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Abstract
We consider an empirical Bayes method for Boltzmann machines and propose 
an algorithm for it. The empirical Bayes method allows for estimation of the 
values of the hyperparameters of the Boltzmann machine by maximizing 
a specific likelihood function referred to as the empirical Bayes likelihood 
function in this study. However, the maximization is computationally 
hard because the empirical Bayes likelihood function involves intractable 
integrations of the partition function. The proposed algorithm avoids this 
computational problem by using the replica method and the Plefka expansion. 
Our method is quite simple and fast because it does not require any iterative 
procedures and gives reasonable estimates at a certain condition. However, 
our method introduces a bias to the estimate, which exhibits an unnatural 
behavior with respect to the size of the dataset. This peculiar behavior is 
supposed to be due to the approximate treatment by the Plefka expansion. A 
possible extension to overcome this behavior is also discussed.

Keywords: Boltzmann machine, inverse Ising problem, empirical Bayes 
method, replica method, Plefka expansion

1.  Introduction

Boltzmann machine learning (BML) [1] has been actively studied in the field of machine 
learning and also in statistical mechanics. In statistical mechanics, the problem of BML is 
sometimes referred to as the inverse Ising problem, because a Boltzmann machine is the same 
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as an Ising model, and BML can be regarded as an inverse problem for the Ising model. The 
framework of the usual BML is as follows. Given a set of observed data points (e.g. spin 
snapshots), we estimate appropriate values of the parameters, the external field and couplings, 
of our Boltzmann machine through maximum likelihood (ML) estimation (see section 2.1). 
Because BML involves intractable multiple summations (i.e. evaluation of the partition func-
tion), many approximations for it were proposed from the viewpoint of statistical mechanics 
[2]: for example, methods based on mean-field approximations (such as the Plefka expansion 
[3] and the cluster variation method [4]) [5–11] and methods based on other approximations 
[12, 13].

In this study, we focus on another type of learning problem. We consider prior distribu-
tions of parameters of the Boltzmann machine and assume that the prior distributions are 
governed by some hyperparameters. The introduction of the prior distributions is strongly 
connected with the regularized ML estimation, in which the hyperparameters can be regarded 
as regularization coefficients (see section 2.1). The regularized ML estimation is important in 
preventing over-fitting to the dataset. In particular, the over-fitting problem becomes serious 
for small datasets. As mentioned above, the aim of the usual BML is to optimize the values of 
the parameters of the Boltzmann machine by using a set of observed data points. Meanwhile, 
the aim of the problem investigated in this study is the estimation of appropriate values of the 
hyperparameters from the dataset without estimating specific values of the parameters. One 
way to allow us to accomplish this from the Bayesian point of view is the empirical Bayes 
method (or also called type-II ML estimation or evidence approximation) [14, 15] (see sec-
tion 2.2). The schemes of the usual BML and of our problem are illustrated in figure 1.

However, the evaluation of the likelihood function in the empirical Bayes method is again 
intractable, because it involves intractable multiple integrations of the partition function. In 
this study, we analyze the empirical Bayes method for fully-connected Boltzmann machines, 
using statistical mechanical techniques based on the replica method [16, 17] and the Plefka 
expansion to derive an algorithm for it. We consider two types of cases of the prior distribution 
of J : the cases of Gaussian and Laplace priors.

The rest of this paper is organized as follows. The formulations of the usual BML and 
the empirical Bayes method are presented in section 2. In section 3, we describe our statisti-
cal mechanical analysis for the empirical Bayes method. The proposed inference algorithm 
obtained from our analysis is shown in section 3.3 with its pseudocode. In section 4, we exam-
ine our proposed method through numerical experiments. Finally, the summary and some 
discussions are presented in section 5.

Figure 1.  Illustration of scheme of empirical Bayes method considered in this study.
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2.  Boltzmann machine and empirical Bayes method

2.1.  Boltzmann machine and prior distributions

Consider a fully-connected Boltzmann machine with n Ising variables S := {Si ∈ {−1,+1} |
i = 1, 2, . . . , n} [1]:

P(S | h, J) :=
1

Z(h, J)
exp

(
h

n∑
i=1

Si +
∑
i<j

JijSiSj

)
,� (1)

where 
∑

i<j is the sum over all the distinct pairs of variables; i.e. 
∑

i<j =
∑n

i=1
∑n

j=i+1. 
Z(h, J) is the partition function defined by

Z(h, J) :=
∑

S

exp
(

h
n∑

i=1

Si +
∑
i<j

JijSiSj

)
,

where 
∑

S is the sum over all the possible configurations of S; i.e. 
∑

S :=
∏n

i=1
∑

Si=±1. The 
parameters, h ∈ (−∞,+∞) and J := {Jij ∈ (−∞,+∞) | i < j}, denote the external field 
and couplings, respectively.

Given N observed data points, D := {S(µ) ∈ {−1,+1}n | µ = 1, 2, . . . , N}, we define the 
log-likelihood function:

LML(h, J) :=
1

nN

N∑
µ=1

lnP(S(µ) | h, J).� (2)

Maximizing the log-likelihood function with respect to h and J  (i.e. the ML estimation) just 
corresponds to the BML (or the inverse Ising problem), i.e.

{ĥML, ĴML} = argmax
h,J

LML(h, J).� (3)

Now, we introduce prior distributions for the parameters h and J  as Pprior(h | H) and

Pprior(J | γ) :=
∏
i<j

Pprior(Jij | γ),� (4)

respectively. H and γ  are the hyperparameters of these prior distributions. One of the most 
important motivations for introducing the prior distributions is for a Bayesian interpretation of 
the regularized ML estimation [15]. Given the observed dataset D, by using the prior distribu-
tions, the posterior distribution of h and J  is expressed as

Ppost(h, J | D, H, γ) =
P(D | h, J)Pprior(h | H)Pprior(J | γ)

P(D | H, γ)
,� (5)

where

P(D | h, J) :=
N∏

µ=1

P(S(µ) | h, J).

The distribution in the denominator in equation (5), P(D | H, γ), is sometimes referred to as 
the evidence. By using the posterior distribution, the maximum a posteriori (MAP) estimation 
of the parameters is obtained as
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{ĥMAP, ĴMAP} = argmax
h,J

LMAP(h, J),� (6)

where

LMAP(h, J) :=
1

nN
lnPpost(h, J | D, H, γ)

= LML(h, J) +
1

nN
R0(h) +

1
nN

R1(J) + constant.
� (7)

The MAP estimation in equation (6) corresponds to the regularized ML estimation, in which 
R0(h) := lnPprior(h | H) and R1(J) := lnPprior(J | γ) work as penalty terms. For example, (i) 
when the prior distribution of J  is the Gaussian prior,

Pprior(Jij | γ) =
√

n
2πγ

exp
(
−

nJ2
ij

2γ

)
, γ > 0,� (8)

R1(J) corresponds to the L2 regularization term, and γ  corresponds to its coefficient; (ii) when 
the prior distribution of J  is the Laplace prior,

Pprior(Jij | γ) =
√

n
2γ

exp
(
−

√
2n
γ
|Jij|

)
, γ > 0� (9)

R1(J) corresponds to the L1 regularization term, and γ  again corresponds to its coefficient. 
The variances of these prior distributions are identical, Var[Jij] = γ/n. In this study, as a sim-
ple test case, we use these two prior distributions for J  and

Pprior(h | H) = δ(h − H),� (10)

where δ(x) is the Dirac delta function, for h.

2.2.  Framework of the empirical Bayes method

Using the empirical Bayes method, we can infer the values of the hyperparameters, H and γ , 
from the observed dataset D. We define a marginal log-likelihood function as

LEB(H, γ) :=
1

nN
ln
[
P(D | h, J)

]
h,J,� (11)

where [· · · ]h,J is the average over the prior distributions; i.e.

[· · · ]h,J :=
∫

dJ
∫

dh(· · · )Pprior(h | H)Pprior(J | γ).

We refer to the marginal log-likelihood function as the empirical Bayes likelihood function 
in this study. From the perspective of the empirical Bayes method, the optimal values of the 
hyperparameters, Ĥ  and γ̂ , are obtained by maximizing of the empirical Bayes likelihood 
function; i.e.

{Ĥ, γ̂} = argmax
H,γ

LEB(H, γ).� (12)

It is noteworthy that [P(D | h, J)]h,J in equation (11) is identified as the evidence appearing in 
equation (5).

M Yasuda and T Obuchi﻿J. Phys. A: Math. Theor. 53 (2020) 014004
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The marginal log-likelihood function can be rewritten as

LEB(H, γ) =
1

nN
ln
[
exp

(
nNLML(h, J)

)]
h,J

.� (13)

Consider the case N � n. In this case, by using the saddle point evaluation, equation (13) is 
reduced to

LEB(H, γ) ≈ 1
nN

lnPprior(ĥML | H) +
1

nN
lnPprior(ĴML | γ) + constant.

In this case, the empirical Bayes’ estimates {Ĥ, γ̂} thus converge to the ML estimates of 
the hyperparameters in the prior distributions in which the ML estimates of the parameters 
{ĥML, ĴML} (i.e. the solution to the BML) are inserted. This indicates that the parameter esti-
mations can be conducted independently of the hyperparameter estimation. In this study, we 
do not concern ourselves with this trivial case.

As discussed, the hyperparameters correspond to the regularization coefficients in the regu-
larized ML estimation. Generally, the appropriate values of the regularization coefficients can 
be estimated using two methods. First method is the cross validation (CV) method, such as 
the leave-one-out CV. The CV method is usually used with the regularized ML estimation (or 
the MAP estimation). In the CV method, the validity of the solution to the regularized ML 
estimation is checked using the validation dataset separated from the training dataset, and 
the values of the regularization coefficients providing the optimal solution is selected. This 
method is effective when the validity of the solution can be checked easily, that is the case 
in e.g. regression or pattern recognition problems. However, there are some applications in 
which the validity cannot be checked easily. The graph mining problem [18, 19] is such an 
example, because we do not know what structure is the best in advance. The second method is 
the empirical Bayes approach discussed in this paper. This approach allows us to estimate the 
appropriate hyperparameters in cases where the CV method cannot be used directly, because it 
is basically based on the fully Bayesian treatment and does not require explicit validation. The 
empirical Bayes approach is thus important for problems involving difficulties in validation.

3.  Statistical mechanical analysis

The empirical Bayes likelihood function in equation (11) involves intractable multiple inte-
grations. In this section, we evaluate the empirical Bayes likelihood function using a statisti-
cal mechanical analysis. We consider the two types of the prior distribution of J : one is the 
Gaussian prior in equation (8), and the other is the Laplace prior in equation (9).

First, we evaluate the empirical Bayes likelihood function on the basis of the Gaussian 
prior in sections 3.1–3.3, after which we describe the evaluation based on the Laplace prior 
in section 3.4.

3.1.  Replica method

The empirical Bayes likelihood function in equation (11) can be represented as

LEB(H, γ) =
1

nN
ln lim

x→−1
Ψx(H, γ),� (14)

M Yasuda and T Obuchi﻿J. Phys. A: Math. Theor. 53 (2020) 014004
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where

Ψx(H, γ) :=
[
Z(h, J)xN expN

(
h

n∑
i=1

di +
∑
i<j

Jijdij

)]
h,J

,� (15)

and

di :=
1
N

N∑
µ=1

S(µ)
i , dij :=

1
N

N∑
µ=1

S(µ)
i S(µ)

j

are the sample averages of the observed data points. We assume that τx := xN  is a natural 
number, and therefore equation (15) can be expressed as

Ψx(H, γ) =
[∑

Sx

exp
{

h
n∑

i=1

( τx∑
a=1

S{a}
i + Ndi

)

+
∑
i<j

Jij

( τx∑
a=1

S{a}
i S{a}

j + Ndij

)}]
h,J

,
� (16)

where a, b ∈ {1, 2, . . . , τx} are replica indices, and S{a}
i  is the Ising variable on site i in the 

ath replica. Sx := {S{a}
i | i = 1, 2, . . . , n; a = 1, 2, . . . , τx} is the set of all the Ising variables 

in the replicated system, and 
∑

Sx
 is the sum over all the possible configurations of Sx ; i.e. ∑

Sx
:=

∏n
i=1

∏τx
a=1

∑
S{a}

i =±1. We evaluate Ψx(H, γ) under the assumption that τx us a natu-
ral number, after which we take the limit of x → −1 of the evaluation result to obtain the 
empirical Bayes likelihood function (this is the so-called replica trick).

By employing the Gaussian prior in equation (8), equation (16) becomes

ΨGauss
x (H, γ) = exp

{
nNHM +

γ(n − 1)N2

4

(
C2 +

x
N

)
− Fx(H, γ)

}
,� (17)

where

M :=
1
n

n∑
i=1

di, Ck :=
2

n(n − 1)

∑
i<j

dk
ij,� (18)

and

Fx(H, γ) := − ln
∑
Sx

exp
(
− Ex(Sx; H, γ)

)
� (19)

is the replicated (Helmholtz) free energy [20–23]; here,

Ex(Sx; H, γ) := −H
n∑

i=1

τx∑
a=1

S{a}
i − γN

n

∑
i<j

dij

τx∑
a=1

S{a}
i S{a}

j

− γ

n

∑
i<j

∑
a<b

S{a}
i S{a}

j S{b}
i S{b}

j

�
(20)

is the Hamiltonian of the replicated system, where 
∑

a<b is the sum over all the distinct pairs 
of replicas; i.e. 

∑
a<b =

∑τx
a=1

∑τx
b=a+1.

M Yasuda and T Obuchi﻿J. Phys. A: Math. Theor. 53 (2020) 014004
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3.2.  Plefka expansion

Because the replicated free energy in equation (19) includes intractable multiple summations, 
an approximation is needed to proceed with our evaluation. In this section, we approximate 
the replicated free energy using the Plefka expansion [3]. In brief, the Plefka expansion is the 
perturbative expansion in a Gibbs free energy that is a dual form of a corresponding Helmholtz 
free energy.

The Gibbs free energy is obtained as

Gx(m, H, γ) = −nτxHm + extr
λ

{
λnτxm − ln

∑
Sx

exp
(
− Ex(Sx;λ, γ)

)}
.

� (21)
The derivation of this Gibbs free energy is described in appendix A. It is noteworthy that this 
type of expression of the Gibbs free energy implies the replica-symmetric (RS) assumption. 
To take the replica-symmetry breaking (RSB) into account, explicit treatments of overlaps 
between different replicas are needed [21]. By expanding Gx(m, H, γ) around γ = 0, we obtain

Gx(m, H, γ)
nN

= −xHm + xe(m) + φ(1)
x (m)γ + φ(2)

x (m)γ2 + O(γ3),� (22)

where e(m) is the negative mean-field entropy defined by

e(m) :=
1 + m

2
ln

1 + m
2

+
1 − m

2
ln

1 − m
2

,� (23)

and the coefficients, φ(1)
x (m) and φ(2)

x (m), are expressed as equations (B.4) and (B.9), respec-
tively. The detailed derivation of these coefficients is presented in appendix B.

From equations (14), (17), (22) and (A.4), we obtain the empirical Bayes likelihood func-
tion as

LEB(H, γ) ≈ HM − extr
m

[
Hm − e(m) + Φ(m)γ + φ

(2)
−1(m)γ2

]
� (24)

where

Φ(m) := φ
(1)
−1(m)− (n − 1)N

4n

(
C2 −

1
N

)
.

From equations (B.4) and (B.9), Φ(m) and φ(2)
−1(m) are

Φ(m) =
(n − 1)NC1

2n
m2 − (n − 1)N

4n

{
C2 +

N + 1
N

(
m4 − 1

N + 1

)}
� (25)

and

φ
(2)
−1(m) =

(n − 1)2N2Ω

2n2 m2(1 − m2) +
(n − 1)N2C2

4n2 (1 − m2)2

− (n − 1)N(N + 1)C1

2n2 m2(1 − m2)2

− (n − 1)(N + 1)
4n2

(
n − N − 3

)
m4(1 − m2)2

− (n − 1)(N + 1)
8n2 (1 − m4)2,

�

(26)

respectively. The coefficient Ω appearing in the above equation is defined by

M Yasuda and T Obuchi﻿J. Phys. A: Math. Theor. 53 (2020) 014004
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Ω :=
1
n

n∑
i=1

ω2
i ,� (27)

where

ωi :=
1

n − 1

∑
j∈∂(i)

dij − C1;� (28)

here, ∂(i) := {1, 2, . . . , n} \ {i}.

3.3.  Inference algorithm

As mentioned in section  2.2, the empirical Bayes inference is achieved by maximizing 
LEB(H, γ) with respect to H and γ  (see equation (12)). From the extremum condition of equa-
tion (24) with respect to H, we obtain

m̂ = M,� (29)

where m̂  is the value of m that satisfies the extremum condition in equation (24). From the 
extremum condition of equation (24) with respect to m and equation (29), we obtain

Ĥ = tanh−1 M −
(∂φ(1)

−1(m)

∂m
γ +

∂φ
(2)
−1(m)

∂m
γ2
)∣∣∣

m=M
.� (30)

From equations (24) and (29), the optimal value of γ  is obtained by

γ̂ = argmax
γ

[
− Φ(M)γ − φ

(2)
−1(M)γ2].� (31)

From equation  (31), γ̂  is immediately obtained as follows: (i) when φ(2)
−1(M) > 0 and 

Φ(M) � 0 or when φ(2)
−1(M) = 0 and Φ(M) > 0, γ̂ = 0, (ii) when φ(2)

−1(M) > 0 and 
Φ(M) < 0, γ̂ = −Φ(M)/(2φ(2)

−1(M)), and (iii) γ̂ → ∞ elsewhere. Here, we ignore the case 
φ
(2)
−1(M) = Φ(M) = 0, because it hardly occurs in realistic settings. By using equations (30) 

and (31), we can obtain the solution to the empirical Bayes inference without any iterative 
processes. The pseudocode of the proposed procedure is shown in algorithm 1.

Table 1.  Detailed values (averages and standard deviations) of some plots in figure 2 
(when Htrue = 0 and α = 0.4).

Jtrue

0 0.2 0.4 0.6 0.8 1 1.2

Ĵ n  =  300 0.048 ± 0.06 0.20 ± 0.04 0.41 ± 0.02 0.62 ± 0.02 0.82 ± 0.02 0.96 ± 0.02 1.03 ± 0.02

n  =  500 0.038 ± 0.05 0.20 ± 0.03 0.40 ± 0.01 0.62 ± 0.01 0.82 ± 0.01 0.96 ± 0.01 1.03 ± 0.01

M Yasuda and T Obuchi﻿J. Phys. A: Math. Theor. 53 (2020) 014004
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Algorithm 1.  Proposed inference algorithm.

1: Input Observed data set: D := {S(µ) ∈ {−1,+1}n | µ = 1, 2, . . . , N}.
2: Compute M, Ω, C1, and C2 using the data set according to equations (18) and (27).
3: Determine γ̂  using equation (31):

                  γ̂ =




0 case (i)

−Φ(M)/(2φ(2)
−1(M)) case (ii)

∞ elsewhere
,

where case (i): φ(2)
−1(M) > 0, Φ(M) � 0 or φ(2)

−1(M) = 0, Φ(M) > 0 and case (ii):

φ
(2)
−1(M) > 0, Φ(M) < 0.

4: Using γ̂ , determine Ĥ  using equation (30).

5: Output γ̂  and Ĥ .

In the proposed method, the value of Ĥ  does not affect the determination of γ̂ . Many 
mean-field-based methods for BML (e.g. listed in section 1) have similar procedures, in which 
ĴML are determined separately from ĥML. This is seen as one of the common properties of the 
mean-field-based methods for BML including the current empirical Bayes problem.

3.4.  Evaluation based on Laplace prior

The above evaluation was for the Gaussian prior in equation (8). Here, we explain the evalu-
ation for the Laplace prior in equation (9). By employing the Laplace prior in equation (9), 
equation (16) becomes

ΨLaplace
x (H, γ) = ξn(n−1)enNHM

∑
Sx

exp
[
H

n∑
i=1

τx∑
a=1

S{a}
i

−
∑
i<j

ln
{
ξ2 −

( τx∑
a=1

S{a}
i S{a}

j + Ndij

)2}]
,

�

(32)

where ξ :=
√

2n/γ . Here, we assume

ξ > max
i<j

( τx∑
a=1

S{a}
i S{a}

j + Ndij

)
.� (33)

By using the perturbative approximation,

ln
{
ξ2 −

( τx∑
a=1

S{a}
i S{a}

j + Ndij

)2}
= ln ξ2 + ln

{
1 − ξ−2

( τx∑
a=1

S{a}
i S{a}

j + Ndij

)2}

≈ ln ξ2 − ξ−2
( τx∑

a=1

S{a}
i S{a}

j + Ndij

)2
,

we obtain the approximation of equation (32) as

ΨLaplace
x (H, γ) ≈ enNHM

∑
Sx

exp
[
H

n∑
i=1

τx∑
a=1

S{a}
i + ξ2

∑
i<j

( τx∑
a=1

S{a}
i S{a}

j + Ndij

)2]
.

The right-hand side of this equation coincides with ΨGauss
x (H, γ) in equation (17). This means 

that the empirical Bayes inference based on the Laplace prior in equation (9) is (approximately) 
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equivalent to that based on the Gaussian prior in equation (8) (i.e. ΨLaplace
x (H, γ) ≈ ΨGauss

x (H, γ)) 
when the assumption of equation (33) is justified. Thus, we can also use the algorithm pre-
sented in section 3.3 for the case of the Laplace prior.

4.  Numerical experiments

In this section, we describe the results of our numerical experiments. In these experiments, the 
observed dataset D are generated from the generative Boltzmann machine, which has the same 
form as equation (1), by using annealed importance sampling (AIS) [24]. In AIS, we control the 
annealing schedule using a series of inverse temperature 0 = β0 < β1 < · · · < βT < βfinal = 1, 
where we used the annealing schedule of βt+1 = βt + 0.03. The parameters of the generative 
Boltzmann machine are drawn from the prior distributions in equations (4) and (10). That is, 
we consider the model-matched case (i.e. the generative and learning models are identical).

In the following, we use the notations α := N/n and J :=
√
γ. The standard deviations of 

the Gaussian prior in equation (8) and of the Laplace prior in equation (9) are then J/
√

n . We 
express the hyperparameters for the generative Boltzmann machine by Htrue and Jtrue.

4.1.  Gaussian prior case

Here, we consider the case in which the prior distribution of J  is the Gaussian prior in equa-
tion (8). In this case, the Boltzmann machine corresponds to the Sherrington-Kirkpatrick (SK) 
model [25], and therefore it shows the spin-glass transition at J  =  1 when h  =  0 (i.e. when 
H  =  0).

First, we consider the case Htrue = 0. We show the scatter plots for the estimation of Ĵ for 
various Jtrue when Htrue = 0 and α = 0.4 in figure 2. The detailed values of the plots for some 
Jtrue values are shown in table 1.

When Jtrue < 1, our estimates of Ĵ are in good agreement with Jtrue. This implies that 
the validity of our perturbative approximation is lost in the spin-glass phase, as is often the 
case with many mean-field approximations. Figure 3 shows the scatter plots for various α. 
A smaller α causes Ĵ to be overestimated and a larger α causes it to be underestimated. At 

Figure 2.  Scatter plots of Jtrue (horizontal axis) versus Ĵ (vertical axis) when Htrue = 0 
and α = 0.4: (a) n  =  300 and (b) n  =  500. Plots are the average values over 300 
experiments.
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least in our experiments, the optimal value of α seems to be αopt ≈ 0.4 when Htrue = 0. Our 
method can estimate Ĥ  together with Ĵ. The results for the estimation of Ĥ  when Htrue = 0 
and α = 0.4 are shown in figure 4. Figures 4(a) and (b) show the average of |Htrue − Ĥ| (i.e. the 
mean absolute error (MAE)) and the standard deviation of Ĥ  over 300 experiments, respec-
tively. The MAE and standard deviation increase in the region Jtrue > 1.

Next, we consider the cases Htrue > 0. The scatter plots for the estimation of Ĵ for vari-
ous Jtrue values when Htrue = 0.2 and Htrue = 0.4 are shown in figure  5. The appropriate 
values of α when Htrue = 0.2 and Htrue = 0.4 ‘approximately’ seem to be αopt ≈ 30/n and 
αopt ≈ 5/n, respectively. The detailed values of these plots for some Jtrue values are shown 
in tables 2 and 3. The results for the estimation of Ĥ  when Htrue = 0.2 and α = 30/n and 
when Htrue = 0.4 and α = 5/n are shown in figures  6 and 7, respectively. The increases 
in the MAE and standard deviations occur earlier than for the case in figure 4. In the two 
experiments here, the optimal α is scaled by O(1/n) with respect to n, namely, N = O(1). 
N = O(1) seems to be too small to estimate the appropriate values of parameters. Regardless, 

Figure 3.  Scatter plots of Jtrue (horizontal axis) versus Ĵ (vertical axis) for various 
α = N/n when Htrue = 0: (a) n  =  300 and (b) n  =  500. Plots are the average values 
over 300 experiments.

Figure 4.  Results of estimation of Ĥ  against Jtrue when Htrue = 0 and α = 0.4: (a) the 
MAE and (b) standard deviation. Plots are the average values over 300 experiments.
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the results obtained by our method seem to be reasonable. This can be understood as follows. 
Our method depends on the dataset only through the global statistics of data points, i.e. M, 
Ck, and Ω. These statistics are regarded as the sample average of the spatial average over the 

entire space. For example, M = N−1 ∑N
µ=1(n

−1 ∑n
i=1 S(µ)

i ) can be regarded as the sample 

average of Mµ := n−1 ∑n
i=1 S(µ)

i . Mµ is expected to have the self-averaging property; thus, its 
variance is negligible for n � 1. In this case, M takes approximately the same value regardless 
of the size of N, and therefore, M can have sufficient information to achieve the appropriate 
estimation even though N is small.

One of the largest qualitative differences between the cases Htrue = 0 and Htrue > 0 is 
the scale of α. In the case Htrue = 0, the optimal α was scaled by O(1) with respect to n (i.e. 
N = O(n)). Meanwhile, in the case Htrue > 0, the optimal α is scaled by O(1/n) with respect 
to n (i.e. N = O(1)). This change of scale can be understood from a scale evaluation for the 
terms in the empirical Bayes likelihood function in equation (24). The detailed reasoning is 
given in appendix C.

Figure 5.  Scatter plots of Jtrue (horizontal axis) versus Ĵ (vertical axis) for various 
α = N/n for n  =  300 and 500: (a) Htrue = 0.2 and (b) Htrue = 0.4. Plots are the average 
values over 300 experiments. The notation in the legend means (n, N).

Table 2.  Detailed values (averages and standard deviations) of some plots in figure 5(a) 
(when Htrue = 0.2 and α = 30/n).

Jtrue

0 0.2 0.4 0.6 0.8 1 1.2

Ĵ n  =  300 0.083 ± 0.10 0.17 ± 0.12 0.38 ± 0.07 0.58 ± 0.05 0.79 ± 0.06 1.05 ± 0.12 1.35 ± 0.16

n  =  500 0.075 ± 0.09 0.16 ± 0.11 0.38 ± 0.06 0.57 ± 0.04 0.78 ± 0.06 1.05 ± 0.10 1.39 ± 0.16

Table 3.  Detailed values (averages and standard deviations) of some plots in figure 5(b) 
(when Htrue = 0.4 and α = 5/n).

Jtrue

0 0.2 0.4 0.6 0.8 1 1.2

Ĵ n  =  300 0.15 ± 0.17 0.17 ± 0.17 0.33 ± 0.19 0.53 ± 0.14 0.75 ± 0.12 0.95 ± 0.14 1.22 ± 0.20

n  =  500 0.12 ± 0.15 0.17 ± 0.17 0.33 ± 0.17 0.55 ± 0.12 0.76 ± 0.10 0.98 ± 0.11 1.20 ± 0.16
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4.2.  Laplace prior case

Here, we consider the case in which the prior distribution of J  is the Laplace prior in equa-
tion  (9). The scatter plots for the estimation of Ĵ for various Jtrue values when Htrue = 0 
are shown in figure 8. The plots shown in figure 8 almost completely overlap with those in 
figure 3. Furthermore, all the numerical results in the case Htrue > 0 also almost completely 
overlap with the corresponding results obtained in the above Gaussian prior case, and there-
fore we do not show those results.

4.3.  Comparison with other method

Here, we compare the proposed method with a method based on the maximum pseudo-like-
lihood estimation (MPLE) [26]. In the MPLE, we approximate the log-likelihood function 
defined in equation (2) by the pseudo-likelihood function, expressed as

Figure 6.  Results of estimation of Ĥ  against Jtrue when Htrue = 0.2 and α = 30/n: (a) 
the MAE and (b) standard deviation. Plots are the average values over 300 experiments.

Figure 7.  Results of estimation of Ĥ  against Jtrue when Htrue = 0.4 and α = 5/n: (a) 
the MAE and (b) standard deviation. Plots are the average values over 300 experiments.
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LPL(h, J) := hM +
2
n

∑
i<j

Jijdij −
1

nN

N∑
µ=1

n∑
i=1

ln 2 cosh
(

h +
∑

j∈∂(i)

JijS
(µ)
j

)
.� (34)

By using the pseudo-likelihood function, we approximate the empirical Bayes likelihood 
function in equation (13) as

LEB(H, γ) ≈ LPL
EB(H, γ) :=

1
nN

ln
[
exp

(
nNLPL(h, J)

)]
h,J

.� (35)

It is known that, when the data points are generated from the same Boltzmann machine, the 
solution of the MPLE converges to that of the ML estimation for N → ∞ limit [27]. Thus, it 
can be expected that the solution obtained by the maximization of equation (35) is good when 
N � 1.

For simplicity, we ignore the external field h and consider the maximizing problem with 
only γ: γ̂ = argmaxγ LPL

EB(γ), and the prior distribution of J  is the Gaussian prior with 
Jtrue = 0.6. In the experiment, we maximize LPL

EB(γ) numerically based on the line search and 
evaluate the multiple integrations with respect to J  using the Monte Carlo integration with 
104 samples. The results are summarized in table 4. Unlike our expectation, the estimated Ĵ 
becomes worse as N increases. This is presumably because of the Monte Carlo integration 
used to evaluate the multiple integrations over J . The distribution of the integrated function, 
exp(nNLPL(J)), is strongly localized around the maximum point of LPL(J) when nN is large. 
A precise evaluation for such strongly localized distribution by the simple Monte Carlo inte-
gration is generally difficult.

From the above observations, we believe that the pseudo-likelihood approach cannot be 
effective unless a special treatment is introduced for evaluating the multiple integrations.

5.  Summary and discussions

In this study, we proposed a hyperparameters inference algorithm by analyzing the empirical 
Bayes likelihood function in equation (11) using the replica method and the Plefka expansion. 
The validity of our method was examined in numerical experiments for the Gaussian and 

Figure 8.  Scatter plots of Jtrue (horizontal axis) versus Ĵ (vertical axis) for various 
α = N/n, when Htrue = 0, in the case of the Laplace prior: (a) n  =  300 and (b) n  =  500. 
Plots are the average values over 300 experiments.
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Laplace priors, which demonstrated the existence of an appropriate scale in the size of the 
dataset that can accurately recover the values of the hyperparameters.

However, some problems remain. The first one is the scale of N. In our experiments, we 
found that an appropriate N is scaled by O(n) when Htrue = 0 or by O(1) when Htrue �= 0. 
However, such scales seem to be unnatural, because they should not appear in the original 
framework of the empirical Bayes method. As discussed in section 2.2, when N � n, maxi-
mizing the empirical Bayes likelihood function is reduced to the ML estimation of the prior 
distributions for the solution to BML. This must lead to the correct γ̂  and Ĥ , because the solu-
tion to BML is perfect when N → ∞. For reference, we show the results obtained from the 
original framework. When n is small, we can numerically evaluate LML(h, J); therefore, we 
can evaluate equation (13) numerically. Figure 9 shows the MAE between Ĵ and Jtrue (i.e. the 
average of |Jtrue − Ĵ|) for various N when n  =  5. In the experiment, we ignore h and evaluate 
the multiple integrations over J  using the Monte Carlo integration (with 105 samples), as we 
did in section 4.3. The MAEs monotonically decrease with an increase in N and the unnatural 
scales, that our method has, does not seem to appear. Therefore, such unnatural scales appear 
due to our approximation, which is also supported by a scale analysis given in appendix C. An 
improvement of the approximation (e.g. by evaluating the leading terms in the Plefka expan-
sion or using some other approximations) might reduce these unnatural behaviors.

The second problem is the optimal value of α = N/n. Empirically, we found that αopt ≈ 0.4 
when Htrue = 0 and that it decreases as Htrue increases (e.g. αopt ≈ 30/n when Htrue = 0.2 and 
αopt ≈ 5/n when Htrue = 0.4). As can be seen in the results of our experiments, the solution 
to our method is robust for the choice of α when Jtrue is small (Jtrue < Jc) and is sensitive to 
it when Jtrue is large (Jtrue > Jc), where Jc ≈ 0.4. The estimation of αopt is very important 
for our method, and it will make our method more practical. This problem would be strongly 
related to the first problem.

The third problem is the degradation of the estimation accuracy in the spin-glass phase. In 
our experiments, the estimation accuracies of γ̂  and Ĥ  were obviously degraded in the spin-
glass phase. This means that our Plefka expansion based on the RS assumption loses its valid-
ity in the spin-glass phase. In [21], a Plefka expansion for the one-step RSB was proposed. 
Employing this expansion instead of the current expansion could reduce the degradation in the 
spin-glass phase. These three problems should be addressed in our future studies.

In this study, we used fully-connected Boltzmann machines whose variables are all visible. 
We are also interested in an extension of our method to other types of Boltzmann machines 
such as Boltzmann machines having specific structures or hidden variables. Furthermore, we 
considered the model-matched case (i.e. the case in which the generative mode and learning 
model are the same model) in the current study, but model-mismatched cases are more practi-
cal and important.

Table 4.  Results obtained from maximizing LPL
EB(γ) (averages and standard deviations) 

for various N when n  =  100 and Jtrue = 0.6. The values in the table are estimated over 
50 experiments. The result obtained from our method is Ĵ = 0.61 ± 0.04 with α = 0.4, 
which is estimated over 300 experiments.

N

5 10 20 40 80 160

Ĵ 0.25 ± 0.02 0.18 ± 0.02 0.13 ± 0.02 0.09 ± 0.01 0.07 ± 0.01 0.06 ± 0.005
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Appendix A.  Gibbs free energy

In this appendix, we derive the Gibbs free energy for the replicated (Helmholtz) free energy 
in equation (19).

The replicated free energy is obtained by minimizing the variational free energy, defined by

f [Q] :=
∑
Sx

Ex(S; H, γ)Q(Sx) +
∑
Sx

Q(Sx) lnQ(Sx),� (A.1)

under the normalization constraint, i.e. 
∑

Sx
Q(Sx) = 1, where Q(Sx) is a test distribution over 

Sx , and Ex(Sx; H, γ) is the Hamiltonian for the replicated system defined in equation (20).
The Gibbs free energy is obtained by adding new constraints to the minimization of f [Q]. 

Here, we add the relation m = (nτx)
−1 ∑n

i=1
∑τx

a=1
∑

Sx
S{a}

i Q(Sx) as the constraint. By using 

Lagrange multipliers, the Gibbs free energy is obtained as

Gx(m, H, γ) := extr
Q,λ,r

{
f [Q]− r

(∑
Sx

Q(Sx)− 1
)

− λ
( n∑

i=1

τx∑
a=1

∑
Sx

S{a}
i Q(Sx)− nτxm

)}
,

� (A.2)

Figure 9.  Plots of MAE of Ĵ obtained from the numerical maximization of equation (13), 
for N = 5, 10, 20, 50, 100. Plots are the average values over 100 experiments.
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where ‘extr’ denotes the extremum with respect to the assigned parameters. By performing the 
extremum operation with respect to Q(S) and r in equation (A.2), we obtain

Gx(m, H, γ) = extr
λ

{
λnτxm − ln

∑
Sx

exp
(
− Ex(Sx; H + λ, γ)

)}
.� (A.3)

The replicated free energy in equation (19) coincides with the extremum of this Gibbs free 
energy with respect to m; i.e.

Fx(H, γ) = extr
m

Gx(m, H, γ).� (A.4)

By performing the shift H + λ → λ in equation (A.3), we obtain equation (21).

Appendix B.  Derivation of coefficients of Plefka expansion

The Plefka expansion considered in this study can be obtained by expanding the Gibbs free 
energy in equation (21) around γ = 0.

When γ = 0, we have

Gx(m, H, 0) = −nτxHm + nτxextr
λ

(
λm − ln 2 coshλ

)

= −nτxHm + nτxe(m),
� (B.1)

where e(m) is defined in equation (23).

For the derivations of the coefficients φ(1)
x (m) and φ(2)

x (m), we decompose Ex(Sx; H,λ) in 
equation (21) into two parts:

Ex(Sx;λ, γ) = −λ

n∑
i=1

τx∑
a=1

S{a}
i + γEint

x (Sx),

where

Eint
x (Sx) := −N

n

∑
i<j

dij

τx∑
a=1

S{a}
i S{a}

j − 1
n

∑
i<j

∑
a<b

S{a}
i S{a}

j S{b}
i S{b}

j .

Coefficient φ(1)
x (m) is defined by

φ(1)
x (m) :=

1
nN

∂Gx(m, H, γ)
∂γ

∣∣∣
γ=0

.

The derivative leads to

∂Gx(m, H, γ)
∂γ

=
〈

Eint
x (Sx)

〉
γ

,� (B.2)

where 〈· · ·〉γ denotes the average for the distribution

P(Sx | γ, m) ∝ exp
(
− Ex(Sx;λ∗, γ)

)
,

where λ∗ is the value of λ that satisfies the extremum condition in equation (21) and which is 
the function relating γ  and m; i.e. λ∗ = λ∗(γ, m). From the extremum condition for λ in equa-
tion (21), we obtain the equation

m =
1

nτx

n∑
i=1

τx∑
a=1

〈S{a}
i 〉γ ,� (B.3)
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which holds for any γ . In the derivation of equation  (B.2), we used equation  (B.3). When 

γ = 0, equation (B.3) reduces to m = tanhλ∗. This means that 〈S{a}
i 〉0 = m for any i and a. 

Therefore, we obtain

φ(1)
x (m) = −x(n − 1)NC1

2n
m2 − (n − 1)Kx

2nN
m4,� (B.4)

where Kx := τx(τx − 1)/2. In the derivation of equation  (B.4), we used the relation 

〈S{a}
i S{b}

j 〉0 = 〈S{a}
i 〉0〈S{b}

j 〉0 if i �= j or a �= b.

The coefficient φ(2)
x (m) is defined by

φ(2)
x (m) :=

1
2nN

∂2Gx(m, H, γ)
∂γ2

∣∣∣
γ=0

.

From equation (B.2), the second derivative is

∂2Gx(m, H, γ;D)

∂γ2 =
∂

∂γ

〈
Eint

x (Sx)
〉
γ
=

〈
Eint

x (Sx)Ux(γ)
〉
γ

,� (B.5)

where

Ux(γ) :=
〈
∂Ex(Sx;λ∗, γ)

∂γ

〉

γ

− ∂Ex(Sx;λ∗, γ)
∂γ

is Georges’s operator, proposed in [28]. To simplify the notation, we omit the explicit descrip-
tion of the dependency of the operator on Sx  and m. By using this operator, the derivative of 
〈A〉γ  with respect to γ  is obtained as

∂〈A〉γ
∂γ

=

〈
∂A
∂γ

〉

γ

+ 〈AUx(γ)〉γ .

This immediately leads to 〈S{a}
i Ux(γ)〉γ = 0, because ∂〈S{a}

i 〉γ/∂γ = ∂m/∂γ = 0. Therefore,

〈
Ux(γ)

2〉
γ
= −

〈
Ux(γ)

∂Ex(Sx,λ∗, γ)
∂γ

〉

γ

= −
〈
Eint

x (Sx)Ux(γ)
〉
γ� (B.6)

is obtained, where we have used 〈Ux(γ)〉γ = 0. From equations (B.5) and (B.6), we have

∂2Gx(m, H, γ)
∂γ2 = −

〈
Ux(γ)

2〉
γ

.� (B.7)

Because

∂λ∗

∂γ

∣∣∣
γ=0

=
1

nτx

∂

∂γ

∂Gx(m, H, γ)
∂m

∣∣∣
γ=0

=
N
τx

∂φ
(1)
x (m)

∂m
,

when γ = 0, we obtain

Ux(0) =
(n − 1)N

n

n∑
i=1

ωim
τx∑

a=1

(
S{a}

i − m
)

+
N
n

∑
i<j

(
dij +

τx − 1
N

m2
) τx∑

a=1

(
S{a}

i − m
)(

S{a}
j − m

)

+
1
n

∑
i<j

∑
a<b

(
S{a}

i S{a}
j − m2)(S{b}

i S{b}
j − m2),

�

(B.8)
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where ωi  is defined in equation (28).
By using equations (B.7) and (B.8), we obtain

φ(2)
x (m) = − (n − 1)2τxNΩ

2n2 m2(1 − m2)− (n − 1)τxNC2

4n2 (1 − m2)2

− (n − 1)KxC1

n2 m2(1 − m2)2 − (n − 1)Kx

2n2N

(
n + τx − 3

)
m4(1 − m2)2

− (n − 1)Kx

4n2N
(1 − m4)2,

� (B.9)

where Ω is defined in equation (27).

Appendix C.  Evaluation of orders of each term in the empirical Bayes 
likelihood

Here, we evaluate the orders of each term in equation (24) with m  =  M, with respect to n � 1, 
that is, the orders of each term in

LEB(H, γ) ≈ e(M)− Φ(M)γ − φ
(2)
−1(M)γ2.� (C.1)

In the following, we assume that N = O
(
nρ
)
 (ρ � 0) and that {S(µ)

i } are i.i.d. samples from 
a certain distribution.

First, we consider the case Htrue = 0 in which the distribution of {S(µ)
i } is unbiased. In this 

case, we obtain M = O
(
n−(1+ρ)/2

)
, C1 = O

(
n−1−ρ/2

)
, and

C2 =
1
N

+
1

n(n − 1)N2

∑
µ<ν

∑
i<j

S(µ)
i S(µ)

j S(ν)
i S(ν)

j = O
(
n−ρ

)
.

Similarly, we obtain

Ω =
1

n(n − 1)2N2

n∑
i=1

N∑
µ,ν=1

∑
j,k∈∂(i)

S(µ)
i S(µ)

j S(ν)
i S(ν)

k − C2
1

=
1

(n − 1)N
+

1
n(n − 1)2N2

n∑
i=1

N∑
µ=1

∑
j�=k∈∂(i)

S(µ)
j S(µ)

k

+
1

n(n − 1)2N2

n∑
i=1

∑
µ �=ν

∑
j,k∈∂(i)

S(µ)
i S(µ)

j S(ν)
i S(ν)

k − C2
1

= O
(
n−1−ρ

)
,

because C2
1 = O

(
n−2−ρ

)
. Using the above results and equations (23), (25) and (26), we obtain 

e(M) = O(1), Φ(M) = O(1), and φ(2)
−1(M) = O

(
nρ−1

)
, respectively. Therefore, when ρ = 1, 

the orders of all the terms in equation (C.1) are just O(1) with respect to n.

Next, we consider the case Htrue �= 0 in which the distribution of {S(µ)
i } is biased. In this 

case, M, C1, and C2 are O(1), and furthermore, Ω is O(1) because ωi = O(1). This leads to 
e(M) = O(1), Φ(M) = O

(
nρ
)
, and φ(2)

−1(M) = O
(
n2ρ

)
. Therefore, when ρ = 0, the orders of 

all the terms in equation (C.1) are just O(1) with respect to n.
This consideration and the experiments in section 4 imply that our method based on the 

Plefka expansion can be validated when all the terms in the empirical Bayes likelihood are 
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O(1). The introduction of the external field changes the condition to satisfy this criterion, lead-
ing to the appropriate scaling of α. This statement is consistent with the numerical observation 
that a stable result is obtained even for different n’s as long as the appropriate scale in α is 
maintained, as shown in section 4.
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