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Abstract
Multivariate information decompositions hold promise to yield insight into
complex systems, and stand out for their ability to identify synergistic phenom-
ena. However, the adoption of these approaches has been hindered by there
being multiple possible decompositions, and no precise guidance for preferring
one over the others. At the heart of this disagreement lies the absence of a clear
operational interpretation of what synergistic information is. Here we fill this
gap by proposing a new information decomposition based on a novel opera-
tionalisation of informational synergy, which leverages recent developments in
the literature of data privacy. Our decomposition is defined for any number of
information sources, and its atoms can be calculated using elementary optimi-
sation techniques. The decomposition provides a natural coarse-graining that
scales gracefully with the system’s size, and is applicable in a wide range of
scenarios of practical interest.
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1. Introduction

The familiarity with which we relate to the notion of ‘information’—due to its central role
in our modern worldview—is at odds with the mysteries still surrounding some of its funda-
mental properties. One such mystery is the nature and role of synergistic information, which
is present in systems that exhibit global interdependencies that are not traceable from any of
their subsystems. Synergistic relationships have shown to be instrumental in a wide range of
systems, including the nervous system [1, 2], artificial neural networks [3], cellular automata
[4], and music scores [5]. Furthermore, the concept of synergy traces a particularly promising
road to formalise the notion of ‘the whole being greater than the sum of the parts’, one of the
long-standing aims of complexity science [6].

Informational synergy has been studied following various approaches, including
redundancy-synergy balances [5, 7–9], information geometry [10, 11], and others. Within this
literature, one of the most elegant and powerful proposals is the partial information decomposi-
tion (PID) framework [12], which divides information into redundant (contained in every part
of the system), unique (contained in only one part), and synergistic (contained in the whole,
but not in any part) components. One peculiarity of the PID framework is the absence of pre-
cise prescriptions about how synergy should be quantified [13]; and despite numerous efforts,
an agreed-upon measure of synergy remains elusive [14–17]. Most approaches to quantify
synergy proceed by postulating axioms encoding some ‘intuitive’ desiderata, which should
ideally lead towards a unique measure—following the well-known axiomatic derivation of
Shannon’s entropy [18]. Unfortunately, a number of critical incompatibilities between some
of these axioms have been reported [19, 20], which reveals the limitations of our intuition as a
guide within the counterintuitive realms of high-order statistics.

Building on these remarks, we argue that measures of synergy with little concrete, opera-
tional meaning provide a limited advance from mere qualitative criteria. Moreover, as argued
by Kolchinsky [20], there might exist not a single but multiple reasonable definitions of syn-
ergy, and hence it is crucial to clarify what each proposed measure is capturing [21]. There
have been a few attempts to formulate operational measures of redundant [14, 16] and unique
information [15, 22, 23], but these efforts are still in progress, and apply only indirectly to syn-
ergy [24]. Providing a clear operational meaning for synergy is, to the best of our knowledge,
an important unresolved challenge.

In this paper we put forward a synergy-centered information decomposition, rooted on the
notion of synergistic data disclosure from the literature of data privacy [25, 26] and synergis-
tic variables introduced in reference [27]. In this decomposition, synergy corresponds to the
information that can be disclosed about a system without revealing the state of any of its parts.
This measure is computable via elementary optimisation techniques and is, to the best of our
knowledge, the first to provide a direct operational interpretation for synergistic information.
Moreover, our proposed decomposition is applicable to any number of source variables, and
its operational meaning provides natural coarse-grainings that enable useful tools for practical
analysis.

The paper is structured as follows. First, section 2 introduces our operational definition
of synergy, and section 3 uses it to build our proposed decomposition. The decomposition’s
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coarse-graining is discussed in section 4, and the special case of self-synergy in section 5.
Finally, the relationship with other decompositions is studied in section 6.

2. Synergy and data disclosure

Our goal is to develop a method to decompose the information that a multivariate sys-
tem X := (X1, . . . , Xn) provides about a target variable Y , as quantified by Shannon’s mutual
information I(X; Y). Our approach consists of three steps:

(a) Introduce synergistic channels, which convey information about X but not about any of
its parts (section 2.1);

(b) Define synergistic disclosure as the maximum amount of information about Y that can be
obtained through a synergistic channel on X (section 2.2); and

(c) Build an information decomposition by computing the synergistic disclosure for every
node of a lattice, and using the Möbius inversion formula (section 3).

The rest of this section provides technical details about synergistic disclosure, building upon
the work recently reported in references [25, 26].

2.1. Synergistic channels

Consider a system described by n variables, X := (X1, . . . , Xn), where each Xk takes values
on a discrete alphabet Xk of cardinality |Xk|. Consider also a channel that is applied on X to
generate a scalar observable V , which is characterised by a conditional distribution pV|X. We are
interested in a particular class of observables, which carry information about X while revealing
no information about specific subsystems.

Subsystems of X can be represented by sets of indices of the form α = {n1, . . . , nk} ⊂
[n], with [n] := {1, . . . , n} being a shorthand notation, and the corresponding subsystem being
denoted by Xα = (Xn1 , . . . , Xnk). We consider collections of subsystems, which are represented
by source-sets of the formα = {α1, . . . ,αL}, whereα j ⊂ [n] for all i = 1, . . . , L. For example,
possible source-sets for n = 2 are {∅}, {{1}}, {{1}, {1, 2}}, etc. With the notion of source-set
in hand, we can formally define synergistic channels as follows:

Definition 1. A channel pV|X is α-synergistic for α = {α1, . . . ,αL}, if ,
∀i = 1, . . . , L. The set of all α-synergistic channels is denoted by

(1)

A variable V generated via an α-synergistic channel is said to be an α-synergistic observable.

Due to the independence constraints (denoted by ), anα-synergistic observable V satisfies
I(Xαi ; V) = 0 for all i = 1, . . . , L. Thus the name synergistic: by construction, an α-synergistic
observable V might convey information about the whole, X, while disclosing no information
about the corresponding parts Xα1 , . . . , XαL .

Example 1. If X = (X1, X2) are two independent fair coins, then the observable
V = X1xorX2 given by

X1xorX2 :=

{
0 if X1 = X2

1 if X1 �= X2.
(2)
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is α-synergistic for α = {{1}, {2}}.

Note that pV |X can be depicted as a rectangular matrix. Elegant algebraic methods for
characterising synergistic channels based on this matrix representation are available, and are
discussed in appendix A.

2.2. Synergistic disclosure: definition and operational interpretation

Now that synergistic channels have been defined, let us formulate our measure of synergistic
disclosure. To do this, consider a target variable Y, potentially having some dependence on X
according to a given joint distribution pX,Y . We are interested in quantifying to what extent the
collective properties of X can predict Y without revealing any information about the subsys-
tems Xα1 , . . . , XαL . This intuition can be naturally operationalised by the mutual information
between Y and the α-synergistic observables of X, as described in the next definition.

Definition 2. The α-synergy between sources X and target Y is defined as

Sα(X → Y) := sup
pV|X∈C(X;α):V−X−Y

I(V; Y). (3)

Above, the notation V − X − Y means that V and Y are conditionally independent given X (i.e.
they form a Markov chain). Consequently, the supremum in equation (3) is calculated over all
the α-synergistic channels pV |X, so that the joint distribution of (V , Y) over which I(V; Y) is
calculated is of the form

P{V = v, Y = y} =
∑

x∈
∏n

i=1 Xi

pV|X(v|x)pX,Y (x, y).

Additionally, it can be verified that the supremum in (3) is attained, and hence, it is a maximum
[28]. Finally, this definition can used to extend the notion of synergy over any f-information,
as discussed in appendix B.

Definition 2 has a straightforward operational interpretation in the context of data trans-
mission over noisy channels, following Shannon’s channel coding theorem [29]. To make
this explicit, let us consider a point-to-point communication system where a sender wishes
to reliably communicate a message M at a rate R bits per channel usage to a receiver over a
noisy communication channel, specified as pV |Y(v|y) =

∑
x pV|X(v|x)pX|Y(x|y), where pV|X ∈

C(X;α) can be arbitrarily chosen. To this end, the sender encodes the message into a codeword
(Y1, . . . , Yt) and transmits it over the channel in t successive channel uses. Upon receiving the
noisy sequence (V1, . . . , Vt), the receiver decodes it to obtain the estimate M̂ of the message.
In this scenario, Sα(X → Y) denotes the highest rate R, over the choice of pV|X, such that the
probability of decoding error can be made to decay asymptotically to zero as the code block
length t grows [[30], chapter 7].

Additionally, definition 2 has a second operational interpretation related to data privacy,
as discussed in references [25, 26]. For this, consider a given database X of n random vari-
ables that in this case are considered to be ‘data samples’. A disclosure mechanism pV|X is
said to be ε-Bayesian differentially private [31, 32] if, for any index i and subset of indices
α, we have I(Xi; V|Xα) � ε. Interestingly, when considering adversaries with no background
knowledge about the database, then all ε-Bayesian differentially private mechanisms sat-
isfy I(Xi; V) � ε—i.e. the conditioning in the mutual information (which accounts for the
adversary’s background knowledge) is dropped. Now, let us consider the utility-privacy trade-
off in which one aims to reveal information about a variable of interest Y contained in the
database X while observing privacy constraints [33–36]. Then, Sα(X → Y) corresponds to
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the maximum utility that can be attained if an ε-Bayesian differentially private mechanism
is harnessed against an adversary with no background knowledge, for ε = 0. While this sim-
ple construction applies to α = {{1}, . . . , {n}}, it can be easily extended to other sets of
indices.

These results strongly contrast with some previous approaches to information decomposi-
tion, which have typically proceeded by writing down an axiomatic base and then formulating
a measure consistent with those desiderata. Is worth noting, however, some notable excep-
tions that have attempted to operationalise PID via decision theory [15, 20], game theory [14],
probability mass exclusions [16], and information theoretic secrecy [22, 23]. However, most
of these efforts are not entirely satisfactory, as they do not provide concrete implications to
the exact value that an information atom attains [37]. Also, is worth mentioning that quantities
with known operational interpretation such as Wiener’s common information have been con-
sidered as redundancy metric; unfortunately, they fail to provide some of the basic properties
that are desirable for a PID [38].

Finally, it is important to remark that all the existent operationalisations of PID apply on
either measures of redundancy or unique information, and their results apply to synergy only
indirectly. To the best of our knowledge, ours is the first operationalisation that applies directly
to synergy itself.

2.3. Fundamental properties

Let us explore some basic properties of our measure of synergy, Sα. A first fortunate feature
is that this quantity is computable via elementary optimisation techniques, which is a direct
extension of reference [[25], theorem 1].

Theorem 1. The supremum in equation (3) is always attained, and the corresponding
synergistic channel can be obtained as the solution to a standard linear-programming
problem.

While the proof of theorem 1 is omitted, interested readers can find the corresponding
details in reference [[26], section 3]. Additionally, software alternatives to compute Sα are
discussed in section 7. It is worth noting that our algorithm is efficient for systems with moder-
ate state spaces (e.g. binary systems with up to 6 variables), but scales poorly with system size.
While some methods for providing lower bounds on Sα have been outlined in reference [[26],
section 5], finding efficient algorithms for large systems is an interesting avenue for future
research.

Despite the guarantees provided by theorem 1, it is useful to have simple bounds. Note that,
due to the data processing inequality, Sα satisfies Sα(X → Y) � I(X; Y) for allα. The following
result introduces a less trivial upper bound.

Proposition 1. The following upper bound holds for Sα:

Sα(X → Y) � min
j∈{1,...,L}

I(Y; X−α j|Xα j), (4)

where X−α j � {X1, . . . , Xn}\{Xn1, . . . , Xnk} with αj = {n1, . . . , nk}.

Proof. See appendix C. �

The above property sometimes provide a shortcut to calculate Sα, as if one finds a particular
synergistic observable that attains this upper bound then it is clear that it is maximal. One
immediate consequence of this proposition, noting that I(X−α j; Y|Xα j) = I(X; Y) − I(Xα j; Y),
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is that

I(X; Y) − Sα(X → Y) � max
j∈{1,...,n}

I(Xα j; Y). (5)

In other words, the amount of non-synergistic information is lower-bounded by the amount of
information carried by the most strongly correlated subgroup.

Further details on Sα, including properties of its bounds, algebraic properties, and a data
processing inequality, are presented in section 6.1 and appendix D.

3. Information decomposition

This section uses the functional definition of α-synergy to formulate our proposed information
decomposition. For this, we focus on the study of the sets of constraints of the form α =
{α1, . . . ,αL}, which are the argument in the synergy Sα(X → Y). For such sets, we say |α| :=L
is the cardinality of the set.

3.1. The extended constraint lattice

Let us start by observing that not all source-sets yield unique synergistic channels. As a simple
example, if α = {{1, 2}} and β = {{1}, {1, 2}} one has that C(X;α) = C(X;β), as all the
additional constraints inβ are subsumed by the constraints inα. More formally, we say that two
source-sets are equivalent, denoted by α ≡I β, if C(X;β) = C(X;α). Our next result shows
that the set of anti-chains

A∗ = {α = {α1, . . . ,αL} : αi ⊂ [n],αi �⊂ α j ∀ i �= j} (6)

contains exactly one member of each equivalence class, and this member is the simplest such
source-set.

Lemma 1. For any β = {β1, . . . , βM} with βi ⊂ [n], there exists one and only one α ∈ A∗

such that β ≡I α. Moreover, if β ≡I α and α ∈ A∗, then |β| � |α|.

Proof. See appendix E. �

In other words, considering collections of indices that are not anti-chains would not provide
new classes of channels, as broader subunits subsume smaller ones. This property brings strong
reminiscences of Williams and Beer’s redundancy lattice [12]—which we will discuss in detail
in section 6 [39].

In addition to the set of nodes, to build a lattice on which one can formulate a decomposition
one needs a partial order relationship. Considering our setup, a natural candidate is the order
introduced by James et al in their proposed constraint lattice [40], defined by

α 	c β ⇐⇒ ∀ α ∈ α, ∃β ∈ β : α ⊆ β (7)

for α,β ∈ A∗. Intuitively, α 	c β means that all the constraints imposed by α are included
within those imposed by β, and therefore C(X;β) ⊆ C(X;α).

Putting these structures together generates the extended constraint lattice L∗ := (A∗,	c),
which extends the lattice introduced by James et al [40], and has been recently used by Ay
et al [41]. The cases n = 2 and n = 3 are depicted in figure 1. Importantly, in contrast with
James’ proposal, L∗ includes nodes that do not cover all the sources. The resulting lattice is
isomorphic in shape to Williams and Beer’s redundancy lattice, but with different relationships
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Figure 1. Extended constraint lattice for systems of n = 2 (left) and n = 3 (right)
sources.

between the nodes. Despite this similarity, however, comparisons between these two lattices
are not straightforward (cf section 6).

The lattice L∗ possesses some interesting properties, most prominently:

Lemma 2. If α,β ∈ L∗ and α 	c β, then

Sα(X → Y) � Sβ(X → Y) . (8)

Proof. See appendix E. �

This result shows that Sα(X → Y) is a non-increasing function of α ∈ L∗ for any given
variables X, Y. With this, one can propose the following decomposition based on the Möbius
inversion formula [42]:

Definition 3. For a given pX,Y , the atoms Sα
∂ (X → Y) correspond to the terms given by the

Möbius inverse of Sα(X → Y); i.e. the unique set of values that satisfy

Sα
∂ (X → Y) := Sα(X → Y) −

∑
β∈A∗β�α

Sβ
∂ (X → Y) (9)

for all α ∈ A∗.

7
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Intuitively, the Möbius inversion can be understood as a discrete derivative over a lattice. In
effect, an equivalent representation of the Möbius relationship is given by

Sα(X → Y) =
∑

β∈A∗β�α

Sβ
∂ (X → Y) , (10)

which is analogous to the fundamental theorem of calculus. The Möbius inversion yields syn-
ergy atoms of the form Sα

∂ , which quantify how much information about the target is contained
in the collective effects of variables α. For example, S[n](X → Y) = S[n]

∂ (X → Y) = 0, and
S∅(X → Y) = I(X; Y) for any pX,Y [43]. This last identity, combined with equation (10), gives
the following important result:

Proposition 2. (Information decomposition). The mutual information between X and
Y can be decomposed as

I(X; Y) =
∑
α∈A∗

Sα
∂ (X → Y) . (11)

Proof. Follows directly from noting that S∅(X → Y) = I(X; Y), and combining this with
equation (10). �

Please note that the synergy atoms are not guaranteed to be non-negative.However, section 4
presents a coarse-grained decomposition with provably non-negative atoms (cf proposition 3).

3.2. The case n = 2

After having formally presented the decomposition for n variables, let us focus on the bivariate
(n = 2) case, and develop some intuitions about the resulting synergy atoms. For two predictors
X = (X1, X2), equation (11) yields

I(X; Y) = S{1}{2}
∂ (X → Y) + S{1}

∂ (X → Y) + S{2}
∂ (X → Y) + S∅

∂ (X → Y).

Above, S{1}{2}
∂ (X → Y) can be understood as the information about Y that is related to

collective properties of X that can be disclosed without compromising either X1 or X2 [44].
Similarly, S{1}

∂ (X → Y) is the information about Y that can be disclosed without revealing parts

of X1 but compromising X2 (otherwise it would have been included in S{1}{2}
∂ (X → Y)). Finally,

S∅

∂ (X → Y) is information about Y that compromises both variables; put differently, informa-
tion that is neither in S{1}(X → Y) or S{2}(X → Y). Loosely speaking, S∅

∂ can be associated with

the standard PID redundancy, S{i}
∂ with the unique information, and S{1}{2}

∂ with the synergy.
A detailed comparison of these and the standard PID atoms is presented in section 6.

For the particular case where X1 and X2 are binary variables, then the optimal synergistic
channel only depends on their joint distribution—and not on the target variable, as shown in
reference [25]. Interestingly, if X1 and X2 are independent fair coin flips, then [45]

S{1}{2}(X → Y) = I(X1xorX2; Y). (12)

This result shows that our definition of synergy effectively captures high-order statistical
effects, which are most purely exhibited byXOR logic gates [46]. Analytical results for the more
general case where X1 and X2 are binary, though not necessarily independent, are presented in
appendix F.

8
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Table 1. Common distributions and their Sα decomposition.

XOR COPY Unq.1 AND TBC

S{1}{2}
∂ 1 0 0 0.3113 1

S{2}
∂ 0 0 1 0 0

S{1}
∂ 0 0 0 0 0

S∅

∂ 0 1 0 0.5 1

Figure 2. Normalised atoms of the disclosure decomposition for the AND gate with
correlated inputs, with P{X1 = 1} = P{X2 = 1} = 0.5 and correlation 〈x1x2〉 = r.

With these results, it is straightforward to compute the decomposition in equation (11) for
a few illustrative examples; results are presented in table 1. First, we notice that the paradig-
matic distributions copy and xor have the expected 1 bit of redundancy and synergy, respec-
tively, in agreement with our intuition for these cases. Similarly, the unq.1 distribution shows
only one non-zero atom, S{2}

∂ , which corresponds to unique information. The index of the
atom, however, might seem counterintuitive; the confusion is explained by the fact that the
superscript {2} refers to a constraint (the impossibility to disclose what is in X2), and hence
S{2}
∂ is more related with the contents of X1. This shows a general theme: that Sα, while

operationally meaningful and intuitive, needs to be interpreted differently from other PIDs
(cf section 6).

As a further example, we compute the disclosure decomposition Sα
∂ for the result of an

AND gate with correlated inputs (figure 2). As the inputs become more correlated, there is
less information that can be disclosed without compromising either of them, and therefore the
fraction of the total information that corresponds to S∅

∂ grows as correlation increases.

4. The backbone decomposition

As the extended constraint lattice L∗ grows extremely rapidly with system size, it is unfeasi-
ble to examine every element of our proposed decomposition in all but very small systems.
Luckily, the nature of Sα allows us to formulate a reduced collection of source-sets that form
the ‘backbone’ of the constraint lattice, which provides a natural summary of the system’s
high-order interactions.

In the sequel, subsection 4.1 introduces the backbone lattice, then subsection 4.2 dis-
cusses the backbone decomposition, and finally subsection 4.3 illustrates these ideas with some
examples.

9
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4.1. The backbone constraint lattice

We introduce the backbone constraint lattice, denoted by B ⊂ L∗, as the sublattice composed
by the elements ofA∗ of the formγm = {α ⊂ [n] : |α| = m} for m = 0, . . . , n (the dependency
on n is left implicit). Importantly, 	c restricted to B provides a total order:

γ 0 	c γ 1 . . . 	c γn. (13)

For example, for the case of n = 3 then B is composed by γ0 = {∅}, γ1 = {{1}, {2}, {3}},
γ2 = {{1, 2}, {2, 3}, {1, 3}}, and γ3 = {{1, 2, 3}}. Hence, the constraint γm corresponds to
the synergistic channel that discloses no information about any of the mth-order marginals.

For the synergy terms associated with B, we use the shorthand notation Bm(X →
Y) := Sγm (X → Y). In simple words, Bm(X → Y) accounts for the information about Y that can
be disclosed without compromising any group of m variables. Furthermore, as γ m−1 	cγm,
the following chain of inequalities is guaranteed:

0 = Bn(X → Y) � · · · � B0(X → Y) = I(X; Y). (14)

4.2. Backbone atoms

A new application of the Möbius inversion formula allows us to define backbone atoms,
Bm
∂ (X → Y), which we define as

Bm
∂ (X → Y) :=Bm−1(X → Y) −

n∑
k=m+1

Bk
∂(X → Y)

= Bm−1(X → Y) − Bm(X → Y). (15)

Equivalently, the backbone atoms are the values Bk
∂(X → Y) that satisfy, for all m ∈ [n],

Bm−1(X → Y) =
n∑

k=m

Bk
∂(X → Y), (16)

Intuitively, Bm−1 corresponds to the amount of information about Y that X can reveal without
compromising any group of m − 1 variables; or, equivalently, information revealed by com-
promising only groups of m or more variables. Consequently, Bm

∂ quantifies the marginal gain
of information that can be disclosed by relaxing the constraints from groups of m variables to
groups of m − 1. For example, for m = 1 then B1(X → Y) measures how much information can
be disclosed while keeping each X j confidential, while B1

∂(X → Y) corresponds to how much
is gained when these constraints are relaxed. Additionally, note that these backbone atoms can
be directly related to the synergy atoms in equation (9), as

Bm
∂ (X → Y) =

∑
γm−1	cα	cγm

Sα
∂ (X → Y). (17)

Putting all these results together one finds a reduced decomposition, which is formalised by
the following result.

Proposition 3 (Backbone decomposition). The following decomposition always
holds:

I(X → Y) =
n∑

m=1

Bm
∂ (X → Y). (18)

10
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Figure 3. Schematic representation of the backbone lattice. (left) Correspondence
between backbone atoms and Sα

∂ for the n = 3 lattice. (right) Representation of the
backbone lattice as a totally ordered set.

Moreover, Bm
∂ (X → Y) � 0 for all m = 1, . . . , n.

Proof. One can obtain equation (18) by evaluating equation (16) for m = 1. The non-
negativity of the atoms is a consequence of equations (14) and (15).

These backbone atoms provide a coarse-graining of the full decomposition in equation (11).
A basic schematic of this backbone decomposition, as well as its relationship with the Sα

∂ atoms
in the extended constraint lattice are shown in figure 3. Importantly, note that the cardinality
of the backbone lattice grows linearly with system size, and hence the number of atoms in
equation (18) remains tractable for large systems.

4.3. Examples

As an illustrative example of the potential of the backbone decomposition, let us apply it to
scenarios where the relationship between X and Y can be expressed as a Gibbs distribution. In
particular, we consider systems of n + 1 spins (i.e. Xi = {−1, 1} for i = 1, . . . , n + 1) whose
joint probability distributions can be expressed in the form

pXn+1 (xn+1) =
e−βHk (xn+1)

Z
, (19)

where β is the inverse temperature, Z a normalisation constant, and Hk(xn) a Hamiltonian
function of the form

11



J. Phys. A: Math. Theor. 53 (2020) 485001 F Rosas et al

Figure 4. Synergistic disclosure in Ising models (a) with terms up to order k and (b)
with terms only of order k.

Hk(xn+1) =−
n+1∑
i=1

Jixi −
n∑

i=1

n+1∑
j=i+1

Ji, jxixj

. . .−
∑
|I|=k

Jγ
∏
i∈I

xi,

(20)

with the last sum running over all collections of indices I ⊆ [n + 1] of cardinality |γ| = k.
Hamiltonians of the form of equation (20) correspond to maximum entropy distributions with
constraints on the kth-order marginals [10, 11], which arise naturally in scenarios where only
kth-order properties are observed [47, 48]. To calculate all quantities in this section we consider
Y = Xn+1 as target variable. Full simulation details are reported in appendix G.

As a first test case, we consider Hamiltonians with interactions up to order k, as in
equation (20) above. For these systems, we calculated the backbone term B1(X → Y),
which measures the strength of the high-order statistical effects beyond pairwise interactions
(figure 4(a)). As expected, our results show that if the Hamiltonian only possesses first or sec-
ond order interactions (i.e. k = 1 or 2) then B1(X → Y) is negligible; and for k � 3, B1(X → Y)
grows monotonically with k.

As a second test case, we studied Hamiltonians with source-target interactions only of order
k, and compute their full backbone decomposition. Figure 4(b) shows all the backbone atoms
Bm
∂ on the X-axis, normalised by I(X; Y). Interestingly, for each Hamiltonian order k there is

only one non-zero backbone atom, which suggests that I(X; Y) ≈ Bk
∂(X → Y). Note that this

relationship between Hamiltonian interaction order and backbone atom is highly non-trivial,
and finding analytical methods to make this connection more explicit is an open question.

12
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Figure 5. Self-disclosure capacity of two correlated bits.

These findings suggest that the backbone decomposition may provide an analogue to the
measure of connected information introduced in references [10, 11], which captures the effects
of Hamiltonian high-order terms over their corresponding Gibbs distributions [49]. The main
difference between the connected information and the backbone decomposition is that in the
former all variables play an equivalent role, while in the latter they are divided between sources
and target.

As a final remark, we note that in statistical physics the structure of Gibbs models are
typically explored via two-point correlation functions. However, pairwise statistics do not gen-
erally capture high-order statistical phenomena—see references [[5], section 3.1] and [[50],
section 5] for related discussions.

5. Synergistic capacity and private self-disclosure

So far, we have investigated the usual information decomposition scenario, in which a group of
source variables X hold information about another, target variable Y . Using the tools developed
so far, we can ask a new question: how much information can X disclose about itself under
specific constraints? Answering this question will provide further intuitions on the nature of
synergistic disclosure, while revealing some unexpected properties.

We start by presenting the definition of the self-disclosure of a system, which is a particular
case of the formalism presented above.

Definition 4. The α-self-synergy of X is given by Sα(X → X), and denoted simply by
Sα(X).

This definition makes it straightforward to extend the concepts above to define self-synergy
atoms Sα

∂ (X), as well as backbone self-synergy terms and atoms, denoted by Bm(X) and Bm
∂ (X),

respectively.
Let us begin with an example, by computing the self-disclosure of binary bivariate dis-

tributions. Consider two binary variables X = (X1, X2), with P{X1 = 1} = P{X2 = 1} = p
and P{X1 = 1, X2 = 1} = r (figure 5). Perhaps surprisingly, a direct calculation shows that
maximal synergy is achieved for X1, X2 independent and p = 1/2—which is equivalent to the
much-debated two-bit-copy (TBC) gate commonly discussed in the PID literature [16, 51, 52].
To make sense of this result, consider the following bounds on the self-disclosure:

13
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Lemma 3. For any X, Y the following bound holds:

H(X) − max
α j∈α

H(Xα j) � Sα(X) � Sα(X → Y). (21)

Proof. The upper bound is proven by an application of proposition 1 with Y = X, and the
lower bound by an application of lemma 6. �

This lower bound is particularly insightful, as it suggests that the synergistic self-disclosure
of X is the tightest upper bound on the synergistic information that X could hold about any
other target. Therefore, this (admittedly heterodox) perspective of synergy provides a clear
explanation of why the TBC could have non-zero synergy, since it accounts for the ‘synergistic
capacity’ of its inputs.

Additionally, the upper bound in lemma 3 provides a quick way to estimate how much
synergy can be found with respect to a given set of sources X. For example, if (X1, X2) are two
i.i.d. fair coins, lemma 3 states that their synergy cannot be larger than 1 bit, which is attained
by the optimal self-synergistic channel V∗ = X1xorX2 [53].

Another natural conjecture, in the light of the findings reported in section 4.3, would be to
argue a relationship between self-synergy and connected information, as both measures treat
symmetrically all the corresponding variables. However, numerical evaluations show there is
no relationship between them. As a matter of fact, systems with low degrees of interdependency
have high levels of self-synergy, while having low levels of connected information.

A final lesson that can be learnt from studying self-synergy is that high-order synergies are
not rare corner cases, but are in fact prevalent in the space of probability distributions. More
formally, our next result shows that Bm(X) takes most of the information contained in X as the
system size grows.

Proposition 4. Consider a sequence of random variables X := (X1, . . . , Xn) for which there
exists K ∈ N such that |Xk| � K for all k ∈ N. If limn→∞H(X)/n exists and is not zero, then
for any fixed m ∈ N

lim
n→∞

Bm(X)
H(X)

= 1. (22)

Proof. See appendix H. �

Let us work an example to gain intuition on this seemingly counterintuitive result.

Example 2. Consider a system X where the components Xk are independent fair
coins. The mapping V = (X1xorX2, . . . , Xn−1xorXn) : {0, 1}n → {0, 1}n−1 belongs
to C(X, {{1}, . . . , {n}}), and I(V; X) = n − 1, attaining the upper bound pro-
vided in lemma 3. This implies that B1(X) = n − 1. Similarly, one can notice that
Vm = (X1xor . . .xorXm, . . . , Xn−m+1xor . . . xorXn) : {0, 1}n → {0, 1}n−m+1 also attains the
bound for the class C(X, {{1, . . . , m}, . . . , {n − m + 1, . . . , n}}), and hence Bm(X) = n − m.
Therefore, Bm

∂ (X) = 1 for all m = 1, . . . , n − 1, and

lim
n→∞

Bm(X)
H(X)

= lim
n→∞

n − m
n

= 1. (23)

The theoretical and practical consequences of the prevalence of synergy will be discussed
in a separate publication.
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6. Relationship with other information decompositions

This section explores the relationship of our proposed framework with other information
decompositions. For this, subsection 6 1 explores various properties of our definition of syn-
ergy under the light of various axioms typically used in the PID literature, then subsection 6 2
explores relationships of our decomposition with other PID, and finally subsection 6.3 carries
out numerical comparisons between our metrics and other well-known decompositions.

6.1. Axioms

In previous literature, PID is usually discussed in terms of axioms, which encode various
desirable properties that measures might—or might not—satisfy. These axioms are often for-
mulated for redundancy measures, which, given that the basic constituent of our decomposition
is a synergy measure, makes assessing our framework in these terms non-trivial. Nevertheless,
this subsection explores some of the common axioms from the point of view of Sα, using as
guideline the set of axioms discussed in reference [38].

The following axioms are satisfied by our measure:

• (GP) Global positivity: Sα(X → Y) � 0 for all X, Y and α ∈ A∗.
• (Eq) Equivalence-class invariance: Sα(X → Y) is invariant under substitution of Xi or Y

by an informationally equivalent random variable (i.e. re-labeling).
• (wS) Weak symmetry: Sα(X → Y) is invariant under reordering of X1, . . . , Xn.
• (wM) Weak monotonicity: Sα(X → Y) � Sα ((X, Z) → Y) (see appendix E). Note that this

does not hold for the backbone terms, as the α’s are not equal.
• (CCx) Channel convexity: Sα(X → Y) is a convex function of pY|X for a given pX (proof

in appendix D).
• (T-DPI) Target data processing inequality: if X − Y − Z is a Markov chain, then Sα(X →

Y) � Sα(X → Z) (proof in appendix D).

The proposed measure does not satisfy strong symmetry (sS), as it might be the case that
Sα ((X1, X2) → Y) �= Sα ((X1, Y) → X2) [54].

We can prove by counterexample that Sα
∂ does not satisfy strong local positivity (LP),

i.e. that there exist Sα
∂ (X → Y) < 0 for some α ∈ A∗ [55]. On the other hand, note that the

backbone atoms Bm
∂ (X → Y) do satisfy (LP), as shown in section 4.

6.2. General relationship with PID

In this section we focus on the relationship between our decomposition for the case of n = 2 (cf
section 3.2), and the standard PID. When considering α,β ∈ A :=A∗/{∅}, the classic work
of Williams and Beer [12] introduces the following partial ordering:

α 	wb β ⇐⇒ ∀β ∈ β ∃α ∈ α,α ⊆ β. (24)

While the difference between 	wb and 	c might seem subtle, they induce drastically different
lattice structures. For example, if α = {{1}} and β = {{1}{2}}, then β 	wb α while α 	c

β. The lattices for n = 2 for both orderings are shown in figure 6.
Traditional PID-type decompositions for two sources are based on the following conditions:

I(Xi; Y) = Red(X1, X2 → Y) + Un(Xi; Y|X j)

I(Xi; Y|X j) = Un(Xi; Y|X j) + Syn(X1, X2 → Y),

15



J. Phys. A: Math. Theor. 53 (2020) 485001 F Rosas et al

Table 2. Correspondence between PID atoms and Sα
∂ .

Disclosure decomposition PID

Synergy S{1}{2}(X → Y) Syn(X1, X2 → Y)

Unique S{i}
∂ (X → Y) Un(X j; Y|Xi)

Redundancy S∅

∂ (X → Y) Red(X1, X2 → Y)

Figure 6. Extended constraint (left) and redundancy (right) lattices for n = 2.

Figure 7. Conditional information is an upper bound on discloseable information.

which are valid for i, j ∈ {1, 2} with i �= j. A direct parallel between these terms and our
framework can be made, and is shown in table 2.

A key relationship between any PID and our decomposition comes from noticing that,
considering proposition 1 for X = (X1, X2) and α = {{1}}, one finds that

S{1}(X → Y) � I(X2; Y|X1). (25)

Moreover, numerical evaluations show that this bound is often not attained, as illustrated by
figure 7 (see appendix G for more details).
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As a consequence of this, one has that

I(Xi; Y|X j) = Un(Xi; Y|X j) + Syn(X1, X2 → Y)

� S{ j}(X1, X2 → Y)

= S{ j}
∂ (X1, X2 → Y) + S{1}{2}

∂ (X1, X2 → Y).

Conversely, an opposite relationship holds for the marginal mutual information:

I(Xi; Y) = Red(X1, X2 → Y) + Un(Xi; Y|X j).

� I(X1, X2; Y) − S{i}(X1, X2 → Y)

= S∅

∂ (X1, X2 → Y) + S{i}
∂ (X1, X2 → Y).

By combining these two results, one can compare the co-information with a corresponding
co-information obtained from our decomposition, as follows:

I(X1; X2; Y) = Red(X1, X2 → Y) − Syn(X1, X2 → Y)

= I(Xi; Y) − I(Xi; Y|X j)

� S∅

∂ (X → Y) − S{1}{2}
∂ (X → Y).

This result implies that, when assessing the balance between redundancy and synergy, our
decomposition always tends towards redundancy over synergy with respect to any PID decom-
position. In this sense, one can say that—at least for n = 2—our decomposition is conservative
when attributing dominance of synergies. The next section provides further evidence to support
this claim.

6.3. Numerical comparisons with other PIDs

Let us now study how our proposed measure of synergy relates to the ones correspond-
ing to other well-known decompositions. Our analysis includes the IBROJA decomposition by
Bertschinger et al [15], common change in surprisal (Iccs) by Ince [14], Imin by Williams and
Beer [12], Idep by James et al [40], and the pointwise decomposition by Finn and Lizier (I±)
[16]; all computed using the dit package [56]. To do this comparison, we draw random dis-
tributions from the probability simplex following an NSB prior (see appendix G for details),
and then compute their synergy values with all measures.

A first, somewhat striking result is the overwhelming correlation found between most pro-
posed measures—BROJA, CCS, Imin, and Idep are all related with each other with correlations
greater than 0.94 for every pair (figure 8(a)). The two oddballs in this plot are our proposed
measure Sα and I±, which are less well correlated with the rest and with each other (correlations
range around 0.70 for Sγ1 and around 0.50 for I±).

To examine this discrepancy, we computed the inverse cumulative function of the resulting
values of the synergy for the various measures (figure 8(b)). This curve shows the fraction of all
sampled distributions that have a synergy greater than a given threshold, to gauge how preva-
lent synergy is judged to be according to each measure. Consistent with figures 8(a) and (b)
shows that the measures BROJA, CCS, Imin, and Idep all follow similar profiles. Interestingly,
Sγ1 falls much faster than the rest, while I± does it much more slowly. Therefore, our mea-
sure Sγ1 can be said to be more ‘restrictive’, in the sense that it tends to assign lower values of
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Figure 8. Numerical comparison between synergy values according to different pro-
posed decompositions. (a) Correlation matrix of synergy values of random distributions.
(b) Fraction of distributions with synergy greater than a given threshold.

synergy, while I± is more lenient. We hypothesise this ‘overestimation’ of synergy by I± hap-
pens because of its tendency to assign negative values to the redundant or unique information
[57].

Finally, it is worth illustrating a simple case where Sα disagrees with previous decomposi-
tions. As a straightforward example, consider the TBC gate (cf section 5). In this distribution,
Sα yields one bit of redundancy and one of synergy, while IBROJA yields two bits of unique
information. The reason for this discrepancy is simple, and easily understood within the oper-
ational interpretation of Sα: when dealing with two independent bits one can always disclose
their XOR, which, for the TBC problem, excludes half of the possible outcomes and therefore
attains I(V; Y) = 1 bit.

7. Conclusion

This paper puts forward an operational definition of informational synergy, and uses it
as a foundation to build a multivariate information decomposition. Compared to previous
approaches to information decomposition, our framework possesses two key features:

18



J. Phys. A: Math. Theor. 53 (2020) 485001 F Rosas et al

(a) It is a ‘synergy-first’ decomposition, which begins by positing a measure of synergy and
builds a decomposition after it, as opposed to previous approaches that are based on
redundancy or unique information, and have synergy as a by-product.

(b) It is based on a quantity that is the optimal solution of a well-defined problem in the
data privacy literature, which makes reasoning about the measure more transparent while
bringing the decomposition closer to standard information-theoretic formulations.

We illustrated the capabilities of the proposed decomposition on various examples, and
showed that it gives a complementary perspective compared to other information decomposi-
tions. In particular, our results show that our measure of synergy is in general more conservative
than other approaches, as it tends to attribute smaller values of synergy. We also showed
how its operational interpretation provides clear explanations to open questions in the field
of information decomposition, such as the well-known TBC problem [14, 16, 20].

Moreover, our measure has an associated ‘backbone’ decomposition, which provides a nat-
ural coarse-graining of the information atoms. Our results show that in some scenarios the
backbone atoms provide a directed version of the well-known connected information, which
captures the effect of high-order interaction terms within Gibbs distributions. The number of
backbone atoms grows linearly with system size, which makes this decomposition practical
for studying a wide range of systems of interest.

The operational approach taken in this work represents a step towards establishing a solid
foundation in the field of information decomposition. Additionally, we provide an open-source
software package [58] implementing the key quantities in this paper, opening the door for a
wide range of applications in data analysis, neuroscience, and information dynamics.
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Appendix A. Characterising synergistic channels

Here we provide a characterisation of C(X;α) in terms of matricial properties of it constituents.
To do this, let us introduce the matrix Pα defined as

Pα �

⎡
⎢⎣

PXα1 |X
...

PXαL |X

⎤
⎥⎦

G×|X̂ |

, (A1)

where G :=
∑L

k=1

∏
i∈αk

|Xi|, and X̂ is the set of tuples x ∈
∏n

k=1 Xk such that pX(x) > 0. This
matrix is designed such that the matrix product PαpX (with pX being the probability vector
of X) yields the marginals within pX that need to be ‘masked’ by the synergistic channel—so
that pXα|V=v is a uniform distribution for all α ∈ α. Note that Pα is a binary matrix, since
the Xα’s are deterministic functions of X. As an example, if |Xi| = 2, ∀ i ∈ [n] and α =
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{{1}, . . . , {n}}, then Pα is a 2n × 2n matrix that can be built recursively according to

Pk+1 =

⎡
⎣1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1
Pk Pk

⎤
⎦ ,

with Pα = Pn and P1 =

[
10
01

]
. With this matrix, one can characterise the channels in C(X;α) as

shown in the next lemma, this being a straightforward extension of reference [[25], lemma 1].

Lemma 4. pV|X ∈ C(X;α) if and only if (pX − pX|v) ∈ Null(Pα), ∀ v ∈ V .

Proof. Let X, Y and Z be discrete r.v.’s that form a Markov chain as X − Y − Z. Having
is equivalent to pX(·) = pX|Z(·|z), i.e., pX = pX|z, ∀ z ∈ Z . Furthermore, due to the

Markov chain assumption, we have pX|z = PX|YpY|z, ∀ z ∈ Z , and in particular, pX = PX|YpY .
Therefore, having pX = pX|z, ∀ z ∈ Z results in

PX|Y
(
pY − pY|z

)
= 0, ∀ z ∈ Z ,

or equivalently,
(
pY − pY|z

)
∈ Null(PX|Y), ∀ z ∈ Z .

The proof is complete by noting that (i) Xαi − X − Y form a Markov chain for each index
i ∈ [L], and (ii) Null(Pα) =

⋂n
i=1 Null(PXαi |X). �

In summary, the matrix form of the (reverse) synergistic channel is related to pX and the
null space of Pα. They key take-away from this lemma is that one can compute the conditional
distributions pX|v of the synergistic channel by algebraic manipulation of Pα and pX. Further-
more, this lemma has one important implication: the synergistic channels needed to compute
the synergistic components of I(X; Y) with respect to a target variable Y depend only on pX,
not on pY|X.

Appendix B. Synergy based on f-information

Let p, q be two probability mass functions on X , such that q(x) > 0, ∀ x ∈ X . For a convex
function f such that f(1) = 0, the f-divergence of p from q is defined as

D f (p‖q) :=
∑
x∈X

f

(
p(x)
q(x)

)
q(x). (B1)

Many well-known divergences are special cases of the f-divergence, including the Kull-
bac–Leibler divergence (for f(p) = p log p) and the total variation distance (for f(p) = |p−
1|/2).

Using D f , one can define the f-information of a pair of discrete random variables (X, Y) as

I f (X; Y) :=D f (pX,Y‖pX · pY), (B2)

which assesses the difference in terms of the f-divergence between their joint pmf (i.e. pX,Y )
and the product of the marginals (i.e., pX · pY). As a special case, one can obtain Shannon’s
mutual information when f(p) = plogp.

Since the main tools used in this paper (such as convexity and data processing inequality)
are also valid for the f-information, the main results of this paper continue to hold for the more
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general f-synergy, defined as

Sα
f (X → Y) := sup

pV|X∈C(X;α):
V−X−Y

I f (V; Y). (B3)

That being said, please note that the f-information in general does not satisfy a chain rule, unlike
mutual information which stems from the logarithmic nature of the KL-divergence. Hence,
results that rely on the chain rule (such as proposition 1) fail to hold in this more general setup.

Appendix C. Proofs of section 2

The following proof is an extension of results presented in reference [25].

Proof of proposition 1. Let j ∈ [n] be an arbitrary index. First note that,

I(Y; X|V) = I(Y; Xα j|V) + I(Y; X−α j|V , Xα j) (C1)

� I(Y; Xα j|V) (C2)

= I(Y, V; Xα j). (C3)

where the second equality is due to the independence between V and Xα j . Then, we find that

I(Y; V) = I(Y; X) − I(Y; X|V) (C4)

� I(Y; X−α j|Xα j) + I(Y; Xα j) − I(Y, V; Xα j)

= I(Y; X−α j|Xα j) − I(V; Xα j|Y)

� I(Y; X−α j|Xα j), (C5)

where (C4) follows from the Markov chain Y − X − V . Since j is chosen arbitrarily, (C5) holds
for all j ∈ [n], resulting in (4).

The inequalities in the above derivation turn into an equality when

I(Y; X−α j|V , Xα j) = I(V; Xα j|Y) = 0. (C6)

�
Appendix D. Further properties of synergistic disclosure

We first consider the convexity of the synergy over channels, i.e. conditional probabilities
relating sources X and target Y .

Lemma 5 (Convexity of Sα over target channels). Sα(X → Y) is a convex function
of pY|X for a given pX.

Proof. Let us denote the maximiser of Sα(X → Y) by pα∗
V|X (cf the corresponding discus-

sion below (3)), and consider pY|X = θp1
Y|X + (1 − θ)p2

Y|X for θ ∈ [0, 1]. From the convexity of
mutual information, we have

Sα(X → Y) � θI1(V; Y) + (1 − θ)I2(V; Y),

where I1, and I2 are evaluated over

p1(v, y) =
∑

X

pα∗
V|X · pX · p1

Y|X, and (D1)
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p2(v, y) =
∑

X

pα∗
V|X · pX · p2

Y|X, (D2)

respectively. It is also readily verified that

p1(v|x) = p2(v|x) = pα∗(v|x) ∈ C(X;α).

As a result, one finds that

Sα(X → Y) � θSα
1 (X → Y) + (1 − θ)Sα

2 (X → Y). �
We now considered an extension of the data processing inequality of the mutual information

to the case of α synergies.

Lemma 6 (Data processing inequality for α-synergy). If X − Y − Z is a Markov
chain, then

Sα(X → Y) � Sα(X → Z). (D3)

Proof. A direct calculation shows that

Sα(X → Y) = sup
pV|Xn∈C(X;α):
V−X−Y

I(V; Y) (D4)

� sup
pV|Xn∈C(X;α):
V−X−Z

I(V; Z) (D5)

= Sβ(X → Z). (D6)

Above, (D5) uses the fact that C(X;α) depends only on X and not on the target variable, and
the traditional data processing inequality over the Markov Chain V − X − Y − Z. �

Finally, the last proposition explored here characterises conditions under which when there
is no α-synergy. The proof of this result is omitted, as it is a direct extension of reference [[25],
proposition 1]

Lemma 7. Sα(X → Y) = 0 if and only if Null(Pα) �⊂ Null(PY|X).

Appendix E. Proofs of section 3

Proof of lemma 1. As per lemma 4, the synergistic channel of interest depends only on the
null space of Pα. Recall that adding a new sourceα′ to an existing source-setα = {α1, . . . ,αL}
corresponds to appending rows to Pα (cf equation (A1)). If α′ ⊂ αi, the new rows added to Pα

corresponding to α′ are linearly dependent on the existing rows, and therefore the null space
of the matrix (and thus the synergistic channel) remains unchanged.

From this same line of reasoning, the smallest such source-set is that in which no source is
contained in another one—i.e. an anti-chain. �

Proof of lemma 2. Consider α,β ∈ A∗ with α 	c β. Then, it is direct to check that
C(X;β) ⊆ C(X;α), and therefore

Sα(X → Y) = sup
pV|Xn∈C(X;α):
V−X−Y

I(V; Y) (E1)
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� sup
pV|Xn∈C(X;β):
V−X−Y

I(V; Y) (E2)

= Sα(X → Y). (E3)

Above, the inequality is because the supremum is taken over a smaller set of parameters. �
Note that the proof of the weak monotonicity property (cf section 6.1) follows exactly the

same pattern, but leveraging the fact that C(X,α) ⊆ C ((X, Z),α). The details are left to the
interested reader.

Appendix F. Characterisation of synergistic channels in binary bivariate
systems

Without loss of generality, let us consider the joint distribution of binary variables (X1, X2)
described by

pX1,X2 =
[
r, a − r, b − r, 1 − a − b + r

]
, (F1)

where P{X1 = 1} = a and P{X2 = 1} = b with a � b determine the marginal distributions,
and P{X1 = 1, X2 = 1} = r ∈ [0, R] with R = min{a, b} gives the interdependency (note that
X1 and X2 are independent when r = ab).

The optimal α-synergistic channel for α = {{1}, {2}} for this system has been shown to
be (see reference [25])

PV∗|X =

⎡
⎢⎣

r(a − R)
R(a − r)

1
r(1 − a − b + R)
R(1 − a − b + r)

r(b − R)
R(b − r)

a(R − r)
R(a − r)

0
r(1 − a − b)(R − r)

R(1 − a − b − r)
b(R − r)
R(b − r)

⎤
⎥⎦ . (F2)

Interestingly, PV∗|X depends on the distribution of X but not on Y. For the particular case of
a = b = 1/2 and r = ab = 1/4, PV∗|X reduces to an XOR.

Appendix G. Simulation details

This Appendix provides simulation details for the numerical results in the paper.
Simulations in section 4.3: for figure 4 we use Gibbs distributions as specified in

equation (19) with the Hamiltonian given by equation (20). In contrast, for figure 4(b) we
also considered Gibbs distributions but this time with Hamiltonians that only have terms of
order k, i.e.

Hk(xn) = −xn+1

∑
|γ|=k

Jγ
∏
i∈γ

xi.

In all simulations, all interaction coefficients J in the Hamiltonians are drawn i.i.d. from a
normal distribution with zero mean and standard deviation 0.1. In both simulations, 25 Hamil-
tonians are sampled at random for each k, and the mean and standard deviation of the resulting
quantities (Bm or Bm

∂ ) are reported in both panes of figure 4.
Simulations in sections 6.2 and 6.3: for these simulations, each distribution pX is sampled

from a symmetric Dirichlet distribution with concentration parameterα. Let us define Dir(K,α)
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as the Dirichlet distribution over the (K − 1) simplex with all parameters α1 = · · · = αK = α.
Sampling from this Dirichlet with a fixed α, however, has the undesirable effect of generating
distributions with a very narrow distribution of entropy H(X) [59]. To generate distributions
with a near-uniform of entropy, we sample α from a Nemenman–Shafee–Bialek (NSB) prior
[60]

p(α) ∝ Kψ(Kα+ 1) + ψ(α+ 1),

for a distribution over an alphabet of size K. For simulations of n binary variables, we set
K = 2n, sample α using the equation above, and then sample pX from a symmetric Dirichlet
using standard algorithms.

Appendix H. Asymptotic limits of self-disclosure

Proof of proposition 4. From Corollary 1.2 of reference [26] one can see that

min
pV|X∈C(X;γm)

H(X|V) � log
(
rank(Pγm )

)
. (H1)

As the rank of a matrix cannot be larger than its number of rows, for a given m ∈ {1, . . . , n − 1}
is clear that

rank(Pγm ) � m
n∑

k=1

|Xk| � mnK, (H2)

and therefore minpV|X∈C(X;γm) H(X|V) � log(mnK). By definition of Bm(X), this implies that

H(X) − log(mnK) � Bm(X) � H(X). (H3)

Taking the limit of n →∞ for m fixed gives that

lim
n→∞

1
n

Bm(X) = lim
n→∞

1
n

H(X), (H4)

which is equivalent to what we want to prove (note that the cardinality of X grows with n as
well). �
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