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Abstract
Machine learning algorithms relying on deep neural networks recently allowed
a great leap forward in artificial intelligence. Despite the popularity of their
applications, the efficiency of these algorithms remains largely unexplained
from a theoretical point of view. The mathematical description of learning
problems involves very large collections of interacting random variables, dif-
ficult to handle analytically as well as numerically. This complexity is pre-
cisely the object of study of statistical physics. Its mission, originally pointed
toward natural systems, is to understand how macroscopic behaviors arise from
microscopic laws. Mean-field methods are one type of approximation strategy
developed in this view. We review a selection of classical mean-field methods
and recent progress relevant for inference in neural networks. In particular, we
remind the principles of derivations of high-temperature expansions, the replica
method and message passing algorithms, highlighting their equivalences and
complementarities. We also provide references for past and current directions
of research on neural networks relying on mean-field methods.

Keywords: neural networks, replica method, message passing, mean-field
theory, machine learning

(Some figures may appear in colour only in the online journal)

1. Introduction

With the continuous improvement of storage techniques, the amount of available data is cur-
rently growing exponentially. While it is not humanly feasible to treat all the data created,
machine learning, as a class of algorithms that allows to automatically infer structure in large
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data sets, is one possible response. In particular, deep learning methods, based on neural net-
works, have drastically improved performances in key fields of artificial intelligence such as
image processing, speech recognition or text mining. A good review of the first successes of
this technology published in 2015 is [LBH15]. A few years later, the current state-of-the-art
of this very active line of research is difficult to envision globally. However, the complexity of
deep neural networks remains an obstacle to the understanding of their great efficiency. Made
of many layers, each of which constituted of many neurons, themselves accompanied by a col-
lection of parameters, the set of variables describing completely a typical neural network is
impossible to only visualize. Instead, aggregated quantities must be considered to characterize
these models and hopefully help and explain the learning process. The first open challenge
is therefore to identify the relevant observables to focus on. Often enough, what seems inter-
esting is also what is hard to calculate. In the high-dimensional regime we need to consider,
exact analytical forms are unknown most of the time and numerical computations are ruled out,
ways of approximation that are simultaneously simple enough to be tractable and fine enough
to retain interesting features are highly needed.

In the context where dimensionality is an issue, physicists have experimented that macro-
scopic behaviors are typically well described by the theoretical limit of infinitely large systems.
Under this thermodynamic limit, the statistical physics of disordered systems offers pow-
erful frameworks of approximation called mean-field theories. Interactions between physics
and neural network theory already have a long history as we will discuss in section 6.1. Yet,
interconnections have been re-heightened by the recent progress in deep learning, which also
brought new theoretical challenges.

Here, we wish to provide a concise methodological review of fundamental mean-field infer-
ence methods with their application to neural networks in mind. Our aim is also to provide a
unified presentation of the different approximations allowing to understand how they relate
and differ. Readers may also be interested in related review papers. Another methodological
review is [ALG13], particularly interested in applications to neurobiology. Methods presented
in the latter reference have a significant overlap with what will be covered in the following.
Some elements of random matrix theory are there additionally introduced. The approximations
and algorithms which will be discussed here are also largely reviewed in [ZK16]. This previous
paper includes more details on spin glass theory, which originally motivated the development of
the classical mean-field methods, and particularly focuses on community detection and linear
estimation. Despite the significant overlap and beyond their differing motivational applica-
tions, the two previous references are also anterior to some recent exciting developments in
mean-field inference covered in the present review, in particular extensions toward multi-layer
networks. An older, yet very interesting, reference is the workshop proceedings [OS01], which
collected both insightful introductory papers and research developments for the applications
of mean-field methods in machine learning. Finally, the recent [CCC+19] covers more gener-
ally the connections between physical sciences and machine learning yet without detailing the
methodologies. This review provides a very good list of references where statistical physics
methods were used for learning theory, but also where machine learning helped in turn physics
research.

Given the literature presented below is at the cross-roads of deep learning and disordered
systems physics, we include short introductions to the fundamental concepts of both domains.
These sections 2 and 3 will help readers with one or the other background, but can be skipped
by experts. In section 4, classical mean-field inference approximations are derived on neural
network examples. Section 5 covers some recent extensions of the classical methods that are
of particular interest for applications to neural networks. We review in section 6 a selection
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of important historical and current directions of research in neural networks leveraging mean-
field methods. As a conclusion, strengths, limitations and perspectives of mean-field methods
for neural networks are discussed in section 7.

2. Machine learning with neural networks

Machine learning is traditionally divided into three classes of problems: supervised, unsuper-
vised and reinforcement learning. For all of them, the advent of deep learning techniques,
relying on deep neural networks, has brought great leaps forward in terms of performance
and opened the way to new applications. Nevertheless, the utterly efficient machinery of these
algorithms remains full of theoretical puzzles. This section provides fundamental concepts in
machine learning for the unfamiliar reader willing to approach the literature at the crossroads
of statistical physics and deep learning. We also take this section as an opportunity to intro-
duce the current challenges in building a strong theoretical understanding of deep learning. A
comprehensive reference is [GBC16], while [MWD+18] offers a broad introduction to machine
learning specifically addressed to physicists.

2.1. Supervised learning

Learning under supervision. Supervised learning aims at discovering systematic input to
output mappings from examples. Classification is a typical supervised learning problem: for
instance, from a set of pictures of cats and dogs labeled accordingly, the goal is to find a function
able to predict in any new picture the species of the displayed pet.

In practice, the training set is a collection of P example pairs D = {x (k), y (k)}P
k=1 from

an input data space X ⊆ R
N and an output data space Y ⊆ R

M . Formally, they are assumed
to be i.i.d. samples from a joint distribution p(x , y ). The predictor h is chosen by a training
algorithm from a hypothesis class, a set of functions from X to Y , so as to minimize the error
on the training set. This error is formalized as the empirical risk

R̂(h, �,D) =
1
P

P∑
k=1

�(y (k), h(x (k))), (1)

where the definition involves a loss function � : Y × Y → Rmeasuring differences in the output
space. This learning objective nevertheless does not guarantee generalization, i.e. the ability
of the predictor h to be accurate on inputs x that are not in the training set. It is a surrogate for
the ideal, but unavailable, population risk

R(h, �) = Ex ,y
[
�(y , h(x ))

]
=

∫
X ,Y

dx dy p(x , y )�(y , h(x )), (2)

expressed as an expectation over the joint distribution p(x , y ). The different choices of
hypothesis classes and training algorithms yield the now crowded zoo of supervised learning
algorithms.

Representation ability of deep neural networks. In the context of supervised learning,
deep neural networks enter the picture in the quality of a parametrized hypothesis class. Let
us first quickly recall the simplest network, the perceptron, including only a single neuron. It
is formalized as a function from R

N to Y ⊂ R applying an activation function f to a weighted
sum of its inputs shifted by a bias b ∈ R,

ŷ = hw ,b(x ) = f (w �x + b) (3)
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Figure 1. Let us assume we wish to classify data points x ∈ R
2 with labels y = ±1. We

choose as an hypothesis class the perceptron sketched on the left with sign activation. For
given weight vector w and bias b the plane is divided by a decision boundary assigning
labels. If the training data are linearly separable, then it is possible to perfectly predict
all the labels with the perceptron, otherwise it is impossible.

where the weights are collected in the vector w ∈ R
N . From a practical standpoint, this very

simple model can only solve the classification of linearly separable groups (see figure 1). Yet
from the point of view of learning theory, it has been the starting point of a rich statistical
physics literature that will be discussed in section 6.1.

Combining several neurons into networks defines more complex functions. The univer-
sal approximation theorem [Cyb89, Hor91] proves that the following two-layer network
architecture can approximate any well-behaved function with a finite number of neurons,

ŷ = hθ(x ) = w (2)� f (W (1)x + b ) =
M∑

α=1

w(2)
α f (w (1)

α
�

x + bα), θ = {w (2), W (1), b }

(4)

for f a bounded, non-constant, continuous scalar function, acting component-wise. In the
language of deep learning this network has one hidden layer of M units. Input weight vec-
tors w(1)

α ∈ R
N are collected in a weight matrix W (1) ∈ R

M×N . Here, and in the following, the
notation θ is used as short for the collection of adjustable parameters. The universal approxima-
tion theorem is a strong result in terms of representative power of neural networks but it is not
constructive. It does not quantify the size of the network, i.e. the number M of hidden units, to
approximate a given function, nor does it prescribe how to obtain the values of the parameters
w (2), W (1) and b for the optimal approximation. While building an approximation theory is
still ongoing (see e.g. [GPEB19]). Practice, led by empirical considerations, has nevertheless
demonstrated the efficiency of neural networks.

In applications, neural networks with multiple hidden layers, deep neural networks, are
preferred. A generic neural network of depth L is the function

ŷ = hθ(x ) = f (W (L) f (W (L−1) · · · f (W (1)x + b (1)) · · ·+ b (L−1)) + b (L)), (5)

θ = {W (l) ∈ R
Nl×Nl−1 , b (l) ∈ R

Nl ; l = 1, . . . , L}, (6)

where N0 = N is the dimension of the input and NL = M is the dimension of the output.
The architecture is fixed by specifying the number of neurons, or width, of the hidden layers
{Nl}L−1

l=1 . The latter can be denoted t (l) ∈ R
Nl and follow the recursion

t (1) = f (W (1)x + b (1)), (7)
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t (l) = f (W (l)t (l−1) + b (l)), l = 2, . . . , L − 1, (8)

ŷ = f (W (L)t (L−1) + b (L)). (9)

Fixing the activation functions and the architecture of a neural network defines an hypothesis
class. It is crucial that activations introduce non-linearities; the most common are the hyper-
bolic tangent tanh and the rectified linear unit defined as relu(x) = max(0, x). Note that it is also
possible to define stochastic neural networks by using noisy activation functions, uncommon
in supervised learning applications except at training time so as to encourage generalization
[PSDG14, SHK+14].

An originally proposed intuition for the advantage of depth is that it enables to treat the
information in a hierarchical manner; either looking at different scales in different layers, or
learning more and more abstract representations [BCV13]. Nevertheless, getting a clear the-
oretical understanding why in practice ‘the deeper the better’ is still an ongoing direction of
research (see e.g. [Dan17, SES19, Tel16]).

Neural network training. Given an architecture defining hθ, the supervised learning objec-
tive is to minimize the empirical risk R̂ with respect to the parameters θ. This optimization
problem lives in the dimension of the number of parameters which can range from tens to mil-
lions. The idea underlying the majority of training algorithms is to perform a gradient descent
(GD) starting at parameters drawn randomly from an initialization distribution:

θ0 ∼ pθ0 (θ0) (10)

θt+1 ← θt − η∇θR̂ = θt − η
1
P

P∑
k=1

∇θ�
(
y (k), hθt

(
x (k)

))
. (11)

The parameter η is the learning rate, controlling the size of the step in the direction of decreas-
ing gradient per iteration. The computation of the gradients can be performed in time scaling
linearly with depth by applying the derivative chain-rule leading to the back-propagation
algorithm [GBC16]. A popular alternative to gradient descent is stochastic gradient descent
(SGD) where the sum over the gradients for the entire training set is replaced by the sum over
a small number of samples, randomly selected at each step [Bot10, Rob51].

During the training iterations, one typically monitors the training error (another name for
the empirical risk given a training data set) and the validation error. The latter corresponds to
the empirical risk computed on a set of points held-out from the training set, the validation set,
to assess the generalization ability of the model either along the training or in order to select
hyperparameters of training such as the value of the learning rate. A posteriori, the performance
of the model is judged from the generalization error, which is evaluated on the never seen test
set. While two different training algorithms (e.g. GD vs SGD) may achieve zero training error,
they may differ in the level of generalization they typically reach.

Open questions and challenges. Building on the fundamental concepts presented in the
previous paragraphs, practitioners managed to bring deep learning to unanticipated perfor-
mances in the automatic processing of images, speech and text (see [LBH15] for a few years
old review). Still, many of the greatest successes in the field of neural network were obtained
using ingenious tricks while many fundamental theoretical questions remain unresolved.

Regarding the optimization first, (S)GD training generally discovers parameters close to
zero risk. Yet, gradient descent is guaranteed to converge to the neighborhood of a global
minimum only for a convex function and is otherwise expected to get stuck in a local min-
imum. Therefore, the efficiency of gradient-based optimization is a priori a paradox given
the empirical risk R̂ is non-convex in the parameters θ. Second, the generalization ability of
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deep neural networks trained by (S)GD is still poorly understood. The size of training data
sets is limited by the cost of labeling by humans, experts or heavy computations. Thus train-
ing a deep and wide network amounts in practice to fitting a model of millions of degrees of
freedom against a somehow relatively small amount of data points. Nevertheless it does not
systematically lead to overfitting. The resulting neural networks can have surprisingly good
predictions both on inputs seen during training and on new inputs [ZBH+17]. Results in the
literature that relate the size and architecture of a network to a measure of its ability to gen-
eralize are too far from realistic settings to guide choices of practitioners. On the one hand,
traditional bounds in statistics, considering worst cases, appear overly pessimistic [AAKZ19,
BM02, SSBD14, Vap00]. On the other hand, historical statistical physics analyses of learn-
ing, briefly reviewed in section 6.1, only concern simple architectures and synthetic data. This
lack of theory results in potentially important waste: in terms of time lost by engineers in
trial and error to optimize their solution, and in terms of electrical resources used to train
and re-train possibly oversized networks while storing potentially unnecessarily large training
data sets.

The success of deep learning, beyond these apparent theoretical puzzles, certainly lies in
the interplay of advantageous properties of training algorithms, the neural network hypothesis
class and structures in typical data (e.g. real images, conversations). Disentangling the role of
the different ingredients is a very active line of research (see [VBGS17] for a review).

2.2. Unsupervised learning

Density estimation and generative modeling. The goal of unsupervised learning is to directly
extract structure from data. Compared to the supervised learning setting, the training data
set is made of a set of example inputs D = {x (k)}P

k=1 without corresponding outputs. A sim-
ple example of unsupervised learning is clustering, consisting in the discovery of unlabelled
subgroups in the training data. Most unsupervised learning algorithms either implicitly or
explicitly adopt a probabilistic viewpoint and implement density estimation. The idea is to
approximate the true density p(x ) from which the training data was sampled by the clos-
est (in various senses) element among a family of parametrized distributions over the input
space {pθ(.), θ ∈ R

Nθ}. The selected pθ is then a model of the data. If the model pθ is easy to
sample, it can be used to generate new inputs comparable to the training data points—which
leads to the terminology of generative models. In this context, unsupervised deep learn-
ing exploits the representational power of deep neural networks to create sophisticated
candidate pθ.

A common formalization of the learning objective is to maximize the likelihood, defined
as the probability of i.i.d. draws from the model pθ to have generated the training data
D = {x (k)}P

k=1, or equivalently its logarithm,

max
θ

P∏
k=1

pθ(x (k)) ⇐⇒ max
θ

P∑
k=1

log pθ(x (k)). (12)

The second logarithmic additive formulation is generally preferred. It can be interpreted
as the minimization of the Kullback–Leibler divergence between the empirical distribution
pD(x ) =

∑P
k=1 δ(x − x (k))/P and the model pθ:

min
θ

KL(pD‖pθ) = min
θ

∫
dx pD(x ) log

pD(x )
pθ(x )

⇐⇒ max
θ

P∑
k=1

log pθ(x (k)), (13)
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although considering the divergence with the discrete empirical measure is slightly abusive.
The detail of the optimization algorithm here depends on the specification of pθ. As we will
see, the likelihood in itself is often intractable and learning consists in a gradient ascent on at
best a lower bound, otherwise an approximation, of the likelihood.

A few years ago, an alternative strategy called adversarial training was introduced by
[GPAM+14]. Here an additional trainable model called the discriminator, for instance
parametrized byφ and denoted dφ(·), computes the probability for points in the input spaceX of
belonging to the training set D rather than being generated by the model pθ(·). The parameters
θ and φ are trained simultaneously such that, the generator learns to fool the discriminator and
the discriminator learns not to be fooled by the generator. The optimization problem usually
considered is

min
θ

max
φ

ED
[
log(dφ(x ))

]
+ Epθ

[
log(1 − dφ(x ))

]
, (14)

where the sum of the expected log-probabilities according to the discriminator for examples
in D to be drawn from D and examples generated by the model not to be drawn from D is
maximized with respect to φ and minimized with respect to θ.

In the following, we present two classes of generative models based on neural networks.
Deep generative models. A deep generative models defines a density pθ obtained by propa-

gating a simple distribution through a deep neural network. It can be formalized by introducing
a latent variable z ∈ R

N and a deep neural network hθ similar to (5) of input dimension N. The
generative process is then

z ∼ pz(z ) (15)

x ∼ pθ(x |z ) = pout(x |hθ(z )), (16)

where pz is typically a factorized distribution on R
N easy to sample (e.g. a standard normal

distribution), and pout(.|hθ(z )) is for instance a multivariate Gaussian distribution with mean
and covariance that are functions of hθ(z ). The motivation to consider this class of models for
joint distributions is three-fold. First the class is highly expressive. Second, it follows from
the intuition that data sets leave on low dimensional manifolds, which here can be spaned by
varying the latent representation z usually much smaller than the input space dimension (for
further intuition see also the reconstruction objective of the first autoencoders, see e.g. chapter
14 of [GBC16]). Third, yet perhaps more importantly, the class can be optimized over eas-
ily using back-propagation, unlike the restricted Boltzmann machines presented in the next
paragraph largely replaced by deep generative models. There are two main types of deep gen-
erative models. Generative adversarial networks (GAN) [GPAM+14] trained following the
adversarial objective mentioned above, and variational autoencoders (VAE) [KW14, RMW14]
trained to maximize a likelihood lower-bound.

Variational autoencoders. The computation of the likelihood of one training sample x (k)

for a deep generative model (15) and (16) requires then the marginalization over the latent
variable z ,

pθ(x ) =
∫

dz pout(x |hθ(z ))pz(z ). (17)

This multidimensional integral cannot be performed analytically in the general case. It is also
hard to evaluate numerically as it does not factorize over the dimensions of z which are mixed
by the neural network hθ. Yet a lower bound on the log-likelihood can be defined by introducing
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a tractable conditional distribution q(z |x ) that will play the role of an approximation of the
intractable posterior distribution pθ(z |x ) implicitly defined by the model:

log pθ(x ) �
∫

dz q(z |x )
[
− log q(z |x ) + log pθ(x , z )

]
= LB(q, θ, x ). (18)

Maximum likelihood learning is then approached by the maximization of the lower bound
LB(q, θ, x ), which requires in practice to parametrize the tractable posterior q = qφ, typically
with a neural network. Using the so-called re-parametrization trick [KW14, RMW14], the
gradients of LB(qφ, θ, x ) with respect to θ and φ can be approximated by a Monte Carlo, so
that the likelihood lower bound can be optimized by gradient ascent.

Generative adversarial networks. The principle of adversarial training was designed
directly for a deep generative model [GPAM+14]. Using a deep neural network to parametrize
the discriminator dφ(·) as well as the generator pθ(·), it leads to a remarkable quality of produced
samples and is now one of the most studied generative model.

Restricted Boltzmann machines. Models described in the preceding paragraphs comprised
only feed forward neural networks. In feed forward neural networks, the state or value of
successive layers is determined following the recursion (7)–(9), in one pass from inputs to
outputs. Boltzmann machines instead involve undirected neural networks which consist of
stochastic neurons with symmetric interactions. The probability law associated with a neuron
state is a function of neighboring neurons, themselves reciprocally function of the first neuron.
Sampling a configuration therefore requires an equilibration in the place of a simple forward
pass.

A restricted Boltzmann machine (RBM) [AHS85, Smo86] with M hidden neurons in prac-
tice defines a joint distribution over an input (or visible) layer x ∈ {0, 1}N and a hidden layer
t ∈ {0, 1}M,

pθ(x , t ) =
1
Z ea�x+b�t +x �W t , θ = {W , a , b }, (19)

where Z is the normalization factor, similar to the partition function of statistical physics.
The parametric density model over inputs is then the marginal pθ(x ) =

∑
t∈{0,1}M pθ(x , t ).

Although seemingly very similar to pairwise Ising models, the introduction of hidden units
provides a greater representative power to RBMs as hidden units can mediate interactions
between arbitrary groups of input units. Furthermore, they can be generalized to deep Boltz-
mann machines (DBMs) [SH09], where several hidden layers are stacked on top of each
other.

Identically to VAEs, RBMs can represent sophisticated distributions at the cost of an
intractable likelihood. Indeed the summation over 2M+N terms in the partition function can-
not be simplified by an analytical trick and is only realistically doable for small models.
RBMs are commonly trained through a gradient ascent of the likelihood using approximated
gradients. As exact Monte Carlo evaluation is a costly operation that would need to be repeated
at each parameter update in the gradient ascent, several more or less sophisticated approxima-
tions are preferred: contrastive divergence (CD) [Hin02], its persistent variant (PCD) [Tie08]
or even parallel tempering [CRI10, DCB+10].

RBMs were the first effective generative models using neural networks. They found appli-
cations in various domains including dimensionality reduction [HS06], classification [LB08],
collaborative filtering [SMH07], feature learning [CNL11], and topic modeling [HS09]. Used
for an unsupervised pre-training of deep neural networks layer by layer [BLPL07, HOT06],
they also played a crucial role in the take-off of supervised deep learning.

8
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Open questions and challenges. Generative models involving neural networks such as
VAE, GANs and RBMs have great expressive powers at the cost of not being amenable to exact
treatment. Their training, and sometimes even their sampling requires approximations. From
a practical standpoint, whether these approximations can be either made more accurate or less
costly is an open direction of research. Another important related question is the evaluation
of the performance of generative models [SBL+18]. To start with the objective function of
training is very often itself intractable (e.g. the likelihood of a VAE or an RBM), and beyond
this objective, the unsupervised setting does not define a priori a test task for the performance
of the model. Additionally, unsupervised deep learning inherits some of the theoretical puzzles
already discussed in the supervised learning section. In particular, assessing the difficulty to
represent a distribution and select a sufficient minimal model and/or training data set is an
ongoing effort of research.

3. Statistical inference and the statistical physics approach

To tackle the open questions and challenges surrounding neural networks mentioned in the pre-
vious section, we need to manipulate high-dimensional probability distributions. The generic
concept of statistical inference refers to the extraction of useful information from these
complicated objects. Statistical physics, with its probabilistic interpretation of natural systems
composed of many elementary components, is naturally interested in similar questions. We pro-
vide in this section a few concrete examples of inference questions arising in neural networks
and explicit how statistical physics enters the picture. In particular, the theory of disordered
systems appears here especially relevant.

3.1. Statistical inference

3.1.1. Some inference questions in neural networks for machine learning. Inference in gener-
ative models. Generative models used for unsupervised learning are statistical models defining
high-dimensional distributions with complex dependencies. As we have seen in section 2.2,
the most common training objective in unsupervised learning is the maximization of the
log-likelihood, i.e. the log of the probability assigned by the generative model to the train-
ing set {x (k)}P

k=1. Computing the probability of observing a given sample x (k) is an inference
question. It requires to marginalize over all the hidden representations of the problem. For
instance in the RBM (19),

pθ(x (k)) =
1
Z

∑
t ∈{0,1}M

ea�x (k)+b�t +x �
(k)W t . (20)

While the numerator will be easy to evaluate, the partition function has no analytical expression
and its exact evaluation requires to sum over all possible states of the network.

Learning as statistical inference: Bayesian inference and the teacher–student scenario.
The practical problem of training neural networks from data as introduced in section 2 is not
in general interpreted as inference. To do so, one needs to treat the learnable parameters as
random variables, which is the case in Bayesian learning. For instance in supervised learn-
ing, an underlying prior distribution pθ(θ) for the weights and biases of a neural network
(5) and (6) is assumed, so that Bayes rule defines a posterior distribution given the training
data D,

p(θ|D) =
p(D|θ)pθ(θ)

p(D)
. (21)

9
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Compared to the single output of risk minimization, we obtain an entire distribution for the
learned parameters θ, which takes into account not only the training data but also some knowl-
edge on the structure of the parameters (e.g. sparsity) through the prior. In practice, Bayesian
learning and traditional empirical risk minimization may not be so different. On the one hand,
the Bayesian posterior distribution is often summarized by a point estimate such as its max-
imum. On the other hand risk minimization is often biased toward desired properties of the
weights through regularization techniques (e.g. promoting small norm) recalling the role of
the Bayesian prior.

However, from a theoretical point of view, Bayesian learning is of particular interest in
the teacher–student scenario. The idea here is to consider a toy model of the learning problem
where parameters are effectively drawn from a prior distribution. Let us use as an illustration the
case of the supervised learning of the perceptron model (3). We draw a weight vectorw0, from a
prior distribution pw(·), along with a set of P inputs {x (k)}P

k=1 i.i.d. from a data distribution px(·).
Using this teacher perceptron model we also draw a set of possibly noisy corresponding outputs
y(k) from a teacher conditional probability p(.|w �

0 x (k)). From the training set of the P pairs
D = {x (k), y(k)}, one can attempt to rediscover the teacher rule by training a student perceptron
model. The problem can equivalently be phrased as a reconstruction inference question: can
we recover the value of w0 from the observations in D? The Bayesian framework yields a
posterior distribution of solutions

p(w |D) =
P∏

k=1

p(y(k)|w �x (k))pw(w ) /
P∏

k=1

p(y(k)|x (k)). (22)

Note that the terminology of teacher–student applies for a generic inference problem
of reconstruction: the statistical model used to generate the data along with the realization
of the unknown signal is called the teacher; the statistical model assumed to perform the
reconstruction of the signal is called the student. When the two models are identical or
matched, the inference is Bayes optimal. When the teacher model is not perfectly known, the
statistical models can also be different (from slightly differing prior distributions to entirely
different models), in which case they are said to be mismatched, and the reconstruction is
suboptimal.

Of course in practical machine learning applications of neural networks, one has only access
to an empirical distribution of the data and it is unclear whether there should exist a formal rule
underlying the input–output mapping. Yet the teacher–student setting is a modeling strategy
of learning which offers interesting possibilities of analysis and we shall refer to numerous
works resorting to the setup in section 6.

3.1.2. Answering inference questions. Many inference questions in the line of the ones men-
tioned in the previous section have no tractable exact solution. When there exists no analytical
closed-form, computations of averages and marginals require summing over configurations.
Their number typically scales exponentially with the size of the system, then becoming astro-
nomically large for high-dimensional models. Hence it is necessary to design approximate
inference strategies. They may require an algorithmic implementation but must run in finite
(typically polynomial) time. An important cross-fertilization between statistical physics and
information sciences have taken place over the past decades around the questions of inference.
Two major classes of such algorithms are Monte Carlo Markov chains (MCMC), and mean-
field methods. The former is nicely reviewed in the context of statistical physics in [Kra06].
The latter will be the focus of this short review, in the context of deep learning.
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Figure 2. (a) Undirected probabilistic graphical model (left) and factor graph represen-
tation (right). (b) Left: directed graphical model of the generative model for the training
data knowing the teacher weight vector w0. Right: factor graph representation of the
posterior distribution for the student p(w |X , y ), where the vector y ∈ R

P gathers the
outputs y(k) and the matrix X ∈ R

N×P gathers the inputs x (k).

Note that representations of joint probability distributions through probabilistic graphical
models and factor graphs are crucial tools to design efficient inference strategies. In appendix B,
we quickly introduce for the unfamiliar reader these two formalisms that enable to encode and
exploit independencies between random variables. As examples, figure 2 presents graphical
representations of the RBM measure (19) and the posterior distribution in the Bayesian learning
of the perceptron as discussed in the previous section.

3.2. Statistical physics of disordered systems, first appearance on stage

Here we re-introduce briefly fundamental concepts of statistical physics that will help to
understand connections with inference and the origin of the methods presented in what follows.

The thermodynamic limit. The equilibrium statistics of classical physical systems are
described by the Boltzmann distribution. For a system with N degrees of freedom noted x ∈ X N

and an energy functional E(x ), we have

p(x ) =
e−βE(x )

ZN
, ZN =

∑
x∈XN

e−βE(x ), β = 1/kBT, (23)

where we defined the partition function ZN and the inverse temperature β. To characterize the
macroscopic state of the system, an important functional is the free energy

FN = − log ZN/β = − 1
β

log
∑

x∈XN

e−βE(x ). (24)

While the number of available configurations X N grows exponentially with N, considering
the thermodynamic limit N →∞ typically simplifies computations due to concentrations. Let
eN = E/N be the energy per degree of freedom, the partition function can be re-written as a
sum over the configurations of a given energy eN

ZN =
∑
eN

e−Nβ fN (eN ), (25)

where we define fN(eN) the free energy density of states of energy eN. This rewriting implies that
at large N the states of energy minimizing the free energy are exponentially more likely than

11
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any other states. Provided the following limits exist, the statistics of the system are dominated
by the former states and we have the thermodynamic quantities

Z = lim
N→∞

ZN = e−β f , and f = lim
N→∞

FN/N. (26)

The interested reader will also find a more detailed yet friendly presentation of the thermody-
namic limit in section 2.4 of [MM09].

Disordered systems. Remarkably, the statistical physics framework can be applied to inho-
mogeneous systems with quenched disorder. In these systems, interactions are functions of
the realization of some random variables. An iconic example is the Sherrington–Kirkpatrick
(SK) model [SK75], a fully connected Ising model with random Gaussian couplings J = (Ji j),
that is where the Jij are drawn independently from a Gaussian distribution. As a result, the
energy functional of disordered systems is itself function of the random variables. For instance
here, the energy of a spin configuration x is then E(x ; J ) = − 1

2 x �J x . In principle, system
properties depend on a given realization of the disorder. In our example, the correlation
between two spins 〈xix j〉J certainly does. Yet some aggregated properties are expected to be
self-averaging in the thermodynamic limit, meaning that they concentrate on their mean with
respect to the disorder as the fluctuations are averaged out. It is the case for the free energy. As
a result, here it formally verifies:

lim
N→∞

FN;J /N = lim
N→∞

EJ [FN;J /N] = f . (27)

(see e.g. [CCFM05, MPV86] for discussions of self-averaging in spin glasses). Thus the typical
behavior of complex systems is studied in the statistical physics framework by taking two
important conceptual steps: averaging over the realizations of the disorder and considering
the thermodynamic limit. These are starting points to design approximate inference methods.
Before turning to an introduction to mean-field approximations, we stress the originality of the
statistical physics approach to inference.

Statistical physics of inference problems. Statistical inference questions are mapped to
statistical physics systems by interpreting general joint probability distributions as Boltzmann
distributions (23). Turning back to our simple examples of section 3.1, the RBM is trivially
mapped as it directly borrows its definition from statistical physics. We have

E(x , t ; W ) = −a �x − b �t − x �W t . (28)

The inverse temperature parameter can either be considered equal to 1 or as a scaling factor
of the weight matrix W ← βW and bias vectors a ← βa and b ← βb . The RBM parameters
play the role of the disorder. Here the computational hardness in estimating the log-likelihood
comes from the estimation of the log-partition function, which is precisely the free energy.
In our second example, the estimation of the student perceptron weight vector, the posterior
distribution is mapped to a Boltzmann distribution by setting

E(w ; y , X ) = − log p(y |w �X )pw(w ). (29)

The disorder is here materialized by the training data. The difficulty is here to compute p(y |X )
which is again the partition function in the Boltzmann distribution mapping. Relying on the
thermodynamic limit, mean-field methods will provide asymptotic results. Nevertheless, expe-
rience shows that the behavior of large finite-size systems are often well explained by the
infinite-size limits.

Also, the application of mean-field inference requires assumptions about the distribution
of the disorder which is averaged over. Practical algorithms for arbitrary cases can be derived

12
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with ad hoc assumptions, but studying a precise toy statistical model can also bring interest-
ing insights. The simplest model in most cases is to consider uncorrelated disorder: in the
example of the perceptron this corresponds to random input data points with arbitrary random
labels. Yet, the teacher–student scenario offers many advantages with little more difficulty.
It allows to create data sets with structure (the underlying teacher rule). It also allows to
formalize an analysis of the difficulty of a learning problem and of the performance in the
resolution. Intuitively, the definition of a ground-truth teacher rule with a fixed number of
degrees of freedom sets the minimum information necessary to extract from the observations,
or training data, in order to achieve perfect reconstruction. This is an information-theoretic
limit.

Furthermore, the assumption of an underlying statistical model enables the measurement of
performance of different learning algorithms over the class of corresponding problems from
an average viewpoint. This is in contrast with the traditional approach of computer science
in studying the difficulty of a class of problem based on the worst case. This conservative
strategy yields strong guarantees of success, yet it may be overly pessimistic compared to the
experience of practitioners. Considering a distribution over the possible problems (a.k.a.
different realizations of the disorder), the average performances are sometimes more infor-
mative of typical instances rather than worst ones. For deep learning, this approach may
prove particularly interesting as the traditional bounds, based on the VC-dimension [Vap00]
and Rademacher complexity [BM02, SSBD14], appear extremely loose when compared to
practical examples.

Finally, we must emphasize that derivations presented here are not mathematically rigor-
ous. They are based on ‘correct’ assumptions allowing to push further the understanding of
the problems at hand, while a formal proof of the assumptions is possibly much harder to
obtain.

4. Selected overview of mean-field treatments: free energies and algorithms

Mean-field methods are a set of techniques enabling to approximate marginalized quantities
of joint probability distributions by exploiting knowledge on the dependencies between ran-
dom variables. They are usually said to be analytical—as opposed to numerical Monte Carlo
methods. In practice they usually replace a summation exponentially large in the size of the
system by an analytical formula involving a set of parameters, themselves solution of a closed
set of non-linear equations. Finding the values of these parameters typically requires only a
polynomial number of operations.

In this section, we will give a selected overview of mean-field methods as they were intro-
duced in the statistical physics and/or signal processing literature. A key take away of what
follows is that closely related results can be obtained from different heuristics of deriva-
tion. We will start by deriving the simplest and historically first mean-field method. We will
then introduce the important broad techniques that are high-temperature expansions, message-
passing algorithms and the replica method. In the following section 5 we will additionally
cover the most recent extensions of mean-field methods presented in the present section 4 that
are relevant to study learning problems.

4.1. Naive mean-field

The naive mean-field method is the first and somehow simplest mean-field approximation. It
was introduced by the physicists Curie [Cur95] and Weiss [Wei07] and then adopted by the
different communities interested in inference [WJ08].
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4.1.1. Variational derivation. The naive mean-field method consists in approximating the joint
probability distribution of interest by a fully factorized distribution. Therefore, it ignores cor-
relations between random variables. Among multiple methods of derivation, we present here
the variational method: it is the best known method across fields and it readily shows that,
for any joint probability distribution interpreted as a Boltzmann distribution, the rather crude
naive mean-field approximation yields an upper bound on the free energy. For the purpose of
demonstration we consider a Boltzmann machine without hidden units (Ising model) with
variables (spins) x = (x1, . . . , xN) ∈ X = {0, 1}N, and energy function

E(x ) = −
N∑

i=1

bixi −
∑
(i j)

Wi jxix j = −b �x − 1
2

x �W x , b ∈ R
N , W ∈ R

N×N , (30)

where the notation (ij) stands for pairs of connected spin-variables, and the weight matrix
W is symmetric. The choices for {0, 1} rather than {−1,+1} for the variable values,
the notations W for weights (instead of couplings), b for biases (instead of local fields),
as well as the vector notation, are leaning toward the machine learning conventions. We
denote by qm a fully factorized distribution on {0, 1}N, which is a multivariate Bernoulli
distribution parametrized by the mean values m = (m1, . . . , mN) ∈ [0, 1]N of the marginals
(denoted by qmi):

qm (x ) =
N∏

i=1

qmi (xi) =
N∏

i=1

miδ(xi − 1) + (1 − mi)δ(xi). (31)

We look for the optimal qm distribution to approximate the Boltzmann distribution p(x ) =
e−βE(x )/Z by minimizing the KL-divergence

min
m

KL(qm ‖p) = min
m

∑
x∈X

qm (x ) log
qm (x )
p(x )

(32)

= min
m

∑
x∈X

qm (x ) log qm (x ) + β
∑
x∈X

qm (x )E(x ) + log Z (33)

= min
m

βG(qm ) − βF � 0, (34)

where the last inequality comes from the positivity of the KL-divergence. For a generic
distribution q, G(q) is the Gibbs free energy for the energy E(x ),

G(q) =
∑
x∈X

q(x )E(x ) +
1
β

∑
x∈X

q(x ) log q(x ) = U(q) − H(q)/β � F, (35)

involving the average energy U(q) and the entropy H(q). It is greater than the true free energy
F except when q = p, in which case they are equal. Note that this fact also means that the
Boltzmann distribution minimizes the Gibbs free energy. Restricting to factorized qm distribu-
tions, we obtain the naive mean-field approximations for the mean value of the variables (or
magnetizations) and the free energy:

m ∗ = arg min
m

G(qm ) = 〈x 〉qm ∗ , (36)

FNMF = G(qm ∗) � F. (37)
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The choice of a very simple family of distributions qm limits the quality of the approximation
but allows for tractable computations of observables, for instance the two-spins correlations
〈xix j〉q∗ = m∗

i m∗
j or variance of one spin 〈x2

i 〉q∗ − 〈xi〉2
q∗ = m∗

i − m∗
i

2
.

In our example of the Boltzmann machine, it is easy to compute the Gibbs free energy for
the factorized ansatz, we define functions of the magnetization vector:

UNMF(m ) = 〈E(x )〉qm = −b �m − 1
2

m �W m , (38)

HNMF(m ) = −〈log qm (x )〉qm = −
N∑

i=1

mi log mi + (1 − mi) log(1 − mi), (39)

GNMF(m ) = G(qm ) = UNMF(m ) − HNMF(m )/β. (40)

Looking for stationary points we find a closed set of non linear equations for the m∗
i ,

∂GNMF

∂mi

∣∣∣∣
m ∗

= 0 ⇒ m∗
i = σ

⎛⎝βbi +
∑
j∈∂i

βWi jm
∗
j

⎞⎠ ∀i = 1, . . . , N,

(41)

where σ(x) = (1 + e−x)−1. The solutions can be computed by iterating these relations from a
random initialization until a fixed point is reached.

To understand the implication of the restriction to factorized distributions, it is instructive
to compare this naive mean-field equation with the exact identity

〈xi〉p =

〈
σ

⎛⎝βbi +
∑
j∈∂i

βWi jx j

⎞⎠〉
p

, (42)

derived in a few lines in appendix C. Under the Boltzmann distribution p(x ) = e−βE(x )/Z , these
averages are difficult to compute. The naive mean-field method is neglecting the fluctuations
of the effective field felt by the variable xi:

∑
j∈∂iWijxj, keeping only its mean

∑
j∈∂iWijmj. This

incidentally justifies the name of mean-field methods.

4.1.2. When does naive mean-field hold true?. The previous derivation shows that the naive
mean-field approximation allows to bound the free energy. While this bound is expected to
be rough in general, the approximation is reliable when the fluctuations of the local effective
fields

∑
j∈∂iWijxj are small. This may happen in particular in the thermodynamic limit N →∞

in infinite range models, that is when weights or couplings are not only local but distributed
in the entire system, or if each variable interacts directly with a non-vanishing fraction of the
whole set of variables (e.g. [OS01] section 2). The influence on one given variable of the rest
of the system can then be treated as an average background. Provided the couplings are weak
enough, the naive mean-field method may even become asymptotically exact. This is the case
of the Curie–Weiss model, which is the fully connected version of the model (30) with all
Wij = 1/N (see e.g. section 2.5.2 of [MM09]). The sum of weakly dependent variables then
concentrates on its mean by the central limit theorem. We stress that it means that for finite
dimensional models (more representative of a physical system, where for instance variables
are assumed to be attached to the vertices of a lattice with nearest neighbors interactions),
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mean-field methods are expected to be quite poor. By contrast, infinite range models (inter-
preted as infinite-dimensional models by physicists) are thus traditionally called mean-field
models.

In the next section we will recover the naive mean-field equations through a different
method. The following derivation will also allow to compute corrections to the rather crude
approximation we just discussed by taking into account some of the correlations it neglects.

4.2. Thouless Anderson and Palmer equations

The TAP mean-field equations [MH76, TAP77] were originally derived as an exact mean-
field theory for the Sherrington–Kirkpatrick (SK) model [SK75]. The emblematic spin glass
SK model we already mentioned corresponds to a fully connected Ising model with energy
(30) and disordered couplings Wij drawn independently from a Gaussian distribution with zero
mean and variance W0/N. The derivation of [TAP77] followed from arguments specific to
the SK model. Later, it was shown that the same approximation could be recovered from a
second order Taylor expansion at high temperature by Plefka [Ple82] and that it could be further
corrected by the systematic computation of higher orders by Georges and Yedidia [GY99].
We will briefly present this last derivation, having again in mind the example of the generic
Boltzmann machine (30).

4.2.1. Outline of the derivation. Going back to the variational formulation (34), we shall now
perform a minimization in two steps. Consider first the family of distributions qm enforcing
〈x 〉qm = m for a fixed vector of magnetizations m , but without any factorization constraint.
The corresponding Gibbs free energy is

G(qm ) = U(qm ) − H(qm )/β. (43)

A first minimization at fixed m over the qm defines another auxiliary free energy

GTAP(m ) = min
qm

G(qm ). (44)

A second minimization over m would recover the overall unconstrained minimum of the
variational problem (34) which is the exact free energy

F = − log Z/β = min
m

GTAP(m ). (45)

Yet the actual value of GTAP(m ) turns out as complicated to compute as F itself. Fortu-
nately, βGTAP(m ) can be easily approximated by a Taylor expansion around β = 0 due
to interactions vanishing at high temperature, as noticed by Plefka, Georges and Yedidia
[GY99, Ple82]. After expanding, the minimization over GTAP(m ) yields a set of self consis-
tent equations on the magnetizations m , called the TAP equations, reminiscent of the naive
mean-field equations (41). Here again, the consistency equations are typically solved by iter-
ations. Plugging the solutions m ∗ back into the expanded expression yields the TAP free
energy FTAP = GTAP(m ∗). Note that ultimately the approximation lies in the truncation of the
expansion. At first order the naive mean-field approximation is recovered. Historically, the
expansion was first stopped at the second order. This choice was model dependent, it results
from the fact that the mean-field theory is already exact at the second order for the SK model
[MH76, Ple82, TAP77].

16



J. Phys. A: Math. Theor. 53 (2020) 223002 Topical Review

4.2.2. Illustration on binary Boltzmann machines and important remarks. For the Boltzmann
machine (30), the TAP equations and TAP free energy (truncated at second order) are [TAP77],

m∗
i = σ

⎛⎝βbi +
∑
j∈∂i

βWi jm
∗
j − β2W2

i j

(
m∗

j −
1
2

)
(m∗

i − m∗
i

2
)

⎞⎠ ∀i (46)

βGTAP(m ∗) = −HNMF(m ∗) − β
N∑

i=1

bim
∗
i − β

∑
(i j)

m∗
i Wi jm

∗
j

− β2

2

∑
(i j)

W2
i j(m

∗
i − m∗

i
2)(m∗

j − m∗
j
2), (47)

where the naive mean-field entropy HNMF was defined in (39). For this model, albeit with
{+1,−1} variables instead of {0, 1}, several references pedagogically present the details
of the derivation sketched in the previous paragraph. The interested reader should check in
particular [OS01, Zam10]. We also present a more general derivation in appendix D, see
section 4.2.3.

Onsager reaction term. Compared to the naive mean-field approximation the TAP
equations include a correction to the effective field called the Onsager reaction term. The
idea is that, in the effective field at variable i, we should consider corrected magnetizations
of neighboring spins j ∈ ∂i, that would correspond to the absence of variable i. This intu-
ition echoes at two other derivations of the TAP approximation: the cavity method [MPV86]
that will not be covered here and the message passing which will be discussed in the next
section.

As far as the SK model is concerned, this second order correction is enough in the ther-
modynamic limit as the statistics of the weights imply that higher orders will typically be
subleading. Yet in general, the correct TAP equations for a given model will depend on the
statistics of interactions and there is no guarantee that there exists a finite order of truncation
leading to an exact mean-field theory. In section 5.2 we will discuss models beyond SK where
a conjectured exact TAP approximation can be derived.

Single instance. Although the selection of the correct TAP approximation relies on the
statistics of the weights, the derivation of the expansion outlined above does not require
to average over them, i.e. it does not require an average over the disorder. Consequently,
the approximation method is well defined for a single instance of the random disordered
model and the TAP free energy and magnetizations can be computed for a given (real-
ization of the) set of weights {Wi j}(i j) as explained in the following paragraph. In other
words, it means that the approximation can be used to design practical inference algo-
rithms in finite-sized problems and not only for theoretical predictions on average over
the disordered class of models. Crucially, these algorithms may provide approximations
of disorder-dependent observables, such as correlations, and not only of self averaging
quantities.

Finding solutions. The self-consistent equations on the magnetizations (46) are usually
solved by turning them into an iteration scheme and looking for fixed points. This generic
recipe leaves nonetheless room for interpretation: which exact form should be iterated? How
should the updates for the different equations be scheduled? Which time indexing should be
used? While the following scheme may seem natural
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mi
(t+1) ← σ

⎛⎝βbi +
∑
j∈∂i

βWi jm j
(t) − W2

i j

(
m j

(t) − 1
2

)(
mi

(t) − mi
(t)2
)⎞⎠ ,

(48)

it typically has more convergence issues than the following alternative scheme including the
time index t − 1

mi
(t+1) ← σ

⎛⎝βbi +
∑
j∈∂i

βWi jm j
(t) − W2

i j

(
m j

(t) − 1
2

)(
mi

(t−1) − mi
(t−1)2

)⎞⎠ .

(49)

This issue was discussed in particular in [Bol14, Kab03]. Remarkably, this last scheme, or
algorithm, is actually the one obtained by the approximate message passing derivation that
will be discussed in the upcoming section 4.3.

Solutions of the TAP equations. The TAP equations can admit multiple solutions with
either equal or different TAP free energy. While the true free energy F corresponds to the
minimum of the Gibbs free energy, reached for the Boltzmann distribution, the TAP deriva-
tion consists in performing an effectively unconstrained minimization in two steps, but with
an approximation through a Taylor expansion in between. The truncation of the expan-
sion therefore breaks the correspondence between the discovered minimizer and the unique
Boltzmann distribution, hence the possible multiplicity of solutions. For the SK model for
instance, the number of solutions of the TAP equations increases rapidly as β grows [MPV86].
While the different solutions can be accessed using different initializations of the iterative
scheme, it is notably hard in phases where they are numerous to find exhaustively all the TAP
solutions. In theory, they should be weighted according to their free energy density and aver-
aged to recover the thermodynamics predicted by the replica computation [DY83], another
mean-field approximation discussed in section 4.4.

4.2.3. Generalizing the Georges–Yedidia expansion. In the derivation outlined above for
binary variables, xi = 0 or 1, the mean of each variable mi was fixed. This is enough to
parametrize the corresponding marginal distribution qmi (xi). Yet the expansion can actually
be generalized to Potts variables (taking multiple discrete values) or even real valued variables
by introducing appropriate parameters for the marginals. A general derivation fixing arbitrary
real valued marginal distribution was proposed in appendix B of [LKZ17] for the problem of
low rank matrix factorization. Alternatively, another level of approximation can be introduced
for real valued variables by restricting the set of marginal distributions tested to a parametrized
family of distributions. By choosing a Gaussian parametrization, one recovers TAP equations
equivalent to the approximate message passing algorithm that will be discussed in the next
section. In appendix D, we present a derivation for real-valued Boltzmann machines with a
Gaussian parametrization as proposed in [TGM+18].

4.3. Belief propagation and approximate message passing

Another route to rediscover the TAP equations is through the approximation of message passing
algorithms. Variations of the latter were discovered multiple times in different fields. In physics
they were written in a restricted version as soon as 1935 by Bethe [Bet35]. In statistics, they
were developed by Pearl as methods for probabilistic inference [Pea88]. In this section we will
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Figure 3. Graphical representations of the generalized linear model. Left: probabilistic
graphical model of the teacher. Middle left: factor graph representation of the posterior
distribution on the signal x under the student statistical model. Middle right and right:
belief propagation updates (67) and (68) for approximate inference.

start by introducing a case-study of interest, the generalized linear model. We will then proceed
by steps to outline the derivation of the approximate message passing (AMP) algorithm from
the belief propagation (BP) equations.

4.3.1. Generalized linear model. Definition. We introduce the generalized linear model
(GLM) which is a fairly simple model to illustrate message passing algorithms and which is
also an elementary brick for a large range of interesting inference questions on neural networks.
It falls under the teacher–student set up: a student model is used to reconstruct a signal from a
teacher model producing indirect observations. In the GLM, the product of an unknown signal
x 0 ∈ R

N and a known weight matrix W ∈ R
N×M is observed as y through a noisy channel

pout,0,

⎧⎪⎪⎨⎪⎪⎩
W ∼ pW(W )

x 0 ∼ px0 (x 0) =
N∏

i=1

px0 (x0,i)
⇒ y ∼ pout,0(y |W x 0) =

M∏
μ=1

pout,0(yμ|w �
μ x 0).

(50)

The probabilistic graphical model corresponding to this teacher is represented in figure 3. The
prior over the signal px0 is supposed to be factorized, and the channel pout,0 likewise. The infer-
ence problem is to produce an estimator x̂ for the unknown signal x 0 from the observations y .
Given the prior px and the channel pout of the student, not necessarily matching the teacher, the
posterior distribution is

p(x |y , W ) =
1

Z(y , W )

M∏
μ=1

pout

(
yμ|

N∑
i=1

Wμixi

)
N∏

i=1

px(xi), (51)

Z(y , W ) =
∫

dx pout(y |x , W )px(x ), (52)

represented as a factor graph also in figure 3. The difficulty of the reconstruction task of x 0

from y is controlled by the measurement ratioα = M/N and the amplitude of the noise possibly
present in the channel.

Applications. The generic GLM underlies a number of applications. In the context of neural
networks of particular interest in this technical review, the channel pout generating observations
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y ∈ R
M can equivalently be seen as a stochastic activation function g(·; ε ) incorporating a noise

ε ∈ R
M component-wise to the output,

yμ = g(w �
μ x ; ε μ). (53)

The inference of the teacher signal in a GLM has then two possible interpretations. On the one
hand, it can be interpreted as the reconstruction of the input x of a stochastic single-layer neural
network from its output y . For example, this inference problem can arise in the maximum
likelihood training of a one-layer VAE (see corresponding paragraph in section 2.2). On the
other hand, the same question can also correspond to the Bayesian learning of a single-layer
neural network with a single output—the perceptron—where this time {W , y } are interpreted
as the collection of training input–output pairs and x 0 plays the role of the unknown weight
vector of the teacher (as cited as an example in section 3.1.1). However, note that one of the
most important applications of the GLM, compressed sensing (CS) [Don06], does not involve
neural networks.

Statistical physics treatment, random weights and scaling. From the statistical physics
perspective, the effective energy functional is read from the posterior (52) seen as a Boltzmann
distribution with energy

E(x ) = − log pout(y |x , W )px(x ) = −
M∑

μ=1

log pout

(
yμ|

N∑
i=1

Wμixi

)
−

N∑
i=1

log px(xi).

(54)

The inverse temperature β has here no formal equivalent and can be thought as being equal
to 1. The energy is a function of the random realizations of W and y , playing the role of the
disorder. Furthermore, the validity of the approximation presented below require additional
assumptions. Crucially, the weight matrix is assumed to have i.i.d. Gaussian entries with zero
mean and variance 1/N, much like in the SK model. The prior of the signal is chosen so as to
ensure that the xi–s (and consequently the yμ–s) remain of order 1. Finally, the thermodynamic
limit N →∞ is taken for a fixed measurement ratio α = M/N.

4.3.2. Belief propagation. Recall that inference in high-dimensional problems consists in
marginalizations over complex joint distributions, typically in the view of computing parti-
tion functions, averages or marginal probabilities for sampling. Belief propagation (BP) is
an inference algorithm, sometimes exact and sometimes approximate as we will see, lever-
aging the known factorization of a distribution, which encodes the precious information
of (in)depencies between the random variables in the joint distribution. For a generic joint
probability distribution p over x ∈ R

N factorized as

p(x ) =
1
Z

M∏
μ=1

ψμ(x ∂μ), (55)

ψμ are called potential functions taking as arguments the variables xi–s involved in the factor
μ shortened as x ∂μ.
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Figure 4. Representations of the neighborhood of edge i–μ in the factor graph and cor-
responding local BP updates. Factors are represented as squares and variable nodes as
circles. Left: in the factor graph where all factors around xi are removed (in gray) except
for the factor μ, the marginal of xi (in red) is updated from the messages incoming at
factor μ (in blue) (56). Right: in the factor graph where factor μ is deleted (in gray), the
marginal of xi (in blue) is updated with the incoming messages (in red) from the rest of
the factors (57).

Definition of messages. Let us first write the BP equations and then explain the origin of
these definitions. The underlying factor graph of (55) has N nodes carrying variables xi–s and
M factors associated with the potential functions ψμ–s (see appendix B for a quick reminder).
BP acts on messages variables which are tied to the edges of the factor graph. Specifically, the
sum-product version of the algorithm (as opposed to the max-sum, see e.g. [MM09]) consists
in the update equations

m̃(t)
μ→i(xi) =

1
Zμ→i

∫ ∏
i′∈∂μ\i

dxi′ ψμ(x ∂μ)
∏

i′∈∂μ\i

m(t)
i′→μ(xi′), (56)

m(t+1)
i→μ (xi) =

1
Zi→μ

px(xi)
∏

μ′∈∂i\μ
m̃(t)

μ′→i(xi) (57)

where again the i–s index the variable nodes and the μ–s index the factor nodes. The notation
∂μ\i designate the set of neighbor variables of the factor μ except the variable i (and recipro-
cally for ∂i\μ). The partition functions Zi→μ and Zμ→i are normalization factors ensuring that
the messages can be interpreted as probabilities.

For acyclic (or tree-like) factor graphs, the BP updates are guaranteed to converge to a
fixed point, that is a set of time independent messages {mi→μ, m̃μ→i} solution of the system of
equations (56) and (57). Starting at a leaf of the tree, these messages communicate beliefs of a
given node variable taking a given value based on the nodes and factors already visited along
the tree. More precisely, m̃μ→i(xi) is the marginal probability of xi in the factor graph before
visiting the factors in ∂i except for μ, and mi→μ(xi) is equal the marginal probability of xi in
the factor graph before visiting the factor μ, see figure 4.

Thus, at convergence of the iterations, the marginals can be computed as

mi(xi) =
1
Zi

px(xi)
∏
μ∈∂i

m̃μ→i(xi), (58)

which can be seen as the main output of the BP algorithm. These marginals will only be exact
on trees where incoming messages, computed from different part of the graph, are independent.
Nonetheless, the algorithm (56) and (57), occasionally then called loopy-BP, can sometimes be
converged on graphs with cycles and in some cases will still provide high quality approxima-
tions. For instance, graphs with no short loops are locally tree like and BP is an efficient method
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of approximate inference, provided correlations decay with distance (i.e. incoming mes-
sages at each node are still effectively independent). BP will also appear principled for some
infinite range mean-field models previously discussed; an example of which being our case-
study the GLM discussed below. While this is the only example that will be discussed here
in the interest of conciseness, getting fluent in BP generally requires more than one applica-
tion. The interested reader could also consult [YFW02] and [MM09] section 14.1. for simple
concrete examples.

The Bethe free energy. The BP algorithm can also be recovered from a variational argu-
ment. Let us consider both the single variable marginals mi(xi) and the marginals of the neigh-
borhood of each factor m̃μ(x ∂μ). On tree graphs, the joint distribution (55) can be re-expressed
as

p(x ) =

∏M
μ=1 m̃μ(x ∂μ)∏N
i=1 mi(xi)ni−1

, (59)

where ni is the number of neighbor factors of the ith variable. Abusively, we can use this form
as an ansatz for loopy graph and plug it in the Gibbs free energy to derive an approximation
of the free energy, similarly to the naive mean-field derivation of section 4.1. This time the
variational parameters will be the distributions mi and m̃μ (see e.g. [MM09, YFW02] for addi-
tional details). The corresponding functional form of the Gibbs free energy is called the Bethe
free energy:

FBethe(mi, m̃μ) = −
∫

dx ∂μ m̃μ(x ∂μ) ln ψμ(x ∂μ) + (ni − 1)H(mi) − H(m̃μ),

(60)

where H(q) is the entropy of the distribution q. Optimization of the Bethe free energy with
respect to its arguments under the constraint of consistency∫

dx ∂μ\i m̃μ(x ∂μ) = mi(xi) (61)

involves Lagrange multipliers which can be shown to be related to the messages defined in
(56) and (57). Eventually, one can verify that marginals defined as (58) and

m̃μ(x ∂μ ) =
1
Zμ

ψ(x ∂μ)
∏
i∈∂μ

mi→μ(xi), (62)

are stationary point of the Bethe free energy for messages that are BP solutions. In other
words, the BP fixed points are consistent with the stationary point of the Bethe free energy.
Using the normalizing constants of the messages, the Bethe free energy can also be re-written
as

FBethe = −
∑
i∈V

log Zi −
∑
μ∈F

log Zμ +
∑

(iμ)∈E

log Zμi, (63)

with

Zi =

∫
dxi px(xi)

∏
μ∈∂i

m̃μ→i(xi), (64)
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Zμ =

∫ ∏
i∈∂μ

dxi ψ(x ∂μ)
∏
i∈∂μ

mi→μ(xi), (65)

Zμi =

∫
dxi m̃μ→i(xi)mi→μ(xi). (66)

As for the marginals, the Bethe free energy, will only be exact if the underlying factor graph
is a tree. Otherwise it is an approximation of the free energy, that is not generally an upper
bound.

Belief propagation for the GLM. The writing of the BP-equations for our case-study is
schematized on the right of figure 3. There are 2 × N × M updates:

m̃(t)
μ→i(xi) =

1
Zμ→i

∫ ∏
i′ �=i

dxi′ pout(yμ|wμ
�x )

∏
i′ �=i

m(t)
i′→μ(xi′), (67)

m(t+1)
i→μ (xi) =

1
Zi→μ

px(xi)
∏
μ′ �=μ

m̃(t)
μ′→i(xi), (68)

for all i–μ pairs. Despite a relatively concise formulation, running BP in practice turns out
intractable since for a signal x taking continuous values it would entail keeping track of dis-
tributions on continuous variables. In this case, BP is approximated by the (G)AMP algorithm
presented in the next section.

4.3.3. (Generalized) approximate message passing. The name of approximate message
passing (AMP) was fixed by Donoho et al [DMM09] who derived the algorithm in the con-
text of compressed sensing. Several works from statistical physics had nevertheless already
proposed related algorithmic procedures and made connections with the TAP equations for
different systems [Kab03, KS98, OS01]. The algorithm was derived systematically for any
channel of the GLM by Rangan [Ran11] and became generalized-AMP (GAMP), yet again it
seems that [KU04] proposed the first generalized derivation.

The systematic procedure to write AMP for a given joint probability distribution consists in
first writing BP on the factor graph, second project the messages on a parametrized family of
functions to obtain the corresponding relaxed-BP and third close the equations on a reduced
set of parameters by keeping only leading terms in the thermodynamic limit. We will quickly
review and justify these steps for the GLM. Note that here a relevant algorithm for approximate
inference will be derived from message passing on a fully connected graph of interactions. As
it tuns out, the high connectivity limit and the introduction of short loops does not break the
assumption of independence of incoming messages in this specific case thanks to the small
scale O(1/

√
N) and the independence of the weight entries. The statistics of the weights are

here crucial.
Relaxed belief propagation. In the thermodynamic limit M, N →+∞, one can show that

the scaling 1/
√

N of the Wij and the extensive connectivity of the underlying factor graph
imply that messages are approximately Gaussian. Without giving all the details of the com-
putation which can be cumbersome, let us try to provide some intuitions. We drop the time
indices for simplicity and start with (67). Consider the intermediate reconstruction variable
zμ = w �

μ x =
∑

i′ �=iWμi′xi′ + Wμixi. Under the statistics of the messages mi′→μ(xi′ ), the xi′ are
independent such that by the central limit theorem zμ − Wμixi is a Gaussian random variable
with respectively mean and variance

ωμ→i =
∑
i′ �=i

Wμi′ x̂i′→μ, (69)
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Vμ→i =
∑
i′ �=i

W2
μi′C

x
i′→μ, (70)

where we defined the mean and the variance of the messages mi′→μ(xi′ ),

x̂i′→μ =

∫
dxi′ xi′ mi′→μ(xi′), (71)

Cx
i′→μ =

∫
dxi′ x2

i′ mi′→μ(xi′) − x̂2
i′→μ. (72)

Using these new definitions, (67) can be rewritten as

m̃μ→i(xi) ∝
∫

dzμ pout(yμ|zμ)e
−

(zμ−Wμixi−ωμ→i)
2

2Vμ→i , (73)

where the notation ∝ omits the normalization factor for distributions. Considering that Wμi is
of order 1/

√
N, the development of (73) shows that at leading order m̃μ→i(xi) is Gaussian:

m̃μ→i(xi) ∝ eBμ→ixi+
1
2 Aμ→ix

2
i (74)

where the details of the computations yield

Bμ→i = Wμi gout(yμ,ωμ→i, Vμ→i) (75)

Aμ→i = −W2
μi ∂ωgout(yμ,ωμ→i, Vμ→i) (76)

using the output update functions

gout(y,ω, V) =
1

Zout

∫
dz

(z − ω)
V

pout(y|z)N (z;ω, V), (77)

∂ωgout(y,ω, V) =
1

Zout

∫
dz

(z − ω)2

V2
pout(y|z)N (z;ω, V) − 1

V
− gout(y,ω, V)2,

(78)

Zout(y,ω, V) =
∫

dz pout(y|z)N (z;ω, V). (79)

These arguably complicated functions, again coming out of the development of (73), can be
interpreted as the estimation of the mean and the variance of the gap between two different
estimate of zμ considered by the algorithm: the mean estimate ωμ→i given incoming messages
mi′→μ(xi′ ) and the same mean estima-te updated to incorporate the information coming from the
channel pout and observation yμ. Finally, the Gaussian parametrization (74) of m̃μ→i(xi) serves
to rewrite the other type of messages mi→μ(xi) (68),

mi→μ(xi) ∝ px(xi)e
− (λi→μ−xi)2

2σi→μ , (80)

with

σi→μ =

⎛⎝∑
μ′ �=μ

Aμ′→i

⎞⎠−1

(81)
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λi→μ = σi→μ

⎛⎝∑
μ′ �=μ

Bμ′→i

⎞⎠ . (82)

The set of equations can finally be closed by recalling the definitions (71) and (72):

x̂i→μ = f x
1 (λi→μ, σi→μ) (83)

Cx
i→μ = f x

2 (λi→μ, σi→μ) (84)

with now the input update functions

Zx =

∫
dx px(x)e−

(x−λ)2
2σ , (85)

f x
1 (λ, σ) =

1
Zx

∫
dx x px(x)e−

(x−λ)2
2σ , (86)

f x
2 (λ, σ) =

1
Zx

∫
dx x2 px(x)e−

(x−λ)2
2σ − f x

1 (λ, σ)2. (87)

The input update functions can be interpreted as updating the estimation of the mean and vari-
ance of the signal xi based on the information coming from the incoming messages grasped by
λi→μ and σi→μ with the information of the prior px.

To sum-up, by considering the leading order terms in the thermodynamic limit, the BP
equations can be self-consistently re-written as a closed set of equations over mean and variance
variables (69), (70), (75), (76), (81)–(84). Eventually, r-BP can equivalently be thought of as
the projection of BP onto the following parametrizations of the messages

m̃(t)
μ→i(xi) ∝ eB(t)

μ→ixi+
1
2 A(t)

μ→ix
2
i ∝

∫
dzμ pout(yμ|zμ)e

−
(zμ−Wμixi−ω

(t)
μ→i)

2

2V(t)
μ→i , (88)

m(t+1)
i→μ (xi) ∝ e

−
(̂x(t+1)

i→μ −xi)2

2Cx (t+1)
i→μ ∝ px(xi)e

−
(λ(t)

i→μ−xi)2

2σ(t)
i→μ . (89)

Note that, at convergence, an approximation of the marginals is recovered from the projection
on the parametrization (89) of (58),

mi(xi) =
1
Zi

px(xi)e−(λi−xi)
2/2σi = f x

1 (λi, σi), (90)

σi→μ =

(∑
μ

Aμ→i

)−1

, (91)

λi→μ = σi→μ

(∑
μ

Bμ→i

)
. (92)

Nonetheless, r-BP is scarcely used as such as the computational cost can be readily reduced
with little more approximation. Because the parameters in (88) and (89) take the form of
messages on the edges of the factor graph there are still O(M × N) quantities to track to solve
the self-consistency equations by iterations. Yet, in the thermodynamic limit, the messages are
closely related to the marginals as the contribution of the missing message between (57) and

25



J. Phys. A: Math. Theor. 53 (2020) 223002 Topical Review

(58) is to a certain extent negligible. Careful book keeping of the order of contributions of these
small differences leads to a set of closed equations on parameters of the marginals, i.e. O(N)
variables, corresponding to the GAMP algorithm.

A detailed derivation and developed algorithm of r-BP for the GLM can be found for
example in [ZK16] (section 6.3.1). In section 5.3 of the present paper, we also present the
derivation in a slightly more general setting where the variables xi and yμ are possibly vectors
instead of scalars.

Generalized approximate message passing. The GAMP algorithm with respect to
marginal parameters, analogous to the messages parameters introduced above (summarized
in (88) and (89)), is given in algorithm 1. The origin of GAMP is again the development of
the r-BP message-like equations around marginal quantities. The details of this derivation for
the GLM can be found for instance in [ZK16] (section 6.3.1). For a random initialization, the
algorithm can be decomposed in 4 steps per iteration which refine the estimate of the signal
x and the intermediary variable z by incorporating the different sources of information. Steps
(2) and (4) involve the update functions relative to the prior and output channel defined above.
Steps (1) and (3) are general for any GLM with a random Gaussian weight matrix, as they result
from the consistency of the two alternative parametrizations introduced for the same messages
in (88) and (89).

Relation to TAP equations. Historically the main difference between the AMP algorithm
and the TAP equations is that the latter was first derived for binary variables with two-body
interactions (SK model) while the former was proposed for continuous random variables with
N-body interactions (compressed sensing). The details of the derivation (described in [ZK16]
or in a more general case in section 5.3), rely on the knowledge of the statistics of the disor-
dered variable W but do not require a disorder average, as in the Georges–Yedidia expansion
yielding the TAP equations. By focusing on the GLM with a random Gaussian weight matrix
scaling as O(1/

√
N) (similarly to the couplings of the SK model) we naturally obtained TAP

equations at second order, with an Onsager term in the update (94) of ωμ. Yet an advan-
tage of the AMP derivation from BP over the high-temperature expansion is that it explicitly
provides ‘correct’ time indices in the iteration scheme to solve the self consistent equations
[Bol14].

Reconstruction with AMP. AMP is therefore a practical reconstruction algorithm which
can be run on a single instance (the disorder is not averaged) to estimate an unknown signal
x 0. Note that the prior px and channel pout used in the algorithm correspond to the student
statistical model and they may be different from the true underlying teacher model that gen-
erates x 0 and y . In other words, the AMP algorithm may be used either in the Bayes optimal
or in the mismatched setting defined in section 3.1.1. Remarkably, it is also possible to con-
sider a disorder average in the thermodynamic limit to study the average case computational
hardness, here of the GLM inference problem, in either of these matched or mismatched
configurations.

State evolution. The statistical analysis of the AMP equations for compressed sensing in
the average case and in the thermodynamic limit N →∞ lead to another closed set of equations
that was called state evolution (SE) in [DMM09]. Such an analysis can be generalized to other
problems of application of approximate message passing algorithms. The derivation of SE
starts from the r-BP equations and relies on the assumption of independent incoming messages
to invoke the central limit theorem. It is therefore only necessary to follow the evolution of a
set of means and variances parametrizing Gaussian distributions. When the different variables
and factors are statistically equivalent, as it is the case of the GLM, SE reduces to a few scalar
equations. The interested reader should refer to appendix F for a detailed derivation in a more
general setting.
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Algorithm 1. Generalized approximate message passing

Input: vector y ∈ R
M and matrix W ∈ R

M×N:
Initialize: x̂i, Cx

i ∀i and goutμ, ∂ωgoutμ ∀μ
repeat
(1) Estimate mean ω(t)

μ and variance V (t)
μ of zμ given current x̂(t)

V (t)
μ =

N∑
i=1

W2
μiC

x
i

(t)
(93)

ω(t)
μ =

N∑
i=1

Wμix̂
(t)
i −

N∑
i=1

W2
μiC

x(t)
i gout

(t−1)
μ (94)

(2) Estimate mean gout
(t)
μ and variance ∂ωgout

(t)
μ of the gap between optimal zμ and ω(t)

μ given yμ

∂ωgout
(t)
μ = ∂ωgout(yμ,ω(t)

μ , V (t)
μ ) (95)

gout
(t)
μ = gout(yμ,ω(t)

μ , V (t)
μ ) (96)

(3) Estimate mean λ and variance σ of x given current gap between optimal z and ω

σ(t)
i =

⎛
⎝−

M∑
μ=1

W2
μi∂ωgout

(t)
μ

⎞
⎠

−1

(97)

λ(t)
i = x̂(t)

i + σ(t)
i

⎛
⎝ M∑

μ=1

Wμigout
(t)
μ

⎞
⎠ (98)

(4) Estimate of mean x̂(t+1) and Cx(t+1) variance of x updated with information from the prior

Cx
i

(t+1)
= f x

2 (λ(t)
i ,σ(t)

i ) (99)

x̂(t+1)
i = f x

1 (λ(t)
i ,σ(t)

i ) (100)

until convergence

Mismatched setting. In the general mismatched setting we need to carefully differentiate
the teacher and the student. We note px0 the prior used by the teacher. We also rewrite its channel
pout,0(y|w �x ) as the explicit function y = g0(w �x ; ε) assuming the noise ε to be distributed
according to the standard normal distribution. The tracked quantities are the overlaps,

q = lim
N→∞

1
N

N∑
i=1

x̂2
i , m = lim

N→∞

1
N

N∑
i=1

x̂ix0,i, q0 = lim
N→∞

1
N

N∑
i=1

x2
0,i = Epx0

[x2
0],

(101)

along with the auxiliary V, q̂, m̂ and χ̂:
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q̂(t) =

∫
Dε

∫
dω dzN (z,ω; 0, Q (t))gout(ω, g0 (z; ε) , V (t))2, (102)

m̂(t) =

∫
Dε

∫
dω dzN (z,ω; 0, Q (t))∂zgout(ω, g0 (z; ε) , V (t)), (103)

χ̂(t) = −
∫

Dε

∫
dω dzN (z,ω; 0, Q (t))∂ωgout(ω, g0

(
z; εμ

)
, V (t)), (104)

q(t+1) =

∫
dx0 px0 (x0)

∫
Dξ f x

1

(
(αχ̂(t))−1

(√
αq̂(t)ξ + αm̂(t)x 0

)
; (αχ̂(t))−1

)2
, (105)

m(t+1) =

∫
dx0 px0 (x0)

∫
Dξ x0 f x

1

(
(αχ̂(t))−1

(√
αq̂(t)ξ + αm̂(t)x 0

)
; (αχ̂(t))−1

)
, (106)

V (t+1) =

∫
dx0 px0 (x0)

∫
Dξ f x

2

(
(αχ̂(t))−1

(√
αq̂(t)ξ + αm̂(t)x0

)
; (αχ̂(t))−1

)
, (107)

where we use the notation N (·; ·, ·) for the normal distribution, Dξ for the standard normal
measure and the covariance matrix Q (t) is given at each time step by

Q (t) =

[
q0 m(t)

m(t) q(t)

]
.

Due to the self-averaging property, the performance of the reconstruction by the AMP
algorithm on an instance of size N can be tracked along the iterations given

MSE(x̂) =
1
N

N∑
i=1

(x̂i − x0,i)2 = q − 2m + q0, (108)

with only minor differences coming from finite-size effects. State evolution also provides
an efficient procedure to study from the theoretical perspective the AMP fixed points for a
generic model, such as the GLM, as a function of some control parameters. It reports the aver-
age results for running the complete AMP algorithm on O(N) variables using a few scalar
equations. Furthermore, the state evolution equations simplify further in the Bayes optimal
setting.

Bayes optimal setting. When the prior and channel are identical for the student and the
teacher, the true unknown signal x 0 is in some sense statistically equivalent to the esti-
mate x̂ coming from the posterior. More precisely one can prove the Nishimori identities
[Iba99, Nis01, OH91] (or [KKM+16] for a concise demonstration and discussion) implying
that q = m, V = q0 − m and q̂ = m̂ = χ̂. Only two equations are then necessary to track the
performance of the reconstruction:

q̂(t) =

∫
dε pε0 (ε)

∫
dω dzN (z,ω; 0, Q (t))gout(ω, g0 (z; ε) , V (t))2 (109)

q(t+1) =

∫
dx0 px0 (x0)

∫
Dξ f x

1

(
(αχ̂(t))−1

(√
αq̂(t)ξ + αm̂(t)x 0

)
; (αχ̂(t))−1

)2
.

(110)

4.4. Replica method

Another powerful technique from the statistical physics of disordered systems to examine mod-
els with infinite range interactions is the replica method. It enables an analytical computation
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of the quenched free energy via non-rigorous mathematical manipulations. More developed
introductions to the method can be found in [CCFM05, MPV86, Nis01].

4.4.1. Steps of a replica computation. The basic idea of the replica computation is to compute
the average over the disorder of log Z by considering the identity log Z = limn→0(Zn − 1)/n.
First the expectation of Zn is evaluated for n ∈ N, then the n → 0 limit is taken by ‘analytic
continuation’. Thus the method takes advantage of the fact that the average of a power of Z is
sometimes easier to compute than the average of a logarithm. We illustrate the key steps of the
calculation for the partition function of the GLM (52).

Disorder average for the replicated system: coupling of the replicas. The average of Zn

for n ∈ N can be seen as the partition function of a system with n + 1 non interacting replicas
of x indexed by a ∈ {0, . . . , n}, where the first replica a = 0 is representative of the teacher
and the n other replicas are identically distributed as the student:

EW ,y ,x 0

[
Zn

]
= EW

[∫
dy dx0 pout,0(y |W x0)px0 (x0)

(∫
dx pout(y |W x )px(x )

)n]
(111)

= EW

[∫
dy

n∏
a=0

(
dxa pout,a(y |W xa)pxa(xa)

)]
(112)

= EW

[∫
dy

n∏
a=0

(
dxa dza δ(za − W xa)pout,a(y |za)pxa(xa)

)]
. (113)

To perform the average over the disordered interactions W we consider the statistics of
za = W xa. Recall that Wμi ∼ N (Wμi; 0, 1/N), independently for all μ and i. Consequently,
the za are jointly Gaussian in the thermodynamic limit with means and covariances

EW [za,μ] = EW

[
N∑

i=1

Wμixa,i

]
= 0, EW

[
za,μzb,ν

]
=

N∑
i=1

xa,ixb,i/N = qab.

(114)

The overlaps, that we already introduced in the SE formalism, naturally re-appear. We intro-
duce the notation q for the (n + 1) × (n + 1) overlap matrix. Integrating out the disorder W

shared by the n + 1 replicas will therefore leave us with an effective system of now coupled
replicas:

EW ,y ,x 0

[
Zn

]
=

∫ ∏
a,b

dNqab

∫
dy

n∏
a=0

dza pout,a(y |za) exp

⎛
⎝−1

2

M∑
μ=1

∑
a,b

za,μzb,μ(q −1)ab − MC(q , n)

⎞
⎠

×
∫ n∏

a=1

dxa pxa (xa)δ

(
Nqab −

N∑
i=1

xa,ixb,i

)
. (115)

Change of variable for the overlaps: decoupling of the variables. We consider the Fourier
representation of the Dirac distribution fixing the consistency between overlaps and replicas,

δ

(
Nqab −

N∑
i=1

xa,ixb,i

)
=

∫
dq̂ab

2iπ
e

q̂ab

(
Nqab−

∑N
i=1 xa,ixb,i

)
, (116)
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where q̂ab is purely imaginary, which yields

EW ,y ,x 0

[
Zn

]
=

∫ ∏
a,b

dNqab

∫ ∏
a,b

dq̂ab

2iπ
exp (Nq̂abqab)

×
∫

dy
n∏

a=0

dza pout,a(y |za) exp

(
−1

2

M∑
μ=1

∑
a,b

za,μzb,μ(q −1)ab − MC(q , n)

)

×
∫ n∏

a=1

dxa pxa (xa) exp

(
−q̂ab

N∑
i=1

xa,ixb,i

)
(117)

where C(q , n) is related to the normalization of the Gaussian distributions over the z a variables,
and the integrals can be factorized over the i–s and μ–s. Thus we obtain

EW ,y ,x 0

[
Zn

]
=

∫ ∏
a,b

dNqab

∫ ∏
a,b

dq̂ab eNq̂abqab e
M log Îz(q )

e
N log Îx(q̂ )

, (118)

with

Î z(q ) =
∫

dy
n∏

a=0

dza pout,a(y|za) exp

(
−1

2

∑
a,b

zazb(qab)−1 − C(q , n)

)
, (119)

Îx(q̂ ) =
∫ n∏

a=1

dxa pxa (xa) exp (−q̂abxaxb) , (120)

where we introduce the notation q̂ for the auxiliary overlap matrix with entries (q̂ )ab = q̂ab

and we omitted the factor 2iπ which is eventually subleading as N →+∞. The decoupling
of the xi and the zμ of the infinite range system yields pre-factors N and M in the exponential
arguments. In the thermodynamic limit, we recall that both N and M tend to +∞ while the
ratio α = M/N remains fixed. Hence, the integral for the replicated average is easily computed
in this limit by the saddle point method:

log EW ,y ,x 0

[
Zn

]
� N extrq q̂

[
φ(q , q̂ )

]
, φ(q , q̂ ) =

∑
a,b

q̂abqab + αÎ z(q ) + Îx(q̂ ), (121)

where we defined the replica potential φ.
Exchange of limits: back to the quenched average. The thermodynamic average of the

log-partition is recovered through an a priori risky mathematical manipulation: (i) perform an
analytical continuation from n ∈ N to n → 0

1
N
EW ,y ,x 0

[
log Z

]
= lim

n→0

1
nN

EW ,y ,x 0

[
Zn − 1

]
= lim

n→0

1
nN

log EW ,y ,x 0

[
Zn

]
(122)

and (ii) exchange limits

− f = lim
N→∞

lim
n→0

1
n

1
N

log EW ,y ,x 0

[
Zn

]
= lim

n→0

1
n

extrq q̂

[
φ(q , q̂ )

]
. (123)
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Despite the apparent lack of rigor in taking these last steps, the replica method has been proven
to yield exact predictions in the thermodynamic limit for different problems and in particular
for the GLM [BKM+18, RP16].

Saddle point solution: choice of a replica ansatz. At this point, we are still left with the
problem of computing the extrema of φ(q , q̂ ). To solve this optimization problem over q and

q̂ , a natural assumption is that replicas, that are a pure artifact of the calculation, are equivalent.
This is reflected in a special structure for overlap matrices between replicas that only depend
on three parameters each,

q =

⎡⎢⎢⎣
q0 m m m
m q q12 q12

m q12 q q12

m q12 q12 q

⎤⎥⎥⎦ , q̂ =

⎡⎢⎢⎣
q̂0 m̂ m̂ m̂
m̂ q̂ q̂12 q̂12

m̂ q̂12 q̂ q̂12

m̂ q̂12 q̂12 q̂

⎤⎥⎥⎦ , (124)

here given as an example for n = 3 replicas. Plugging this replica symmetric (RS) ansatz in the
expression of φ(q , q̂ ), taking the limit n → 0 and looking for the stationary points as a function

of the parameters q, m, q12 and m̂, q̂, q̂12 recovers a set of equations equivalent to SE (7), albeit
without time indices. Hence the two a priori different heuristics of BP and the replica method
are remarkably consistent under the RS assumption.

Nevertheless, the replica symmetry can be spontaneously broken in the large N limit and
the dominating saddle point does not necessarily correspond to the RS overlap matrix. This
replica symmetry breaking (RSB) corresponds to substantial changes in the structure of the
examined Boltzmann distribution. It is among the great strengths of the replica formalism to
naturally capture it. Yet for inference problems falling under the teacher–student scenario,
the correct ansatz is always replica symmetric in the Bayes optimal setting [CCFM05, Nis01,
ZK16], and we will not investigate here this direction further. The interested reader can refer to
the classical references for an introduction to replica symmetry breaking [CCFM05, MPV86,
Nis01] in the context of the theory of spin-glasses.

Bayes optimal setting. As in SE the equations simplify in the matched setting, where the
first replica corresponding to the teacher becomes equivalent to all the others. The replica free
energy of the GLM is then given as the extremum of a potential over two scalar variables:

− f = extrqq̂

[
−1

2
qq̂ + Ix(q̂) + αIz(q0, q)

]
(125)

Ix(q̂) =
∫

Dξ dx px(x)e−q̂ x2
2 +

√
q̂ξx log

(∫
dx′ px(x′)e−q̂ x′2

2 +
√

q̂ξx′
)

(126)

Iz(q, q0) =
∫

Dξ dy dz pout(y|z)N (z;
√

qξ, q0 − q) log

(∫
dz′ pout(y|z′)N (z′;

√
qξ, q0 − q)

)
.

(127)

The saddle point equations corresponding to the extremization (125), fixing the values of q
and q̂, would again be found equivalent to the Bayes optimal SE (109) and (110). This Bayes
optimal result is derived in [KMS+12] for the case of a linear channel and Gauss–Bernoulli
prior, and can also be recovered as a special case of the low-rank matrix factorization formula
(where the measurement matrix is in fact known) [KKM+16].

4.4.2. Assumptions and relation to other mean-field methods. A crucial point in the above
derivation of the replica formula is the extensivity of the interactions of the infinite range
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model that allowed the factorization of the N scaling of the argument of the exponential inte-
grand in (118). The statistics of the disorder W and in particular the independence of all
the Wμi was also necessary. While this is an important assumption for the technique to go
through, it can be possible to relax it for some types of correlation statistics, as we will see in
section 5.2.

Note that the replica method directly enforces the disorder averaging and does not provide
a prediction at the level of the single instance. Therefore it cannot be turned into a practical
algorithm of reconstruction. Nonetheless, we have seen that the saddle point equations of the
replica derivation, under the RS assumption, matches the SE equations derived from BP. This
is sufficient to theoretically study inference questions under a teacher–student scenario in the
Bayes optimal setting, and in particular predict the MSE following (108).

In the mismatched setting however, the predictions of the replica method under the RS
assumption and the equivalent BP conclusions can be wrong. By introducing the symme-
try breaking between replicas, the method can sometimes be corrected. It is an impor-
tant endeavor of the replica formalism to grasp the importance of the overlaps and con-
nect the form of the replica ansatz to the properties of the joint probability distribution
examined. When BP fails on loopy graphs, correlations between variables are not decay-
ing with distance, which manifests into an RSB phase. Note that there also exists message
passing algorithms operating in this regime [AFUZ19, AKUZ19, MM09, MP01, MPZ02,
SLL19].

5. Further extensions of interest for learning

In the previous section we presented the classical mean-field approximations focusing on the
simple and original examples of the Boltzmann machine (a.k.a. SK model) and the GLM
with Gaussian i.i.d. weight matrices. Along the way, we tried to emphasize how the proce-
dures of approximation rely on structural (e.g. connectivity) and statistical properties of the
model under scrutiny. In the present section, we will see that extensions of the message passing
and replica methods have now broadened the span of applicability of mean-field approxima-
tions. We focus on a selection of recent developments of particular interest to study learning
problems.

5.1. Streaming AMP for online learning

In learning applications, it is sometimes advantageous for speed or generalization concerns to
only treat a subset of examples at the time—making for instance the SGD algorithm the most
popular training algorithm in deep learning. Sometimes also, the size of the current data sets
may exceed the available memory. Methods implementing a step-by-step learning as the data
arrives are referred to as online, streaming or mini-batch learning, as opposed to offline or batch
learning.

In [MKTZ18], a mini-batch version of the AMP algorithm is proposed. It consists in a
generalization of assumed density filtering [OW99a, RKI16] that are fully-online, meaning that
only a single example is received at once, or mini-batches have size 1. The general derivation
principle is the same. On the example of the GLM, one imagines receiving at each iteration
a subset of the components of y to reconstruct x . We denote by y (k) these successive mini-
batches. Bayes formula gives the posterior distribution over x after seeing k mini-batches

p(x |y (k), {y (k−1), . . . , y (1)}) =
p(y (k)|x )p(x |{y (k−1), . . . , y (1)})∫

dx p(y (k)|x )p(x |{y (k−1), . . . , y (1)})
. (128)
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This formula suggests the iterative scheme of using as a prior on x at iteration k the posterior
obtained at iteration k − 1. This idea can be implemented in different approximate inference
algorithms, as also noticed by [BBW+13] using a variational method. In the regular version
of AMP an effective factorized posterior is given at convergence by the input update functions
(85)–(87):

p(x |y , W ) �
N∏

i=1

1
Zx(λi, σi)

px(xi)e
− (λi−xi)2

2σi . (129)

Plugging this posterior approximation in the iterative scheme yields the mini-AMP algorithm
using the converged values of λ(�)i and σ(�)i at each anterior mini-batch � < k to compute the
prior

p(k)
x (x ) = p(x |{y (k−1), . . . , y (1)}, W ) �

N∏
i=1

1
Zx,i

px(xi) e
−

k−1∑
�=1

(λ(�),i−xi)
2

2σ(�),i , (130)

where the Zx,i normalize each marginal factor. Compared to a naive mean-field variational
approximation of the posterior, AMP takes into account more correlations and is indeed found
to perform better in experiments reported by [MKTZ18]. Another advantage of the AMP based
online inference is that it is amenable to theoretical analysis by a corresponding state evolution
[MKTZ18, OW99a, RKI16].

5.2. Algorithms and free energies beyond i.i.d. matrices

The derivations outlined in the previous sections of the equivalent replica, TAP and AMP
equations required the weight matrices to have Gaussian i.i.d. entries. In this case, rigorous
proofs of asymptotic exactness of the mean-field solutions were found, for the SK model
[Tal06] and the GLM [BKM+18, RP16]. Mean-field inference with different weight statistics
is a priori feasible if one finds a way either to perform the corresponding disorder average in the
replica computation, to evaluate the corresponding Onsager correction in the TAP equations, or
to write a message passing where messages remain uncorrelated (even in the high-connectivity
limit we may be interested in).

Efforts to broaden in practice the class of matrices amenable to such mean-field treat-
ments lead to a series of works in statistical physics and signal processing with related
propositions. Parisi and Potters pioneered this direction by deriving mean-field equations for
orthogonal weight matrices using a high-temperature expansion [PP95]. The adaptive TAP
approach proposed by Opper and Winther [OW01a, OW01b] further allowed for inference
in densely connected graphical models without prior knowledge on the weight statistics. The
Onsager term of these TAP equations was evaluated using the cavity method for a given weight
sample. The resulting equations were then understood to be a particular case of the expecta-
tion propagation (EP) [Min01]—belonging to the class of message passing algorithms for
approximate inference—yet applied in densely connected models [OW05]. An associated
approximation of the free energy called expectation consistency (EC) was additionally derived
from the EP messages. Subsequently, Kabashima and collaborators [Kab08, SK08, SK09]
focused on the perceptron and the GLM to propose TAP equations and a replica deriva-
tion of the free energy for the ensemble of orthogonally invariant random weight matrices.
In the singular value decomposition of such weight matrices, W = U S V � ∈ R

M×N , the
orthogonal basis matrices U and V are drawn uniformly at random from respectively O(M)
and O(N), while the diagonal matrix of singular values S has an arbitrary spectrum. The
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consistency between the EC free energy and the replica derivation for orthogonally invari-
ant matrices was verified by [KV14] for signal recovery from linear measurements (the
GLM without G). From the algorithmic perspective, Fletcher, Rangan and Schniter [RSF17,
SRF16] applied the EP to the GLM to obtain the (generalized) vector-approximate message
passing (G-VAMP) algorithm. Remarkably, these authors proved that the behavior of the
algorithm could be characterized in the thermodynamic limit, provided the weight matrix is
drawn from the orthogonally invariant ensemble, by a set of scalar state evolution equations
similarly to the AMP algorithm. These equations are again related to the saddle point equations
of the replica free energy. Concurrently, Opper, Cakmak and Winther proposed an alter-
native procedure for solving TAP equations with orthogonally invariant weight matrices in
Ising spin systems relying on an analysis of iterative algorithms [ÇO19, OÇW16]. Finally,
[MFC+19] revisits the above cited contributions and provides detailed considerations on their
connections.

Below we present the aforementioned free energy as proposed by [Kab08, SK08, SK09],
and the G-VAMP algorithm of [SRF16].

5.2.1. Replica free energy for the GLM in the Bayes optimal setting. Consider the ensemble
of orthogonally invariant weight matrices W with spectral density

∑N
i=1 δ(λ− λi)/N of their

‘square’ W W � converging in the thermodynamic limit N →+∞ to a given density ρλ(λ).
The quenched free energy of the GLM in the Bayes optimal setting derived in [Kab08, SK09]
writes

− f = extrqq̂

[
−1

2
qq̂ + Ix(q̂) + Jz(q0, q,α, ρλ)

]
, (131)

Jz(q0, q,α, ρλ) = extruû

[
Fρλ,α(q0 − q, û/λ0) +

ûq0

2
− αûu

2λ0
+ αIz(q0λ0/α, u)

]
, (132)

where Ix and Iz were defined as (126) and (127) and the spectral density ρλ(λ) appears via its
mean λ0 = Eλ[λ] and in the definition of

Fρλ,α(q, u) =
1
2

extrΛq,Λu

[
−(α− 1) log Λu − Eλ log(ΛuΛq + λ) + Λqq + αΛuu

]
− 1

2
(log q + 1) +

α

2
(log u + 1). (133)

Gaussian random matrices are a particular case of the considered ensemble. Their singular
values are characterized asymptotically by the Marcenko–Pastur distribution [MP67]. In this
case, one can check that the above expression reduces to (125). More generally, note that Jz

generalizes Iz.

5.2.2. Vector approximate message passing for the GLM. The VAMP algorithm consists
in writing EP [Min01] with Gaussian messages on the factor graph representation of the
GLM posterior distribution given in figure 5. The estimation of the signal x is decomposed
onto four variables, two duplicates of x itself and two duplicates of the linear transformation
z = W x . The potential functions ψx and ψz of factors connecting copies of the same variable
are Dirac distributions enforcing their equality. The factor node linking z (2) and x (2) is assumed
Gaussian with variance going to zero.The procedure of derivation, equivalent to the projection
of the BP algorithm on Gaussian messages, is recalled in appendix E and leads to algorithm 2.
Like for AMP, the algorithm features some auxiliary variables introduced along the derivation.
At convergence the duplicated x̂ 1, x̂ 2 (and ẑ 1, ẑ 2) are equal and either can be returned by the
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Figure 5. Factor graph representation of the GLM for the derivation of VAMP.

Algorithm 2. Vector approximate message passing

Input: vector of observations y ∈ R
M and weight matrix W ∈ R

M×N :
Initialize: Ax

1
, Bx

1, Az
1
, Bz

1

repeat

x̂1 = f x
1 (Bx

1, Ax
1
), Cx

1
= f x

2 (Bx
1, Ax

1
) (134)

Ax
2
= Cx

1
−1 − Ax

1
, Bx

2 = Cx
1
−1x̂2 − Bx

1 (135)

ẑ1 = f z
1 (Bz

1, Az
1
), Cz

1
= f z

2 (Bz
1, Az

1
) (136)

Az
2
= Cx

1
−1 − Az

1
, Bz

2 = Cx
1
−1x̂2 − Bz

1 (137)

x̂2 = gx
1(Bx

2, Ax
2, Bz

2, Az
2), Cx

2
= gx

2(Bx
2, Ax

2, Bz
2, Az

2) (138)

Ax
1
= Cx

2
−1 − Ax

2
, Bx

1 = Cx
2
−1x̂1 − Bx

2 (139)

ẑ2 = gz
1(Bx

2, Ax
2, Bz

2, Az
2), Cz

2
= gz

2(Bx
2, Ax

2, Bz
2, Az

2) (140)

Az
1
= Cx

2
−1 − Az

2
, Bz

1 = Cx
2
−1x̂1 − Bz

2 (141)

until convergence
Output: signal estimate x̂1 ∈ R

N , and estimated covariance Cx
1
∈ R

N×N

algorithm as an estimator. For readability, we omitted the time indices in the iterations that
here simply follow the indicated update.

For a given instance of the GLM inference problem, i.e. a given weight matrix W , one can
always launch either the AMP algorithm or the VAMP algorithm to attempt the reconstruction.
If the weight matrix has i.i.d. zero mean Gaussian entries, the two strategies are conjectured to
be equivalent and GAMP can be provably convergent for certain settings [RSF14]. If the weight
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matrix is not Gaussian but orthogonally invariant, then only VAMP is expected to always con-
verge. More generally, even in cases where none of these assumptions are verified, VAMP has
been observed to have less convergence issues than AMP.

Like for AMP, a state evolution can also be derived for VAMP (which was actually directly
proposed for the multi-layer GLM [FRS18]). It rigorously characterizes the behavior of the
algorithm when W is orthogonally invariant. One can also verify that the SE fixed points can
be mapped to the solutions of the saddle point equations of the replica free energy (131) (see
section 1 of supplementary material of [GML+18]); so that the robust algorithmic procedure
can advantageously be used to compute the fixed points to be plugged in the replica potential
to approximate the free energy.

5.3. Multi-value AMP

A recent extension of AMP consists in treating the simultaneous reconstruction of multiple
signals undergoing the same mixing step from the corresponding multiple observations. This
is a situation of particular interest for learning appearing for instance in the teacher–student
set-up of committee machines. The authors of [AMB+18] showed that the different weight
vectors of these neural networks can be inferred from the knowledge of training input–output
pairs introducing this extended version of AMP. Here the same matrix of training input data
mixes the teacher weight vectors to produce the training output data. For a matter of con-
sistency with the examples used in the previous sections, we here formalize the algorithm
for the GLM. Nevertheless this is just a matter of rewriting of the committee algorithm of
[AMB+18].

Concretely let us consider a GLM with P pairs of signal and observations {x (k), y (k)}P
k=1,

gathered in matrices X ∈ R
N×P and Y ∈ R

M×P. We are interested in the posterior distribution

p(X |Y , W ) =
1

Z(Y , W )

N∏
i=1

p(x i)
M∏

μ=1

pout(y μ|w �
μ X ), x i ∈ R

P, y μ ∈ R
P.

(142)

Compared to the traditional GLM measure (51), scalar variables are here replaced by vec-
tors in R

P. In appendix F we present a derivation starting from BP of the corresponding
AMP presented in algorithm 3. The major difference with the scalar GLM consists in the
necessity of tracking covariance matrices between the P different variables instead of simple
variances.

This AMP algorithm can also be analyzed by a state evolution. In [AMB+18], the
teacher–student matched setting of the committee machine is examined through the replica
approach and the Bayes optimal state evolution equations are obtained as the saddle point
equations of the replica free energy. In appendix F we present the alternative derivation of the
state evolution equations from the message passing and without assuming a priori matched
teacher and student, as done in [GBKZ19].

5.4. Model composition and multi-layer inference

Another recent and ongoing direction of extension of mean-field methods is the combination of
solutions of elementary models to tackle more sophisticated inference questions. The graphical
representations of probability distributions (reintroduced briefly in appendix B) are here of
great help. In a complicated joint probability distribution, it is sometimes possible to identify
well-known sub-models, such as the GLM or the RBM. Understanding how and when it is
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Algorithm 3. Approximate message passing for multi-value GLM

Input: matrix Y ∈ R
M×P and matrix W ∈ R

M×N:
Initialize: x̂i, Cx

i
∀i and goutμ

, ∂ωgout
μ

∀μ
repeat
(1) Estimate mean and variance of zμ given current x̂i

V (t)
μ

=
N∑

i=1

W2
μi

N
Cx

i
(t) (143)

ω(t)
μ =

N∑
i=1

Wμi√
N

x̂(t)
i −

N∑
i=1

W2
μi

N
(σ(t)

i
)−1Cx(t)

i
σ

i
gout

(t−1)
μ

(144)

(2) Estimate mean and variance of the gap between optimal zμ and ωμ given y
μ

∂ωgout
(t)

μ
= ∂ωgout(yμ,ω(t)

μ , V (t)
μ

) (145)

gout
(t)
μ

= gout(yμ,ω(t)
μ , V (t)

μ
) (146)

(3) Estimate mean and variance of xi given current optimal zμ

σ(t)
i

=

⎛
⎝−

M∑
μ=1

W2
μi

N
∂ωgout

(t)

μ

⎞
⎠

−1

(147)

λ(t)
i = x̂(t)

i + σ(t)
i

⎛
⎝ M∑

μ=1

Wμi√
N

gout
(t)
μ

⎞
⎠ (148)

(4) Estimate of mean and variance of xi augmented of the information about the prior

Cx
i
(t+1) = f x

2
(λ(t)

i ,σ(t)
i

) (149)

x̂(t+1)
i = f x

1
(λ(t)

i ,σ(t)
i

) (150)

until convergence

justified to plug-in different solutions is of course non-trivial and a very promising direction
of research.

A particularly relevant extension in this direction is the treatment of multi-layer GLMs, or
in other words multi-layer neural networks. With depth L, hidden layers noted u � ∈ R

N� , and
weight matrices Φ � ∈ R

N�+1×N� , it formally corresponds to the statistical model

u 0 = x 0 ∼ px0 (x 0), (151)

u � ∼ p�out(u
�|Φ �−1u �−1) ∀� = 1, . . . , L − 1, (152)

y ∼ pL
out(y |Φ L−1u L−1). (153)
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Figure 6. Factor graph representation of a generic two-layer GLM.

In [MKMZ17] a multi-layer version of AMP is derived, assuming Gaussian i.i.d weight
matrices, along with a state evolution and a replica free energy. Remarkably, the asymptotic
replica prediction was mathematically proven correct in [GML+18]. In [FRS18], the multi-
layer version of the VAMP algorithm is derived with the corresponding state evolution for
orthogonally invariant weight matrices. The matching free energies were obtained indepen-
dently in [GML+18] by the generalization of a replica result and by [RP16] from a different
argument.

In the next paragraph we sketch a derivation of the two-layer AMP presented in algorithm
4, it provides a good intuition of the composition ability of mean-field inference methods.

Heuristic derivation of two-layer AMP. The derivation of the multi-layer AMP follows
identical steps to the derivation of the single layer presented in section 4.3, yet for a more
complicated factor graph and consequently a larger collection of messages. Without conduct-
ing the lengthy procedure, one can form an intuition for the resulting algorithm starting from
the single-layer AMP. The corresponding factor graph is given on figure 6. Compared to the
single-layer case (see figure 3), an interface with a set of M = N1 hidden variables uμ is inserted
between the N = N0 signals xi and the Q = N2 observations ya. In the neighborhood of the
inputs xi the factor graph is identical to the single-layer and the input functions can be defined
from a normalization partition identical to (85),

Zx(λi, σi) =
∫

dxi px(xi)e
− (xi−λi)

2

2σi , (154)

yielding updates (170) and (171). Similarly, the neighborhood of the observations ya is also
unchanged and the updates (160) and (161) are following from the definition of

Zy
out(ω

2
a , V2

a ) =
∫

dza p2
out(y a|za) e

−

(
za−ω2

a

)2

2V2
a , (155)

identical to the single layer (79). At the interface however, the variables uμ play the role of out-
puts for the first GLM and of inputs for the second GLM, which translates into a normalization
partition function of mixed form

Zu
out(ω

1
μ, V1

μ,λ1
μ, σ1

μ) =
∫

dzμ

∫
duμ p1

out(uμ|zμ) × e
−

(
uμ−λ1

μ

)2

2σ1
μ e

−

(
zμ−ω1

μ

)2

2 V1
μ .
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Algorithm 4. Generalized approximate message passing for the two-layer GLM

Input: vector y ∈ R
M and matrices Φ0 ∈ R

M×N , Φ1 ∈ R
Q×M:

Initialize: x̂ ∈ R
N , Cx ∈ R

N , û ∈ R
M , Cu ∈ R

M , g1
out ∈ R

M , ∂gout
1 ∈ R

M , g2
out ∈ R

Q, ∂gout
2 ∈ R

Q and
t = 0.
repeat
(1) Update auxiliary variables of second layer:

ω2
a

(t)
=

∑
μ

Φ1
aμ√
N

û(t)
μ −

∑
μ

(Φ1
aμ)2

N
Cu
μ

(t)
gout

2
a

(t−1)
(158)

V2
a

(t)
=

∑
μ

(Φ1
aμ)2

N
Cu
μ

(t)
(159)

gout
2
a

(t)
= gout

2(y a,ω2
a

(t)
, V2

a
(t)

) (160)

∂ωgout
2
a

(t)
= ∂ωgout

2(y a,ω2
a

(t)
, V2

a
(t)

) (161)

λ1
μ

(t)
= σ1

μ

(∑
a

Φ1
aμ√
N

gout
2
a

(t) −
(Φ1

aμ)2

N
∂ωgout

2
a

(t)
ûμ

)
(162)

σ1
μ

(t)
=

(
−
∑

a

(Φ1
aμ)2

N
∂ωgout

2
a

(t)

)−1

(163)

(2) Update auxiliary variables of first layer:

ω1
μ

(t)
=

∑
i

Φ0
μi√
N

x̂(t)
i −

∑
i

(Φ0
μi)

2

N
Cxigout

1
μ

(t−1)
(164)

V1
μ

(t)
=

∑
i

(Φ0
μi)

2

N
Cxi

(t) (165)

gout
1
μ

(t)
= gout

1(ω1
μ

(t)
, V1

μ
(t)

,λ1
μ

(t)
,σ1

μ
(t)

) (166)

∂ωgout
1
μ

(t)
= ∂ωgout

1(ω1
μ

(t)
, V1

μ
(t)

, λ1
μ

(t)
,σ1

μ
(t)

) (167)

σ0
i

(t)
=

(
−
∑

i

(Φ0
μi)

2

N
∂ωgout

1
μ

(t)

)−1

(168)

λ0
i = σ0

i

(∑
μ

Φ0
μi√
N

gout
1
μ

(t) −
(Φ0

μi)
2

N
∂ωgout

1
μ

(t)
x̂i

)
(169)

(3) Update means and variances of variables of both layers, x and u :

x̂(t+1)
i = f x

1

(
λ0

i
(t)

,σ0
i

(t)
)

(170)
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Algorithm 4. (Continued)

Cx
i
(t+1) = f x

2

(
λ0

i
(t)

,σ0
i

(t)
)

(171)

û(t+1)
μ = f u

1

(
ω1
μ

(t)
, V1

μ
(t)

,λ1
μ

(t)
, σ1

μ
(t)
)

(172)

Cu
μ

(t+1)
= f u

2

(
ω1
μ

(t)
, V1

μ
(t)

,λ1
μ

(t)
,σ1

μ
(t)
)

(173)

t = t + 1
until convergence
Output: signal estimate x̂ ∈ R

N , and estimated variance C x ∈ R
N

Updates (166) and (167) are obtained by considering that the second layer acts as an effective
channel for the first layer, i.e. from the normalization interpreted as

Zu
out(ω

1
μ, V1

μ,λ1
μ, σ1

μ) =
∫

dzμ peff
out(zμ) e

−

(
zμ−ω1

μ

)2

2 V1
μ . (156)

Finally, update equations (172) and (173) are in turn derived considering the first layer defines
an effective prior for the hidden variables and rewriting the normalization as

Zu
out =

∫
duμ peff

u (uμ) e
−

(
uμ−λ1

μ

)2

2σ1
μ . (157)

The rest of the algorithm updates follows as usual from the self-consistency between the differ-
ent variables introduced as they correspond to different parametrization of the same marginals.
The schedule of updates and the time indexing reported in algorithm 4 results from the entire
derivation starting from the BP messages. The generalization of the algorithm to an arbitrary
number of layers is easily obtained repeating the heuristic arguments presented here.

6. Some applications

6.1. A brief pre-deep learning history

The application of mean-field methods of inference to machine learning, and in particular to
neural networks, already have a long history and significant contributions to their records. Here
we briefly review some historical connections anterior to the deep learning revival of neural
networks in the 2010s.

Statistical mechanics of learning. In the 80s and 90s, a series of works pioneered the
analysis of learning with neural networks through the statistical physics lense. By focusing on
simple models with simple data distributions, and relying on the mean-field method of repli-
cas, these papers managed to predict quantitatively important properties such as capacities:
the number of training data point that could be memorized by a model, or learning curves: the
generalization error (or population risk) of a model as a function of the size of the training set.
This effort was initiated by the study of the Hopfield model [AGS85], an undirected neural
network providing associative memory [Hop82]. The analysis of feed forward networks with
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simple architectures followed (among which [Gar87, Gar88, MZ95, MZ04, OH91, OW96],
see also the reviews [EV01, Opp95, Saa99, SST92, WRB93]). The dynamics of simple learn-
ing problems was also analyzed through a mean-field framework (not covered in the previous
sections) initially in the simplifying case of online learning with infinite training set [BS95,
Saa99, SS95a, SS95b] but also with finite data [LM99, SB97].

Physicists, accustomed to studying natural phenomena, fruitfully brought the tradition of
modeling to their investigation of learning, which translated into assumptions of random data
distributions or teacher–student scenarios. Their approach was in contrast to the focus of the
machine learning theorists on worst case guarantees: bounds for an hypothesis class that hold
for any data distribution (e.g. Vapnik–Chervonenkis dimension and Rademacher complexity).
The originality of the physicists approach, along with the heuristic character of the derivations
of mean-field approximations, may nonetheless explain the minor impact of their theoretical
contributions in the machine learning community at the time.

Mean-field algorithms for practictioners. Along with these contributions to the statistical
mechanics theory of learning, new practical training algorithms based on mean-field approxi-
mations were also proposed at the same period (see e.g. [OW96, Won95, Won97]). Yet, before
the deep learning era, mean-field methods probably had a greater influence in the practice of
unsupervised learning through density estimation, where we saw that approximate inference
is almost always necessary. In particular the simplest method of naive mean-field, our first
example in section 4, was easily adopted and even extended by statisticians (see e.g. [WJ08]
for a recent textbook and [BKM17] for a recent review). The belief propagation algorithm is
another example of a well known mean-field methods by machine learners, as it was actually
discovered in both communities. Yet, for both methods, early applications rarely involved neu-
ral networks and rather relied on simple probabilistic models such as mixtures of elementary
distributions. They also did not take full advantage of the latest simultaneous developments in
statistical physics of the mean-field theory of disordered systems.

Transferring advanced mean-field methods. In this context, the inverse Ising problem
has been a notable exception. The underlying question, rooted in theoretical statistical physics,
is to infer the parameters of an Ising model given a set of equilibrium configurations. This
is related to the unsupervised learning of the parameters of a Boltzmann machine (without
hidden units) in the machine learning jargon, while it does not necessarily rely on a maxi-
mum likelihood estimation using gradients. The corresponding Boltzmann distribution, with
pairwise interactions, is remarkable, not only to physicists. It is the least biased model under
the assumption of fixed first and second moments in the sense that it maximizes the entropy.
For this problem, physicists proposed dedicated developments of advanced mean-field meth-
ods for applications in other fields, and in particular in bio-physics (see [NZB17] for a recent
review). A few works even considered the case of Boltzmann machines with hidden units, more
common in the machine learning community [Gal93, PA87].

Beyond the specific case of Boltzmann machines, the language barrier between commu-
nities is undoubtedly a significant hurdle delaying the global transfer of developments in one
field to the other. In machine learning, the potential of the most recent progress of mean-field
approximations was advocated for in a pioneering workshop mixing communities in 1999
[OS01]. Yet the first widely-used application is possibly the approximate message passing
(AMP) algorithm for compressed sensing in 2009 [DMM09]. Meanwhile, in the different field
of constraint satisfaction problems (CSPs), there have been much tighter connections between
developments in statistical physics and algorithmic solutions. The very first popular applica-
tion of advanced mean-field methods outside of physics, beyond naive mean-field and belief
propagation, is probably the survey propagation algorithm [MPZ02] in 2002. It borrows from

41



J. Phys. A: Math. Theor. 53 (2020) 223002 Topical Review

the 1RSB cavity method (not treated in the present paper) to solve efficiently certain types of
CSPs.

6.2. Some current directions of research

The great leap forward in the performance of machine learning with neural networks brought
by deep learning algorithms, along with the multitude of theoretical and practical challenges
it has opened, has re-ignited the interest of physicists for the theory of neural networks. In this
section, far from being exhaustive, we review some current directions of research leveraging
mean-field approximations. Another relevant review is [CCC+19], which provides references
both for machine learning research helped by physics methods and conversely research in
physics using machine learning.

Works presented below do not necessarily implement one of the classical inference meth-
ods presented in sections 4 and 5. In some cases, the mean-field limit corresponds to some
asymptotic setting where the problem simplifies: typically some correlations weaken, fluctua-
tions are averaged out by concentration effects and, as a result, ad hoc methods of resolution
can be designed. Thus, in the following contributions, different assumptions are considered to
serve different objectives. For instance some take an infinite size limit, some assume random
(instead of learned) weights or vanishing learning rates. Hence, there is no such a thing as one
mean-field theory of deep neural networks. The below cited works are rather complementary
pieces of solving a great puzzle.

6.2.1. Neural networks for unsupervised learning. Fundamental study of learning. Given
their similarity with the Ising model, restricted Boltzmann machines have unsurprisingly
attracted a lot of interest. Studying an ensemble of RBMs with random parameters using the
replica method, Tubiana and Monasson [TM17] evidenced different regimes of typical pat-
tern of activations in the hidden units and identified control parameters as the sparsity of the
weights, their strength (playing the role of an effective temperature) or the type of prior for
the hidden layer. Their study contributes to the understanding of the conditions under which
the RBMs can represent high-order correlations between input units, albeit without including
data and learning in their model. Barra and collaborators [BGST17, BGST18], exploited the
connections between the Hopfield model and RBMs to characterize RBM learning understood
as an associative memory. Relying again on replica calculations, they characterize the retrieval
phase of RBMs. Mézard [Méz17] also re-examined retrieval in the Hopfield model using its
RBM representation and message passing, showing in particular that the addition of correla-
tions between memorized patterns could still allow for a mean-field treatment at the price of a
supplementary hidden layer in the Boltzmann machine representation. This result remarkably
draws a theoretical link between correlations in the training data and the necessity of depth in
neural network models.

While the above results do not include characterization of the learning driven by data, a
few others were able to discuss the dynamics of training. Huang [Hua17] studied with the
replica method and TAP equations the Bayesian leaning of an RBM with a single hidden unit
and binary weights. Barra and collaborators [BGST17] empirically studied a teacher–student
scenario of unsupervised learning by maximum likelihood on samples of an Hopfield model
which they could compare to their theoretical characterization of the retrieval phase. Decelle
and collaborators [DFF17, DFF18] introduced an ensemble of RBMs characterized by the
spectral properties of the weight matrix and derived the typical dynamics of the corresponding
order parameters during learning driven by data. Beyond RBMs, analyses of the learning in
other generative models are starting to appear [WHLP18].
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Training algorithm based on mean-field methods. Beyond bringing theoretical insights,
mean-field methods are also found useful to build tractable estimators of the likelihood in
generative models, which in turn serves to design novel training algorithms.

For Boltzmann machines, this direction was already investigated in the 80s and 90s, [Gal93,
Hin89, KR98, PA87], albeit in small models with binary units and for artificial data sets very
different from modern machine learning benchmarks. More recently, a deterministic train-
ing based on naive mean-field was tested on RBMs [Tie08, WH02]. On toy deep learning
data sets, the algorithm was found to perform poorly when compared to both CD and PCD,
the commonly employed approximate Monte Carlo methods. However going beyond naive
mean-field, considering the second order TAP expansion, allows to bridge the gap in efficiency
[GTK15, TGM+18]. Additionally, the deterministic mean-field framework offers a tractable
way of evaluating the learning success by exploiting the mean-field observables to visualize
the representation learned by RBMs. Interestingly, high temperature expansions of estimators
different from the maximum likelihood have also been recently proposed as efficient inference
method for the inverse Ising problem [LVMC18].

By construction, variational auto-encoders (VAEs) rely on a variational approximation of
the likelihood. In practice, the posterior distribution of the latent representation given an input
(see section 2.2) is typically approached by a factorized Gaussian distribution with mean and
variance parametrized by neural networks. The factorization assumption relates the method to
a naive mean-field approximation.

Structured Bayesian priors. With the progress of unsupervised learning, the idea of using
generative models as expressive priors has emerged.

For reconstruction tasks, in the event where a set of typical signals is available a priori, the
latter can serve as a training set to learn a model of the underlying data distribution with a gener-
ative model. Subsequently, in the reconstruction of a new signal of the same type, the generative
model can serve as a Bayesian prior. In particular, the idea to exploit RBMs in CS applica-
tions was pioneered by [DHD12] and [TDK16], who trained binary RBMs using contrastive
divergence (to locate the support of the non-zero entries of sparse signals) and combined it
with an AMP reconstruction. They demonstrated drastic improvements in the reconstruction
with structured learned priors compared to the usual sparse unstructured priors. The approach,
requiring to combine the AMP reconstruction for CS and the RBM TAP inference, was further
generalized in [TGM+18, TMC+16] to real valued distributions. In the line of these applica-
tions, several works have also investigated using feed forward generative models for inference
tasks. Using this time multi-layer VAMP inference, Rangan and co-authors [PSRF19] showed
that VAEs could help for in-painting partially observed images. Note also that a different line of
works, mainly considering GANs, examined the same type of applications without resorting to
mean-field algorithms [BJPD17, HLV18, HV18, MV18]. Instead they performed the inference
via gradient descent and back-propagation.

Another application of generative priors is to model synthetic data sets with structure. In
[ALM+19, GMKZ19, GML+18], the authors designed learning problems amenable to a mean-
field theoretical treatment by assuming the inputs to be drawn from a generative prior (albeit
with untrained weights so far). This approach goes beyond the vanilla teacher–student scenario
where input data is typically unstructured with i.i.d. components. This is a crucial direction of
research as the role of structure in data appears as an important component to understand the
puzzling efficiency of deep learning.

6.2.2. Neural networks for supervised learning. New results in the replica analysis of
learning. The classical replica analysis of learning with simple architectures, following bases
set by Gardner and Derrida 30 years ago, continues to be explored. Among the most prominent
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results, Kabashima and collaborators [Kab08, SK08, SK09] extended the mean-field treatment
of the perceptron from data matrices with i.i.d. entries to random orthogonal matrices. It is a
much larger class of random matrices where matrix entries can be correlated. More recently,
a series of works explored in depth the specific case of the perceptron with binary weight
values for classification on random inputs. Replica computations showed that the space of
solutions is dominated in the thermodynamic limit by isolated solutions [HK14, HWK13], but
also that subdominant dense clusters of solutions exist with good generalization properties in
the teacher–student scenario case [BBC+16, BGK+18, BIL+15]. This observation inspired
a novel training algorithm [CCS+17]. The simple two-layer architecture of the committee
machine was also reexamined recently [AMB+18]. In the teacher–student scenario, a com-
putationally hard phase of learning was evidenced by comparing a message passing algorithm
(believed to be optimal) and the replica prediction. In this work, the authors also proposed a
strategy of proof of the replica prediction.

Signal propagation in depth. Mean-field approximations can also help understand the role
and implications of depth by characterizing signal propagation in neural networks. The fol-
lowing papers consider the width of each layer to go to infinity. In this limit, Sompolinsky
and collaborators characterized how neural networks manage to progressively separate data
manifolds fed as inputs [CCLS19, CLS18, KS16]. Another line of works focused on the initial-
ization of neural networks (i.e. with random weights), and found an order-to-chaos transition
in the signal propagation as a function of hyperparameters of training [PLR+16, SBG+17].
As a result, the authors could formulate recommendations for combinations of hyperparame-
ters to practitioners. This type of analysis could furthermore be generalized to convolutional
networks [NXL+19], recurrent networks [GCC+19] and networks with batch-normalization
regularization [YPR+19]. The space of functions spanned by deep random networks in the
infinite-size limit was also studied by [LS18, LS20], using the different but related approach
of the generating functional analysis. Yet another mean-field argument, this time relying on a
replica computation, allowed to compute the mutual information between layers of large non-
linear deep neural networks with orthogonally invariant weight matrices [GML+18]. Using this
method, mutual informations can be followed precisely along the learning for an appropriate
teacher–student scenario. The strategy offers an experimental test bed to characterize possible
links between the generalization ability of deep neural networks and information compression
phases in the training (see [SBD+18, SZT17, TZ15]).

Dynamics of SGD learning in simple networks and generalization. A number of differ-
ent mean-field limits led to interesting analyses of the dynamics of gradient descent learning. In
particular, the below mentioned works contribute to shed light on the generalization power of
neural networks in the so-called overparametrized regimes, that is where the number of param-
eters exceeds largely either the number of training points or the underlying degrees of freedom
of the teacher rule. In linear networks first, an exact description in the high-dimensional limit
was obtained for the teacher-student setup by [AS17] using random matrix theory. The gen-
eralization was predicted to improve with the overparametrization of the student. Non-linear
networks with one infinitely wide hidden layer were considered by [CB18b, MMN18, RVE18,
SS18] who showed that gradient descent converges to a finite generalization error. Their results
are related to others obtained in a slightly different limit of infinitely large neural networks
[JGH18]. For arbitrarily deep networks, Jacot and collaborators [JGH18] showed that, in a
certain setting, gradient descent was effectively performing a kernel regression with a kernel
function converging to a fixed value for the entire training as the size of the layers increases.
In both related limits, the absence of divergence is accounting for generalization not deterio-
rating despite of the explosion of the number of parameters. The relationship between the two
above limits was discussed in [CB18a, GSJW19, MMM19]. Subsequent works, leveraged the

44



J. Phys. A: Math. Theor. 53 (2020) 223002 Topical Review

formalism introduced in [JGH18]. Scaling for the generalization error as a function of network
sizes were derived by [GJS+19]. Other authors focused on the characterization of the network
output function in this limit, which takes the form of a Gaussian process [LXS+19]. This fact
was probably first noticed by Opper and Winther with one hidden layer [OW99b], to whom
it inspired a TAP based Bayesian classification method using Gaussian processes. Finally, yet
another limit was analyzed by [GAS+19], considering a finite number of hidden units with an
infinitely wide input. Following classical works on the mean-field analysis of online learning
(not covered in the previous sections [BS95, Saa99, SS95a, SS95b]), a closed set of equations
can be derived and analyzed for a collection of overlaps. Note that these are the same order
parameters as in replica computations. The resulting learning curves evidence the necessity of
multi-layer learning to observe the improvement of generalization with overparametrization.
An interplay between optimization, architecture and data sets seems necessary to explain the
phenomenon.

7. Conclusion

This review aimed at presenting in a pedagogical way a selection of inference methods coming
from statistical physics. In past and current lines of research that were also reviewed, these
methods are sometimes turned into practical and efficient inference algorithms, or sometimes
the angle stone in theoretical computations.

What is missing. There are more of these methods beyond what was covered here. In partic-
ular the cavity method [MPV86], closely related to message passing algorithms and the replica
formalism, played a crucial role in the physics of spin glasses. Note also that we assumed
replica symmetry, which is only guaranteed to be correct in the Bayes optimal case. Ref-
erences of introductions to replica symmetry breaking are [CCFM05, MPV86], and newly
proposed message passing algorithms with RSB are [AFUZ19, AKUZ19, SLL19]. The meth-
ods of analysis of online learning algorithms pioneered by [BS95, SS95a, SS95b] and reviewed
in [Saa99] also deserve the name of classical mean-field analysis. They are currently actively
serving research efforts in deep learning theory [GAS+19]. Another important method is the
off-equilibrium mean-field theory [CHS93, CK93, CS88], recently used for example to char-
acterize a specific type of neural networks called graph neural networks [KTO18] or to study
properties of gradient flows [MKUZ19].

On the edge of validity. We have also touched upon the limitations of the mean-field
approach. To start with, the thermodynamic limit is ignoring finite-size effects. Moreover,
different ways of taking the thermodynamic limit for the same problem sometimes lead to
different results. Also, necessary assumptions of randomness for weights or data matrices are
sometimes in clear contrast with real applications.

Thus, the temptation to apply abusively results from one field to the other can be a dan-
gerous pitfall of the interdisciplinary approach. We could mention here the characterization of
the dynamics of optimization. While physicists have extensively studied Langevin dynamics
with Gaussian white noise, the continuous time limit of SGD is unfortunately not an equiva-
lent in the general case. While some works attempt to draw insights from this analogy using
strong assumptions (e.g. [CHM+15, JKA+17]), others seek precisely to understand the differ-
ences between the two dynamics in neural networks optimization (e.g. [BJSG+18, SSG19]).
Alternatively, another good reason to consider the power of mean-field methods lies in the
observation rooted in the tradition of theoretical physics that one can learn from models a pri-
ori far from the exact neural networks desired, but that retain some key properties, while being
amenable to theoretical characterization. For example, [MKUZ19] studied a high-dimensional
non-convex optimization problem inspired by the physics of spin glasses apparently unrelated
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to neural networks, but gained insights on the dynamics of gradient descent (and Langevin)
that is of primal interest. Another example of this surely promising approach is [WHLP18],
who built and analyzed a minimal model of GANs.

Moreover, the possibility to combine well-studied simple settings to obtain a mean-field
theory for more complex models, as recently demonstrated in a series of work [ALM+19,
FRS18, GML+18, MKMZ17, TDK16, TGM+18, TMC+16], constitutes an exciting direction
of research that should broaden considerably the limit of applications of mean-field methods.

Patching the pieces together and going further. Thus the mean-field approach alone can-
not to this day provide complete answers to the still numerous puzzles on the way toward a
deep learning theory. Yet, considering different limits and special cases, combining solutions
to approach ever more complex models, the approach should help uncover more and more
corners of the big black box. Hopefully, intuition gained at the edge will help revealing the
broader picture.
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Appendix A. Index of notations and abbreviations

[N] Set of Integers from 1 to N
δ(·) Dirac Distribution
σ(x) = (1 + e−x)−1 Sigmoid
relu(x) = max(0, x) Rectified Linear Unit
X Matrix
x Vector
I N ∈ R

N×N Identity Matrix
〈·〉 Average with Respect to the Boltzmann Distribution
O(N) ⊂ R

N×N Orthogonal Ensemble
1RSB 1 Step Replica Symmetry Breaking
AMP Approximate Message Passing
BP Belief Propagation
cal-AMP Calibration Approximate Message Passing
CD Contrastive Divergence
CS Compressed Sensing
CSP Constrain Satisfaction Problem
DAG Directed Acyclic Graph
DBM Deep Boltzmann Machine
EC Expectation Consistency
EP Expectation Propagation
GAMP Generalized Approximate Message Passing
GAN Generative Adversarial Networks
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GD Gradient Descent
GLM Generalized Linear Model
G-VAMP Generalized Vector Approximate Message Passing
i.i.d. Independent Identically Distributed
PCD Persistent Contrastive Divergence
r-BP Relaxed Belief Propagation
RS Replica Symmetric
RSB Replica Symmetry Breaking
RBM Restricted Boltzmann Machine
SE State Evolution
SGD Stochastic Gradient Descent
SK Sherrington–Kirkpatrick
TAP Thouless Anderson Palmer
VAE Variational Autoencoder
VAMP Vector Approximate Message Passing

Appendix B. Statistical models representations

Graphical representations have been developed to represent and efficiently exploit
(in)dependencies between random variables encoded in joint probability distributions. They
are useful tools to concisely present the model under scrutiny, as well as direct supports
for some derivations of inference procedures. Let us briefly present two types of graphical
representations.

Probabilistic graphical models. Formally, a probabilistic graphical model is a graph
G = (V, E) with nodes V representing random variables and edges E representing direct inter-
actions between random variables. In many statistical models of interest, it is not necessary to
keep track of all the possible combinations of realizations of the variables as the joint prob-
ability distribution can be broken up into factors involving only subsets of the variables. The
structure of the connections E reflects this factorization.

There are two main types of probabilistic graphical models: directed graphical models (or
Bayesian networks) and undirected graphical models (or Markov random fields). They allow to
represent different independencies and factorizations. In the next paragraphs we provide intu-
itions and remind some useful properties of graphical models, a good reference to understand
all the facets of this powerful tool is [KF09].

Undirected graphical models. In undirected graphical models the direct interaction
between a subset of variables C ⊂ V is represented by undirected edges interconnecting each
pair in C. This fully connected subgraph is called a clique and associated with a real positive
potential function ψC over the variable x C = {xi}i∈C carried by C. The joint distribution over
all the variables carried by V, x V is the normalized product of all potentials

p(x V) =
1
Z
∏
C∈C

ψC(x C). (B.1)

Example (i): the restricted Boltzmann machine,

p(x , t ) =
1
Z ex �W t px(x )pt(t ) (B.2)
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with factorized px and pt is handily represented using an undirected graphical model depicted
in figure 2a. The corresponding set of cliques is the set of all the pairs with one input unit
(indexed by i = 1 · · ·N) and one hidden unit (indexed by α = 1 · · ·M), joined with the set of
all single units. The potential functions are immediately recovered from (B.2),

C = {{i}, {α}, {i,α}; i = 1, . . . , N, α = 1, . . . , M}, ψiα(xi, tα) = exiWiαtα , (B.3)

p(x , t ) =
1
Z

∏
{i,α}∈C

ψiα(xi, tα)
N∏

i=1

px(xi)
M∏

α=1

pt(tα). (B.4)

It belongs to the subclass of pairwise undirected graphical models for which the size of the
cliques is at most two.

Undirected graphical models handily encode conditional independencies. Let A, B, S ⊂ V
be three disjoint subsets of nodes of G. A and B are said to be independent given S if p(A, B|S) =
p(A|S)p(B|S). In the graph representation it corresponds to cases where S separates A and B:
there is no path between any node in A and any node in B that is not going through S.

Example (i): In the RBM, hidden units are independent given the inputs, and conversely:

p(t |x ) =
M∏

α=1

p(tα|x ), p(x |t ) =
M∏

i=1

p(xi|t ). (B.5)

This property is easily spotted by noticing that the graphical model (figure 2(a)) is bipartite.
Directed graphical model. A directed graphical model uses a directed acyclic graph

(DAG), specifying directed edges E between the random variables V. It induces an ordering
of the random variables and in particular the notion of parent nodes πi ⊂ V of any given ver-
tex i ∈ V: the set of vertices j such that j → i ∈ E. The overall joint probability distribution
factorizes as

p(x ) =
∏
i∈V

p(xi|x πi). (B.6)

Example (ii): The stochastic single layer feed forward network y = g(W x ; ε ), where g(·; ε )
is a function applied component-wise including a stochastic noise ε that is equivalent to a
conditional distribution pout(y |W x ), and where inputs and weights are respectively drawn from
distributions px(x ) and pW(W ), has a joint probability distribution

p(y , x , W ) = pout(y |W x )px(x )pW(W ), (B.7)

precisely following such a factorization. It can be represented with a three-node DAG as in
figure 7. Here we applied the definition at the level of vector/matrix valued random vari-
ables. By further assuming that pout, pW and px factorize over their components, we keep a
factorization compatible with a DAG representation

p(y , x , W ) =
N∏

i=1

px(xi)
M∏

μ=1

pout

(
yμ|

N∑
i=1

Wμixi

)∏
μ,i

pW(Wμi). (B.8)

For the purpose of reasoning it may be sometimes necessary to get to the finest level of
decomposition, while sometimes the coarse grained level is sufficient.

While a statistical physicist may have never been introduced to the formal definitions of
graphical models, she inevitably already has drawn a few—for instance when considering the
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Figure 7. Left: directed graphical model for p(x , y , W ) without assumptions of factor-
izations for the channel and priors. Right: directed graphical model reflecting factoriza-
tion assumptions for p(x , y |W ).

Ising model. She also certainly found them useful to guide physical intuitions. The following
second form of graphical representation is probably newer to her.

Factor graph representations. Alternatively, high-dimensional joint distributions can be
represented with factor graphs, that are undirected bipartite graphs G = (V, F, E) with two sub-
sets of nodes. The variable nodes V representing the random variables as in the previous section
(circles in the representation) and the factor nodes F representing the interactions (squares in
the representation) associated with potentials. The edge (iμ) between a variable node i and a
factor node μ exists if the variable i participates in the interactionμ. We note ∂i the set of factor
nodes in which variable i is involved, they are the neighbors of i in G. Equivalently we note
∂μ the neighbors of factor μ in G, they carry the arguments {xi}i∈∂μ, shortened as x ∂μ, of the
potential ψμ. The overall distributions is recovered in the factorized form:

p(x ) =
1
Z

M∏
μ=1

ψμ(x ∂μ). (B.9)

Compared to an undirected graphical model, the cliques are represented by the introduction of
factor nodes.

Examples: the factor-graph representation of the RBM (i) is not much more informative
than the pairwise undirected graph (see figure 2a). For the feed forward neural networks (ii)
we draw the factor graph of p(y , x |W ) (see figure 2b).

Appendix C. Mean-field identity

We derive the exact identity (42) for fully connected Ising model with binary spins x ∈ {0, 1}N,

〈xi〉p =
1
Z

∑
x∈{0,1}N

xi exp

⎛⎝β
∑

j

b jx j +
1
2

∑
jk

W jkx jxk

⎞⎠

=
1
Z

∑
x \i∈{0,1}N−1

exp

⎛⎜⎜⎝β
∑
j�=i

b jx j +
1
2

∑
k �=i
j�=i

Wi jxix j

⎞⎟⎟⎠ ∑
xi∈{0,1}

xi e
βbixi+

∑
j

Wi jxix j

(C.1)
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where x \i is the vector of x without its ith component. Yet

σ

⎛⎝βbi +
∑
j∈∂i

βWi jx j

⎞⎠ =

∑
xi∈{0,1}

xi e
βbixi+

∑
j

Wi jxix j

∑
xi∈{0,1}

e
βbixi+

∑
j

Wi jxix j
, (C.2)

so that multiplying and dividing (C.1) by the denominator above we obtain the identity (42) in
section 4.1

〈xi〉p = 〈σ

⎛⎝βbi +
∑
j∈∂i

βWi jx j

⎞⎠〉p. (C.3)

Appendix D. Georges–Yedidia expansion for generalized Boltzmann
machines

We here present a derivation of the Georges–Yedidia for real-valued degrees of freedom on the
example of a Boltzmann machine as in [TGM+18]. Formally we consider x ∈ R

N governed
by the energy function and parametrized distribution

E(x ) = −
∑
(i j)

Wi jxix j −
1
β

N∑
i=1

log px(xi; θi), p(x ) =
1
Z e

β
2 x �W x

N∏
i=1

px(xi; θi),

(D.1)

where px(xi; θi) is an arbitrary prior distribution with parameter θi. For a Bernoulli prior with
parameter σ(βbi) we recover the measure of binary Boltzmann machines. However we choose
here a prior that does not depend on the temperature a priori. We now derive the expansion
for this general case following the outline discussed in section 4.2.1, and highlighting the
differences with the binary case.

Note that inference in the generalized fully connected Boltzmann machine is somehow
related to the symmetric rank-1 matrix factorization problem, which also features pairwise
interactions. Similarly, inference for the bi-partite RBM maps to the asymmetric rank-1 matrix
factorization. However, conversely to the Boltzmann inference, these factorizations are recon-
struction problems. The mean-field techniques, derived in [LKZ16, LKZ17], allow there to
compute the MMSE estimator of unknown signals from approximate marginals. Here we focus
on the evaluation of the free energy.

Minimization for fixed marginals. While fixing the value of the first moment is sufficient
for binary variables, more than one constraint is now needed in order to minimize the Gibbs
free energy at a given value of the marginals. In the same spirit of the AMP algorithm we
assume a Gaussian parametrization of the marginals. We note a the first moment of x and c
its variance. We wish to compute the constrained minimum over the distributions q on R

N

G(a , c ) = min
q

[
〈E(x )〉q − H(q)/β | 〈x 〉q = a , 〈x 2〉q = a 2 + c

]
, (D.2)

where the notation of squared vectors corresponds here and below to the vectors of squared
entries. It is equivalent to an unconstrained problem with Lagrange multipliers λ (a , c , β)
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and ξ (a , c , β)

G(a , c ) = min
q

[
〈E(x )〉q − H(q)/β − λ �(〈x 〉q − a )/β − ξ (〈x 2〉q − a 2 − c )/β

]
.

(D.3)

The terms depending on the distribution q in the functional to minimize above can be
interpreted as a Gibbs free energy for the effective energy functional

Ẽ(x ) = E(x ) − λ �x /β − ξ �x 2/β. (D.4)

The solution of the minimization problem (D.3) is therefore the corresponding Boltzmann
distribution

qa ,c (x ) =
e−βẼ(x )

Z̃
=

1

Z̃
e−βE(x )+λ (a ,c ,β)�x+ξ (a ,c ,β)�x 2

(D.5)

and the minimum G(a , c ) is

−βG(a , c ) = −λ�a − ξ �(a 2 + c ) + log
∫

dx e−βE(x )+λ�x+ξ �x 2

= log
∫

dx e−βE(x )+λ�(x−a )+ξ �(x 2−a 2−c ), (D.6)

where the Lagrange multipliers λ (a , c , β) and ξ (a , c , β) enforcing the constraints are still

implicit. Defining a functional G̃ for arbitrary vectors λ̃ ∈ R
N and ξ̃ ∈ R

N ,

−βG̃(a , c , λ̃ , ξ̃ ) = log
∫

dx e−βE(x )+λ̃�(x−a )+ξ̃ �(x 2−a 2−c ), (D.7)

we have

ai = 〈xi〉qa ,c ⇒ −β
∂G̃

∂λ̃i

∣∣∣∣∣
λ ,ξ

= 0, − β
∂2G̃

∂λ̃2
i

∣∣∣∣∣
λ ,ξ

= 〈x2
i 〉qa ,c − a2

i > 0, (D.8)

ci + a2
i = 〈x2

i 〉qa ,c ⇒ −β
∂G̃

∂ξ̃i

∣∣∣∣∣
λ ,ξ

= 0, − β
∂2G̃

∂ξ̃2
i

∣∣∣∣∣
λ ,ξ

= 〈(x2
i )2〉qa ,c − (ci + a2

i )2 > 0.

(D.9)

Hence the Lagrange multipliers are identified as minimizers of −βG̃ and

−βG(a , c ) = −βG̃(a , c ,λ (a , c , β), ξ (a , c , β)) = min
λ̃ ,ξ̃

− βG̃(a , c , λ̃ , ξ̃ ). (D.10)

The true free energy F = − log Z/β would eventually be recovered by minimizing the con-
strained minimum G(a , c ) with respect to its arguments. Nevertheless, the computation of G
and G̃ involves an integration over x ∈ R

N and remains intractable. The following step of the
Georges–Yedidia derivation consists in approximating these functionals by a Taylor expansion
at infinite temperature where interactions are neutralized.
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Expansion around β = 0. To perform the expansion we introduce the notation
A(β, a , c ) = −βG(a , c ). We also define the auxiliary operator

U(x ;β) = −1
2

x �W x +
1
2
〈x �W x 〉qa ,c −

N∑
i=1

∂λi

∂β
(xi − ai) −

N∑
i=1

∂ξi

∂β
(x2

i − a2
i − ci),

(D.11)

that allows to write concisely for any observable O the derivative of its average with respect to
β,

∂〈O(x ;β)〉qa ,c

∂β
=

〈
∂O(x ;β)

∂β

〉
qa ,c

− 〈U(x ;β)O(x ;β)〉qa ,c . (D.12)

To compute the derivatives of λ and ξ with respect to β we note that

∂A
∂ai

= −β
∂G̃
∂ai

= −λi(β, a , c ) − 2aiξi(β, a , c ), (D.13)

∂A
∂ci

= −β
∂G̃
∂ci

= −ξi(β, a , c ), (D.14)

where we used that ∂G̃/∂λ̃i = 0 and ∂G̃/∂ξ̃i = 0 when evaluated for λ (a , c , β) and
ξ (a , c , β). Consequently,

∂ξi

∂β
= − ∂

∂ci

∂A
∂β

,
∂λi

∂β
= − ∂

∂ai

∂A
∂β

+ 2ai
∂ξi

∂β
. (D.15)

We can now proceed to compute the first terms of the expansion that will be performed for the
functional A.

Zeroth order. Substituting β = 0 in the definition of A we have

A(0, a , c ) = −λ (0, a , c )�a − ξ (0, a , c )�(a 2 + c ) + log Z̃0(λ (0, a , c ), ξ (0, a , c )),

(D.16)

with

Z̃0(λ (0, a , c ), ξ (0, a , c )) =
∫

dx eλ (0,a ,c )�x+ξ (0,a ,c )�x 2
N∏

i=1

px(xi; θi) (D.17)

=

N∏
i=1

∫
dxi eλi(0,a ,c )xi+ξi(0,a ,c )x2

i px(xi; θi). (D.18)

At infinite temperature the interaction terms of the energy do not contribute so that the integral
in Z̃0 factorizes and can be evaluated numerically in the event that it does not have a closed-
form.
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First order. We compute the derivative of A with respect to β. We use again that λ (a , c , β)
and ξ (a , c , β) are stationary points of G̃ to write

∂A
∂β

= −β
∂G̃
∂β

=
∂

∂β

[
log

∫
dx e−βE(x )+λ (a ,c ,β)�(x−a )+ξ (a ,c ,β)�(x 2−a 2−c )

]
(D.19)

=

〈
∂

∂β
(−βE(x )) +

∂λ

∂β

�
(x − a ) +

∂ξ

∂β

�
(x 2 − a 2 − c )

〉
qa ,c

(D.20)

=
1
2
〈x �W x 〉qa ,c . (D.21)

At infinite temperature the average over the product of variables becomes a product of averages
so that we have

∂A
∂β

∣∣∣∣
β=0

=
1
2

a �W a =
∑
(i j)

Wi jaia j. (D.22)

Second order. Using the first order derivative of A we can compute the derivatives of the
Lagrange parameters (D.15) and the auxillary operator at infinite temperature,

∂ξi

∂β

∣∣∣∣
β=0

= 0,
∂λi

∂β

∣∣∣∣
β=0

= −
∑
j∈∂i

Wi ja j, U(x ; 0) = −
∑
(i j)

Wi j(xi − ai)(x j − a j).

The second order derivative is then easily computed at infinite temperature

∂2A
∂β2

∣∣∣∣
β=0

=
1
2

∂

∂β

(
〈x �W x 〉qa ,c

)∣∣∣∣
β=0

= −1
2
〈U(x ; 0)(x�W x )〉β=0

qa ,c
(D.23)

=
∑
(i j)

W2
i j〈(xi − ai)xi(x j − a j)〉β=0

qa ,c
=
∑
(i j)

W2
i jcic j. (D.24)

TAP free energy for the generalized Boltzmann machine. Stopping at the second order
of the systematic expansion, and gathering the different terms derived above we have

−βG(a , c ) = −λ (0, a , c )�a − ξ (0, a , c )�(a 2 + c ) + log Z̃0(λ (0, a , c ), ξ (0, a , c ))

+ β
∑
(i j)

Wi jaia j +
β2

2

∑
(i j)

W2
i jcic j, (D.25)

where the values of the parameters λ (0, a , c ) and ξ (0, a , c ) are implicitly defined through the
stationary conditions (D.8) and (D.9). The TAP approximation of the free energy also requires
to consider the stationary points of the expanded expression as a function of a and c .

This second condition yields the relations

−2ξi(0, a , c ) = −β2
∑
j∈∂i

W2
i jc j = Ai (D.26)

λi(0, a , c ) = Aiai + β
∑
j∈∂i

Wi ja j = Bi (D.27)
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where we define new variables Ai and Bi. While the extremization with respect to the Lagrange
multipliers gives

ai =
1
Zx

i

∫
dxi xi px(xi; θi)e

− Ai
2 x2

i +Bixi = f x
1 (Bi, Ai; θi), (D.28)

ci =
1
Zx

i

∫
dxi x2

i px(xi; θi)e−
Ai
2 x2

i +Bixi − a2
i = f x

2 (Bi, Ai; θi), (D.29)

where we introduce update functions f x
1 and f x

2 with respect to the partition function

Zx
i (Bi, Ai; θi) =

∫
dxi px(xi; θi)e−

Ai
2 x2

i +Bixi . (D.30)

Finally we can rewrite the TAP free energy as

−βG(a , c ) = −B �a + A �(a 2 + c )/2 +

N∑
i=1

log Z̃i
x(Bi, Ai; θi) + β

∑
(i j)

Wi jaia j +
β2

2

∑
(i j)

W2
i jcic j,

(D.31)

with the values of the parameters set by the self-consistency conditions (D.26)–(D.29), which
are the TAP equations of the generalized Boltzmann machine at second order. Note that the
naive mean-field equations are recovered by ignoring the second order terms in β2.

Relation to message passing. The TAP equations obtained above must correspond to the
fixed points of the approximate message passing (AMP) following the derivation from belief
propagation (BP) that is presented in section 4.3.3. In the appendix B of [TGM+18] the relaxed-
BP equations are derived for the generalized Boltzmann machine:

B(t)
i→j =

∑
k∈∂i\ j

βWika(t)
k→i, A(t)

i→j = −
∑

k∈∂i\ j

β2W2
ikc(t)

k→i, (D.32)

a(t)
i→j = f x

1 (B(t−1)
i→j , A(t−1)

i→j ; θi), c(t)
i→j = f x

2 (B(t−1)
i→j , A(t−1)

i→j ; θi). (D.33)

To recover the TAP equations for them we define

B(t)
i =

∑
k∈∂i

βWika(t)
k→i, A(t)

i = −
∑
k∈∂i

β2W2
ikc(t)

k→i, (D.34)

a(t)
i = f x

1 (B(t−1)
i , A(t−1)

i ; θi), c(t)
i = f x

2 (B(t−1)
i , A(t−1)

i ; θi). (D.35)

As B(t)
i = B(t)

i→j + βWi ja
(t)
j→i and A(t)

i = A(t)
i→j − β2W2

i jc
(t)
j→i we have by developing f x

2 that

c(t)
i = c(t)

i→j + O(β) so that

A(t)
i = −β2

∑
j∈∂i

W2
i jc

(t)
j + o(β2). (D.36)

By developing f x
1 we also have

a(t)
k = f x

1 (B(t−1)
k→j + βWk ja

(t−1)
j→i , A(t−1)

k→j − β2W2
k jc

(t−1)
j→k ; θi) (D.37)

= a(t)
k→j +

∂ f x
1

∂Bk
βWk ja

(t−1)
j→k + O(β2), (D.38)
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with
∂ f x

1
∂Bk

(B(t−1)
k , A(t−1)

k ; θk) = c(t)
k . Finally, by replacing in the definition of Bi the messages we

obtain

B(t)
i =

∑
k∈∂i

βWika(t)
k→i =

∑
k∈∂i

βWika(t)
k − βWkic

(t)
k a(t−1)

i→k . (D.39)

As a(t−1)
i→k = a(t−1)

i + O(β) and using the definition of A(t)
i , we finally recover

B(t)
i =

∑
k∈∂i

βWika(t)
k + A(t)

i a(t−1)
i . (D.40)

Hence we indeed recover the TAP equations as the AMP fixed points in (D.35), (D.36)
and (D.40). Beyond the possibility to cross-check our results, the message passing deriva-
tion also specifies a scheme of updates to solve the self-consistency equations obtained by the
Georges–Yedidia expansion. In the applications we consider below we should resort to this
time indexing with good convergence properties [Bol14].

Solutions of the TAP equations. As already discussed in section 4.2, the TAP equations
do not necessarily admit a single solution. In practice, different fixed points are reached when
considering different initializations of the iteration of the self-consistent equations.

Appendix E. Vector approximate message passing for the GLM

We recall here a possible derivation of G-VAMP discussed in section 4 (algorithm 2). We
consider a projection of the BP equations for the factor graph figure 8.

Gaussian assumptions. We start by parametrizing marginals as well as messages coming
out of the Dirac factors. For a = 1, 2:

mx,(a)(x
(a)) = N (x (a), x̂ (a), Cx (a)), mz,(a)(z

(a)) = N (z (a), ẑ (a), C z(a)), (E.1)

and

m̃ψx→x (a) (x (a)) ∝ e−
1
2 x (a)�A (a)

x x (a)+B (a)
x

�
x (a)

, (E.2)

m̃ψz→z (a) (z (a)) ∝ e−
1
2 z (a)�A (a)

z z (a)+B (a)
z

�
z (a)

. (E.3)

Self consistency of the parametrizations at Dirac factor nodes. Around ψx the message
passing equations are simply

m̃ψx→x (2) (x (2)) = mx (1)→ψx
(x (2)), m̃ψx→x (1) (x (1)) = mx (2)→ψx

(x (1)) (E.4)

and similarly around ψz. Moreover, considering that messages are marginals to which the
contribution of the opposite message is retrieved we have

mx (1)→ψx
(x (1)) ∝ mx,(1)(x (1))/m̃ψx→x (1) (x (1)), (E.5)

mx (2)→ψx
(x (2)) ∝ mx,(2)(x (2))/m̃ψx→x (2) (x (2)). (E.6)

Combining this observation along with (E.4) leads to updates (135) and (139). The same
reasoning can be followed for the messages around ψz leading to updates (137) and (141).
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Figure 8. Factor graph representation of the GLM for the derivation of VAMP (repro-
duction of figure 5 to help following the derivation described here in the appendix).

Input and output update functions. The update functions of means and variances of the
marginals are deduced from the parametrized message passing. For the variable x (1) taking into
account the prior px, the updates are very similar to GAMP input functions:

x̂ (1) ∝
∫

d x (1) x (1) px(x (1))m̃ψx→x (1) (x (1)) (E.7)

=
1

Z (1)
x

∫
d x (1) x (1) px(x (1))e−

1
2 x (1)�A (1)

x x (1)+B (1)
x

�
x (1)

= f x
1 (B (1)

x , A (1)
x ), (E.8)

Cx (1) =
1

Z (1)
x

∫
d x (1) x (1)x (1)�px(x (1))e−

1
2 x (1)�A (1)

x x (1)+B (1)
x

�
x (1) − f x

1 (B (1)
x , A (1)

x ) f x
1 (B (1)

x , A (1)
x )�

(E.9)

= f x
2 (B (1)

x , A (1)
x ), (E.10)

where Z (1)
x is as usual the partition ensuring the normalization.

Similarly for the variable z (1), the update functions are very similar to the GAMP output
functions including the information coming from the observations:

ẑ (1) ∝
∫

dz (1) pout(y |z (1))m̃ψz→z (1) (z (1)) (E.11)

=
1

Z (1)
z

∫
dz (1) pout(y |z (1))e−

1
2 z (1)�A (1)

z z (1)+B (1)
z

�
z (1)

= f z
1 (B (1)

z , A (1)
z ), (E.12)

C z(1) =
1

Z (1)
z

∫
dz (1) z (1)z (1)�pout(y |z (1))e−

1
2 z (1)�A (1)

z z (1)+B (1)
z

�
z (1) − f z

1 (B (1)
z , A (1)

z ) f z
1 (B (1)

z , A (1)
z )�

(E.13)

= f z
2 (B (1)

z , A (1)
z ). (E.14)

Linear transformation. For the middle factor node we consider the vector variable con-
catenating x̄ = [x (2)z (2)] ∈ R

N+M . The computation of the corresponding marginal with the
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message passing then yields

mx̄ (x̄ ) ∝ lim
Δ→0

N (z (2); W x (2),ΔI M)e−
1
2 x �A (2)

x x+B (2)
x

�
x e−

1
2 z�A (2)

z z+B (2)
z

�
z . (E.15)

The means of x (2) and z (2) are then updated through

x̂ (2), ẑ (2) = arg min
x ,z

[
‖W x − z ‖2/Δ+ x �A (2)

x x − 2B (2)
x

�
x + z �A (2)

z z − 2B (2)
z

�
z
]

,

(E.16)

at Δ→ 0. At this point it is advantageous in terms of speed to consider the singular value
decomposition W = U S V � and to simplify the form of the variance matrices by taking them
proportional to the identify, i.e. A (2)

z = A(2)
z I M etc. Under this assumption the solution of the

minimization problem is

x̂ (2) = gx
1(B (2)

x , A(2)
x , B (2)

z , A(2)
z ) = V D

(
A(2)

z
−2

SU �B (2)
z + A(2)

x
−2

V �B (2)
x

)
,

(E.17)

ẑ(2) = gz
1(B (2)

x , A(2)
x , B (2)

z , A(2)
z ) = W gx

1(B (2)
x , A(2)

x , B (2)
z , A(2)

z ), (E.18)

with D a diagonal matrix with entries Dii = (A(2)
z

−1
S2

ii + A(2)
x

−1
)−1. The scalar variances are

then updated using the traces of the Jacobians with respect to the B (2)–s

Cx (2) =
A(2)

x

N
tr
(
∂gx

2/∂B (2)
x

)
I N =

1
N

N∑
i=1

(A(2)
z

−1
S2

ii + A(2)
x

−1
)−1I N (E.19)

= gx
2(B (2)

x , A(2)
x , B (2)

z , A(2)
z ) (E.20)

C z(2) =
A(2)

z

M
tr
(
∂gz

2/∂B (2)
z

)
I M =

1
M

N∑
i=1

Sii(A
(2)
z

−1
S2

ii + A(2)
z

−1
)−1I M (E.21)

= gz
2(B (2)

x , A(2)
x , B (2)

z , A(2)
z ). (E.22)

Appendix F. Multi-value AMP derivation for the GLM

We here present the derivation of the multi-value AMP and its SE motivated in section 5.3,
focusing on the multi-value GLM. These derivations also appear in [GBKZ19].

F.1. Approximate message passing

The systematic procedure to write AMP for a given joint probability distribution consists in
first writing BP on the factor graph, second project the messages on a parametrized family of
functions to obtain the corresponding relaxed-BP and third close the equations on a reduced
set of parameters by keeping only leading terms in the thermodynamic limit.

For the generic multi-value GLM the posterior measure we are interested in is

p(X |Y , W ) =
1

Z(Y , W )

N∏
i=1

p(x i)
M∏

μ=1

pout(y μ|w �
μ X /

√
N), x i ∈ R

P, y μ ∈ R
P. (F.1)
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Figure 9. Factor graph of the generalized linear model (GLM) on vector variables
corresponding to the joint distribution (248).

where the known entries of matrix W are drawn i.i.d. from a standard normal distribution (the

scaling in 1/
√

N is here made explicit). The corresponding factor graph is given on figure 9. We
are considering the simultaneous reconstruction of P signals x 0,(k) ∈ R

N and therefore write
the message passing on the variables x i ∈ R

P. The major difference with the scalar version
(P = 1) of AMP is that we will consider covariance matrices between variables coming from
the P observations instead of scalar variances.

Belief propagation (BP). We start with BP on the factor graph of figure 9. For all pairs of
index i–μ, we define the update equations of messages function

m̃(t)
μ→i(x i) =

1
Zμ→i

∫ ∏
i′ �=i

dx i′ pout

(
y
μ
|
∑

j

Wμ j√
N

x j

)∏
i′ �=i

m(t)
i′→μ(x i′ ) (F.2)

m(t+1)
i→μ (x i) =

1
Zi→μ

px(x i)
∏
μ′ �=μ

m̃(t)
μ′→i(x i), (F.3)

whereZμ→i andZi→μ are normalization function that allow to interpret messages as probability
distributions. To improve readability, we drop the time indices in the following derivation, and
only specify them in the final algorithm.

Relaxed BP (r-BP). The second step of the derivation is to develop messages keeping only
terms up to order O(1/N) as we take the thermodynamic limit N →+∞ (at fixed α = M/N).
At this order, we will find that it is consistent to consider the messages to be approximately
Gaussian, i.e. characterized by their means and co-variances. Thus we define

x̂ i→μ =

∫
dx x mi→μ(x ) (F.4)

Cx
i→μ =

∫
dx xx T mi→μ(x ) − x̂ i→μx̂ �

i→μ (F.5)

58



J. Phys. A: Math. Theor. 53 (2020) 223002 Topical Review

and

ω μ→i =
∑
i′ �=i

Wμi′√
N

x̂ i′→μ (F.6)

V μ→i =
∑
i′ �=i

W2
μi′

N
Cx

i′→μ, (F.7)

where ω μ→i and V μ→i are related to the intermediate variable z μ = w �
μ X .

Expansion of m̃μ→i. We defined the Fourier transform p̂out of pout(y μ|z μ) with respect to its
argument z μ = w �

μ X ,

p̂out(y μ|ξ μ) =
∫

dz μ p̂out(y μ|z μ) e−iξ �
μ z μ . (F.8)

Using reciprocally the Fourier representation of pout(y μ|z μ),

pout(y μ|z μ) =
1

(2π)M

∫
dξ μ p̂out(y μ|ξ μ) eiξ �

μ z μ , (F.9)

we decouple the integrals over the different x i′ in (F.2),

m̃μ→i(x i) ∝
∫

dξ μ p̂out

(
y μ|ξ μ

)
e

i
Wμi√

N
ξ �
μ x i

∏
i′ �=i

∫
dx i′ mi′→μ(x i′)e

i
W
μi′√
N

x iξ
�
μ x i′

(F.10)

∝
∫

dξ μ p̂out
(
y μ|ξ μ

)
e

iξ �
(

Wμi√
N

x i+ω μ→i

)
− 1

2 ξ
�V −1

μ→iξ (F.11)

where developing the exponentials of the product in (F.2) allows to express the integrals over
the x i′ as a function of the definitions (F.6) and (F.7), before re-exponentiating to obtain the
final result (F.11). Now reversing the Fourier transform and performing the integral over ξ we
can further rewrite

m̃μ→i(x i) ∝
∫

dz μ pout
(
y μ|z μ

)
e
− 1

2

(
z μ−

Wμi√
N

x i−ω μ→i

)�
V −1

μ→i

(
z μ−

Wμi√
N

x i−ω μ→i

)

(F.12)

∝
∫

dz μ Pout(z μ;ω μ→i, V μ→i)e
(z μ−ω μ→i)�V −1

μ→i
Wμi√

N
x i−

W2
μi

2N x �
i V −1

μ→ix i ,

(F.13)

where we are led to introduce the output update functions,

Pout(z μ;ω μ→i, V μ→i) = pout
(
y μ|z μ

)
N (z μ;ω μ→i, V μ→i), (F.14)

Zout(y μ,ω μ→i, V μ→i) =
∫

dzμ pout
(
y μ|z μ

)
N (z μ;ω μ→i, V μ→i), (F.15)

gout (y μ,ω μ→i, V μ→i) =
1

Zout

∂Zout

∂ω
and ∂ω gout =

∂gout

∂ω
, (F.16)
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where N (z ;ω , V ) is the multivariate Gaussian distribution of mean ω and covariance V .
Further expanding the exponential in (F.13) up to order O(1/N) leads to the Gaussian
parametrization

m̃μ→i(x i) ∝ 1 +
Wμi√

N
gout x i +

Wμi
2

2N
x i

T(gout gout
T + ∂ω gout

1)x i (F.17)

∝ eB μ→i
Tx i− 1

2 x i
TA μ→ix i , (F.18)

with

B μ→i =
Wμi√

N
gout (y μ,ω μ→i, V μ→i) (F.19)

A μ→i = −Wμi
2

N
∂ω gout (y μ,ω μ→i, V μ→i). (F.20)

Consistency with mi→μ. Inserting the Gaussian approximation of m̃μ→i in the definition of
mi→μ, we get the parametrization

mi→μ(x i) ∝ px(x i)
∏
μ′ �=μ

eB μ′→i
T x i− 1

2 x i
T A μ′→ix i ∝ px(x i)e

− 1
2 (x i−λ i→μ)Tσ −1

i→μ(x i−λ i→μ)

(F.21)

with

λ i→μ = σ i→μ

⎛⎝∑
μ′ �=μ

B μ′→i

⎞⎠ (F.22)

σ i→μ =

⎛⎝∑
μ′ �=μ

A μ′→i

⎞⎠−1

. (F.23)

Closing the equations. Ensuring the consistency with the definitions (F.4) and (F.5) of
mean and covariance of mi→μ we finally close our set of equations by defining the input update
functions,

Zx =

∫
dx px(x )e−

1
2 (x−λ )�σ−1(x−λ ) (F.24)

f x
1(λ , σ ) =

1
Zx

∫
dx x px(x )e−

1
2 (x−λ )�σ −1(x−λ ) (F.25)

f x
2(λ , σ ) =

1
Zx

∫
dx x x � px(x )e−

1
2 (x−λ )�σ −1(x−λ ) − f x

1(λ , σ ) f x
1(λ , σ )�,

(F.26)

so that

x̂ i→μ = f x
1(λ i→μ, σ i→μ) (F.27)

Cx
i→μ = f x

2(λ i→μ, σ i→μ). (F.28)
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The closed set of equations (F.6), (F.7), (F.18), (F.19), (F.21), (F.22), (F.26) and (F.27), with
restored time indices, defines the r-BP algorithm. At convergence of the iterations, we obtain
the approximated marginals

mi(x i) =
1
Zi

px(x i)e
− 1

2 (x−λ i)
�σ −1

i (x−λ i) (F.29)

with

λ i = σ i

(
M∑

μ=1

B μ→i

)
(F.30)

σ i =

(
M∑
μ

A μ→i

)−1

. (F.31)

As usual, while BP requires to follow iterations over M × N message distributions over
vectors in R

P, r-BP only requires to track O(M × N × P) variables, which is a great simplifica-
tion. Nonetheless, r-BP can be further reduced to the more practical GAMP algorithm, given
the scaling of the weights in O(1/

√
N).

Approximate message passing. We define parametersω μ, V μ and x̂ i, Cx
i, likewise λ i and

σ i defined above and consider their relations to the original λ i→μ, σ i→μ, ω μ→i, V μ→i, x̂ i→μ and
Cx

i→μ. As a result we obtain the vectorized AMP for the GLM presented in algorithm 3. Note
that, similarly to GAMP, relaxing the Gaussian assumption on the weight matrix entries to
any distribution with finite second moment yields the same algorithm using the Central Limit
Theorem.

F.2. State Evolution

We consider the limit N →+∞ at fixed α = M/N and a quenched average over the disorder
(here the realizations of X 0, s0, Y and W ), to derive a state evolution analysis of the previously
derived AMP. To this end, our starting point will be the r-BP equations.

F.2.1. State evolution derivation in mismatched prior and channel setting. Definition of the
overlaps. The important quantities to follow the dynamic of iterations and fixed points of AMP
are the overlaps. Here, they are the P × P matrices

q =
1
N

N∑
i=1

x̂ ix̂
T
i , m =

1
N

N∑
i=1

x̂ ix 0,i
T, q 0 =

1
N

N∑
i=1

x 0,ix 0,i
T. (F.32)

Output parameters. Under independent statistics of the entries of W and under the
assumption of independent incoming messages, the variable ω μ→i defined in (F.6) is a sum
of independent variables and follows a Gaussian distribution by the central limit theorem. Its
first and second moments are

EW

[
ω μ→i

]
=

1√
N

∑
i′ �=i

EW

[
Wμi′

]
x̂ i′→μ = 0, (F.33)
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EW

[
ω μ→iω

T
μ→i

]
=

1
N

∑
i′ �=i

∑
i′′ �=i

EW

[
Wμi′′Wμi′

]
x̂ i′′→μx̂ T

i′→μ (F.34)

=
1
N

∑
i′ �=i

EW

[
W2

μi′
]

x̂ i′→μx̂ T
i′→μ =

1
N

N∑
i′=1

x̂ i′→μx̂ T
i′→μ + O

(
1/N

)

=
1
N

N∑
i=1

x̂ i′ x̂
T
i′ − ∂λ f x

1σ iBμ→ix̂
T
i −

(
∂λ f x

1σ iBμ→ix̂
T
i

)T
+ O

(
1/N

)
=

1
N

N∑
i′=1

x̂ i′ x̂
T
′i + O

(
1/

√
N
)

(F.35)

where we used the facts that the Wμi–s are independent with zero mean, and that Bμ→i, defined

in (F.18), is of order O(1/
√

N). Similarly, the variable z μ→i =
∑

i′ �=i
Wμi′√

N
x i′ is Gaussian with

first and second moments

EW

[
z μ→i

]
=

1√
N

∑
i′ �=i

EW

[
Wμi′

]
x 0,i′ = 0, (F.36)

EW

[
z μ→iz

T
μ→i

]
=

1
N

N∑
i′=1

x 0,i′x 0,i′
T + O

(
1/

√
N
)
. (F.37)

Furthermore, their covariance is

EW

[
z μ→iω

T
μ→i

]
=

1
N

∑
i′ �=i

EW

[
W2

μi′
]

x 0,i′ x̂
T
i′→μ =

1
N

N∑
i′=1

x 0,i′ x̂
T
i′→μ + O

(
1/N

)
(F.38)

=
1
N

N∑
i′=1

x 0,i′ x̂
T
i′ − x 0,i∂λ f x

1σ iB
T
μ→i + O

(
1/N

)
(F.39)

=
1
N

N∑
i′=1

x 0,i′ x̂
T
i′ + O

(
1/

√
N
)
. (F.40)

Hence we find that for all μ–s and all i–s, ω μ→i and z μ→i are approximately jointly Gaussian

in the thermodynamic limit following a unique distribution N
(

z μ→i,ω μ→i; 0 , Q
)

with the

block covariance matrix

Q =

⎡⎣ q 0 m

m � q

⎤⎦ . (F.41)

For the variance message V μ→i, defined in (F.7), we have

EW

[
V μ→i

]
=
∑
i′ �=i

EW

[
Wμi′

N

2]
Cx

i′→μ =

N∑
i′=1

1
N

Cx
i′→μ + O

(
1/N

)
(F.42)

=

N∑
i′=1

1
N

Cx
i′ + O

(
1/

√
N
)

, (F.43)
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where using the developments of λ i→μ and σ i→μ (F.21) and (F.22), along with the scaling of

B μ→i in O(1/
√

N) we replaced

Cx
i→μ = f x

2(λ i→μ, σ i→μ) = f x
2(λ i, σ i) − ∂λ f x

2σ iB
T
μ→i = f x

2(λ i, σ i) + O
(

1/
√

N
)
.

(F.44)

Futhermore, we can check that

lim
N→+∞

EW

[
V 2

μ→i − EW

[
V μ→i

]2
]
= 0, (F.45)

meaning that all V μ→i concentrate on their identical mean in the thermodynamic limit, which
we note

V =

N∑
i=1

1
N

Cx
i. (F.46)

Input parameters. Here we use the re-parametrization trick to express y μ as a function
g0(·) taking a noise ε μ ∼ pε(ε μ) as inputs: y μ = g0(w �

μ X 0, ε μ). Following (F.19), (F.18) and
(F.28),

σ −1
i λ i =

M∑
μ=1

Wμi√
N

gout

(
y μ,ω μ→i, V μ→i

)
(F.47)

=

M∑
μ=1

Wμi√
N

gout

⎛⎝g0

⎛⎝∑
i′ �=i

Wμi′√
N

x 0,i′ +
Wμi√

N
x 0,i, ε μ

⎞⎠ ,ω μ→i, V μ→i

⎞⎠ (F.48)

=
M∑

μ=1

Wμi√
N

gout

⎛⎝g0

⎛⎝∑
i′ �=i

Wμi′√
N

x 0,i′ , ε μ

⎞⎠ ,ω μ→i, V μ→i

⎞⎠
+

M∑
μ=1

W2
μi

N
∂zgout

(
g0
(
z μ→i, ε μ

)
,ω μ→i, V μ→i

)
x 0,i. (F.49)

The first term is again a sum of independent random variables, given the Wμi are i.i.d. with zero
mean, of which the messages of typeμ→ i are assumed independent. The second term has non-
zero mean and can be shown to concentrate. Finally recalling that all V μ→i also concentrate on
V we obtain the distribution

σ −1
i λ i ∼ N

(
σ −1

i λ i; αm̂ x 0,i,
√
αq̂ IP

)
(F.50)

with

q̂ =

∫
dε pε(ε )ds0 ps0 (s0)

∫
dω dz N (z ,ω ; 0 , Q )gout (g0

(
z , ε

)
,ω , V )gout (g0

(
z , ε

)
,ω , V )T,

(F.51)
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m̂ =

∫
dε pε(ε )ds0 ps0 (s0)

∫
dω dz N (z ,ω ; 0 , Q )∂z gout (g0

(
z , ε

)
,ω , V ). (F.52)

For the inverse variance σ −1
i one can check again that it concentrates on its mean

σ −1
i =

M∑
μ=1

Wμi
2

N
∂ω gout (y μ,ω μ→i, V μ→i) � αχ̂ , (F.53)

χ̂ = −
∫

dε pε(ε )ds0 ps0 (s0)
∫

dε dz N (z ,ω ; 0 , Q )∂ωgout (g0
(
z , ε

)
,ω , V ).

(F.54)

Closing the equations. These statistics of the input parameters must ensure that consistently

V =
1
N

N∑
i=1

Cx
i = Eλ ,σ

[
f x

2(λ , σ )
]

, (F.55)

q =
1
N

N∑
i=1

x̂ ix̂
�
i = Eλ ,σ

[
f x

1(λ , σ ) f x
1(λ , σ )�

]
, (F.56)

m =
1
N

N∑
i=1

x̂ ix 0,i
� = Eλ ,σ

[
f x

1(λ , σ )x 0,i
�
]

, (F.57)

which gives upon expressing the computation of the expectations

V =

∫
dx 0 px0 (x 0)

∫
Dξ f x

2

(
(αχ̂ )−1

(√
αq̂ ξ + αm̂ x 0

)
; (αχ̂ )−1

)
,

(F.58)

m =

∫
dx 0 px0 (x 0)

∫
Dξ f x

1

(
(αχ̂ )−1

(√
αq̂ ξ + αm̂ x 0

)
; (αχ̂ )−1

)
x 0

�,

(F.59)

q =

∫
dx 0 px0 (x 0)

∫
Dξ f x

1

(
(αχ̂ )−1

(√
αq̂ ξ + αm̂ x 0

)
; (αχ̂ )−1

)
× f x

1

(
(αχ̂ )−1

(√
αq̂ ξ + αm̂ x 0

)
; (αχ̂ )−1

)�
.

(F.60)

The state evolution analysis of the GLM on the vector variables finally consists in iterating
alternatively the equations (F.50), (F.51), (F.53), and the equations (F.57), (F.58) (F.59) until
convergence.

Performance analysis. The mean squared error (MSE) on the reconstruction of X by the
AMP algorithm is then predicted by

MSE(X ) = q − 2m + q0, (F.61)
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where the scalar values used here correspond to the (unique) value of the diagonal elements
of the corresponding overlap matrices. This MSE can be computed throughout the itera-
tions of state evolution. Remarkably, the state evolution MSEs follow precisely the MSE
of the cal-AMP predictors along the iterations of the algorithm provided the procedures
are initialized consistently. A random initialization of x̂ i in cal-AMP corresponds to an ini-
tialization of zero overlap m = 0, ν = 0, with variance of the priors q = q0 in the state
evolution.

F.2.2. Bayes optimal state evolution. The SE equations can be greatly simplified in the Bayes
optimal setting where the statistical model used by the student (priors px and ps, and channel
pout) is known to match the teacher. In this case, the true unknown signal X 0 is in some sense sta-

tistically equivalent to the estimate X̂ coming from the posterior. More precisely one can prove
the Nishimori identities [Iba99, Nis01, OH91] (or [KKM+16] for a concise demonstration and
discussion) implying that

q = m , V = q 0 − m , q̂ = m̂ = χ̂ and r = ν. (F.62)

As a result the state evolution reduces to a set of two equations

m =

∫
dx 0 px0 (x 0)

∫
Dξ f x

1

(
(αm̂ )−1

(√
αm̂ ξ + αm̂ x 0

)
; (αm̂ )−1

)
x 0

�,

(F.63)

m̂ =

∫
dε pε(ε )ds0 ps0 (s0)

∫
dω dz N (z ,ω ; 0 , Q )gout

(
g0
(
z , ε

)
,ω , q 0 − m )

)
×gout

(
g0
(
z , ε

)
,ω , q 0 − m )

)
,

(F.64)

with the block covariance matrix

Q =

[
q 0 m

m � m

]
. (F.65)
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