 1 − 2η
where a peak time and rising regime is absent. While (a) and (c) show results for version
I, (b) and (d) are for version II. The versions differ only at late times, beyond peak time.
The peak time is given by τmax � τ ∗ in equation (73), the height jmax of the maximum
of j(τ ) given by equation (49). (e) and (f) Mean relative error of the reduced approx-
imant j(τ )/ jmax in the full k–η parameter space for both versions I and II. The exact
reference j(τ ) is obtained by solving equation (30), or alternatively, the SIR time evo-
lution equations (14) and (15) numerically. The analytic approximant j(τ ) is provided
by equation (74), while jmax is given by equation (49). For the normalization we use the
expression for jmax, even when the maximum does not lie in the future for k < 1 − 2η.
The regime k > 1 is not shown in (e) and (f), but the agreement is excellent in this
regime, more precisely, well below 0.2% for all η. We note that for version II the j(τ )
approximant can alternatively be expressed by equation (77).
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Figure 5. Representative cases that exhibit a future peak time. (a) and (b) Cumulative
number of infected persons J(τ ) (solid black) versus reduced time τ , compared with
its approximant equations (70) and (71) (colored). (c) and (d) Differential number of
cases j(τ ) given by equation (74) (solid black) versus τ , compared with its approximant
equation (74) (colored). While (a) and (c) show results for version I, (b) and (d) are for
version II. The versions differ only at late times. The peak time is given by τmax � τ ∗ in
equation (73), the height of the maximum of j(τ ) given by equation (49), and the value
J0 = J(τmax) at peak time given by J0 � J∗, cf equations (48) and (62). Mean relative
error of the reduced approximant J(τ )/J∞ in the full k–η parameter space for (c) version
I and (d) version II. The exact reference J(τ ) is obtained by solving equation (30), or
alternatively, the SIR time evolution equations (14) and (15) numerically. The analytic
approximant J(τ ) is provided by equations (70) and (71). For the normalization we use
the expression for J∞ given analytically by equation (38). The regime k > 1 is not shown
here, but the agreement is excellent in this regime, more precisely, well below 0.2% for
all k and η. While version I captures the asymptotic behavior correctly, it has an error
slightly larger than 2% at very small k < 0.05, but otherwise it is competing very well
with version II.
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Figure 6. (a) The daily rate j(τ ) exhibits an exponential decay at late times under all
conditions. Here we show the exact prefactor ν = 1 − k − J∞ (in agreement with the
prefactor produced by our approximant version I) in the exponent of limτ→∞ j(τ ) ∝ e−ντ

as function of k, for various η. Shown for comparison (dashed black) is the corresponding
exponent for the all-time SIR model from part A. (b) Ratio between early doubling time
τ 2 and late half decay time τ 1/2 of the differential rate of newly infected persons, j(τ ),
characterizing the asymmetry of the wave, as J0 − J∞/2 does. For η → 0, the semi-time
SIR approaches the all-time SIR (part A) asymmetry given by τ 2/τ 1/2 = ν/(1 − k) with
ν from equation (79). The asymmetry increases with decreasing k and with increasing η.

in their behavior beyond the peak time. At early times the doubling time τ 2 defined by
j(τ + τ 2) = 2 j(τ ) is given by τ 2 = ln(2)/a3, according to equation (76). The difference
between versions I and II is most pronounced if one focuses solely on j(τ ) at very late times.

The differential rate of newly infected persons j(τ ) exhibits an exponential decay

lim
τ→∞

j(τ ) ∝ e−ντ (78)

with some semipositive and constant, dimensionless decay rate ν at late times τ � τmax under
all conditions, that is obtained from equation (63). The decay rate is identical to ln(2)/τ1/2,
if τ 1/2 denotes the late half time, i.e., the time required for j to have dropped by a factor 2.
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Figure 6 shows the exact rate

ν = k + J∞ − 1 = k[1 + W0(α)] (79)

of the semi-time SIR as function of k, for various η, in perfect agreement with the decay rate
featured by our approximant version I (ν = −b1 in that case). In equation (79) we have used
equation (38) to replace J∞ by Lambert’s function, with α defined by equation (36). This way
the decay rate is formally identical to part A, recalling, that α for the present semi-time SIR
model is S(0) times the α for the all-time SIR. The rate ν is positive, except for k = 0, and for
k = 1 if η = 0. The decay rate generally increases with increasing initial fraction of infected
persons, η. This means that the daily rate at late times decreases the faster the larger the initial
fraction of infected persons is. Shown for comparison (dashed black) is the corresponding
decay rate for the all-time SIR model from part A. We thus find that the exponential decrease
is under all conditions faster for the all-time SIR, compared with the semi-time SIR. While for
small η the exponent ν is almost symmetric about k = 1, it gets more and more asymmetric
upon increasing η. We recall that the all-time SIR model is restricted to the regime k ∈ [0, kmax]
with kmax = [S(0) − 1]/ln(S(0)) which is kmax = η/ε ∈ (0, 1] using our current notation.

6. Summary and conclusions

The earlier analytical analysis [1] of the SIR epidemics model for a constant ratio k of infec-
tion to recovery rates is extended here to the semi-time case which is particularly appropriate
for modeling the temporal evolution of later (than the first) pandemic waves when a greater
population fraction from the first wave has been infected. In the semi-time case the SIR model
does not describe the quantities in the past; instead they only hold for times later than the ini-
tial time t = 0 of the newly occurring wave. Simple exact and approximative expressions are
derived for the final and maximum values of the infected, susceptible and recovered/removed
population fractions as well the daily rate and cumulative number of new infections.

To arrive at these conclusions, we eliminated one of the time-dependent infection a(t) and
recovery μ(t) rates—as in part A—by introducing the reduced time-variable τ defined by
dτ/dt = a(t). For the special case of a constant ratio k = μ(t)/a(t) of the two rates the exact
analytical solution (30) is derived providing

τ (J) =
∫ J

η

dy
N(y)

(80)

as an integral with the inverse integrand N(y) = (1 − y)[y + kε+ k ln(1 − y)], where ε equals
the negative logarithm of the initial susceptible fraction. All other epidemics quantities of
interest can be deduced from the inversion J(τ ) of the integral solution (80) according to
equation (33) including the medically interesting daily rate of new infections j(τ ) given in
equation (32).

We noted that the inverse integrand itself N(J) = j(J) agrees with the daily rate j. Therefore
whatever is adopted for the inverse integrand N(J), in order to perform the inversion of the inte-
gral solution, is identical to an assumption of the dependence j(J). As analytical approximation
we suggested to use optimized Taylor-expansions of the inverse integrand N(J) up to second-
order in either J − η or J∞ − J. Optimized refers to our approach of choosing the second order
expansion coefficient a2 such that the first Taylor expansion evaluated at J0 yields jmax, where
both the values of J0 and jmax can be inferred without solving the integral equation (80) explic-
itly. Both Taylor-expansions up to second order in J − η or J∞ − J, respectively, then allow
us the analytical inversion of the integral (80) providing the temporal evolution J(τ ) as well as
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j(τ ) either from equation (32) or from j(τ ) � N(J(τ )) which agree exactly. We presented two
variants of approximants, denoted as version I and II, which mainly differ in their asymptotic
behavior at times large compared with the peak time, and their quality in the vicinity of the
peak. Formally the two versions differ in their Taylor coefficients b1 and b2 characterizing N(y)
within the regime past peak time, and they are therefore also identical for the case of a pure
decay.

It is demonstrated that two qualitatively different types of temporal evolution of the daily
rate of new infections j(τ ) occur depending on the values of k and the initial value of the
infected fraction I(0) = η: in the decay case for k � 1 − 2η the daily rate monotonically
decreases at all positive times from its initial maximum value j(0) = η(1 − η). Alternatively,
in the peak case for k < 1 − 2η the daily rate attains a maximum at a finite positive time. By
comparing the approximated analytical solutions for j(τ ) and J(τ ) with the exact ones obtained
by numerical integration of solution (80), it is shown that the analytical approximations are
accurate within at most only 2.5 percent.

As opposed to the all-time SIR, we can apply this semi-time model to n different pandemic
waves well separated in time, by resetting t = 0 at the begin of a new wave, and with the help
of an recovered/removed fraction R∞, that is not anymore taken into account in a subsequent
wave. The outcome of wave n, used as initial condition for wave n + 1, severely influences the
temporal evolution of subsequent waves n + 1, n + 2, . . .

The SIR model is often solved numerically using some initial condition η � 1 that is incom-
patible with the all-time SIR model, and thus captured by the semi-time SIR model. Because η
is so small, it is not obvious at first glance, or usually even not tested, if there is a problem with
negative fractions of susceptible or infected persons at negative times. More importantly, we
have shown here that the behavior at large times is dramatically affected by the choice of initial
conditions. It is thus not true that some arbitrary small η is good enough to obtain a solution
to the SIR model. It is just the opposite. The all-time SIR model, which is the SIR model that
was originally developed to describe the time-evolution of the pandemic measures at all times,
starting out with a vanishing number of infected persons at t →−∞, is not recovered as a spe-
cial case of the semi-time SIR model. With this work we have clarified how the initial fraction
of infected persons sensitively influences the late time dependence of the epidemics, the max-
imum daily rate and its peak time. Such dependencies do not exist in the earlier investigated
all-time case.

Supplementary Information

We are applying the semi-time SIR model discussed here in real time to the first and
second waves of the Covid-19 pandemics for more than 60 countries at https://www.
complexfluids.ethz.ch/covid19-waveII. The fitting SIR parameters are tabulated there.
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