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Abstract
We investigate the signal reconstruction performance of sparse linear 
regression in the presence of noise when piecewise continuous nonconvex 
penalties are used. Among such penalties, we focus on the smoothly clipped 
absolute deviation (SCAD) penalty. The contributions of this study are 
three-fold: we first present a theoretical analysis of a typical reconstruction 
performance, using the replica method, under the assumption that each 
component of the design matrix is given as an independent and identically 
distributed (i.i.d.) Gaussian variable. This clarifies the superiority of the 
SCAD estimator compared with �1 in a wide parameter range, although the 
nonconvex nature of the penalty tends to lead to solution multiplicity in certain 
regions. This multiplicity is shown to be connected to replica symmetry 
breaking in the spin-glass theory, and associated phase diagrams are given. 
We also show that the global minimum of the mean square error between 
the estimator and the true signal is located in the replica symmetric phase. 
Second, we develop an approximate formula efficiently computing the cross-
validation error without actually conducting the cross-validation, which is 
also applicable to the non-i.i.d. design matrices. It is shown that this formula 
is only applicable to the unique solution region and tends to be unstable in 
the multiple solution region. We implement instability detection procedures, 
which allows the approximate formula to stand alone and resultantly enables 
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us to draw phase diagrams for any specific dataset. Third, we propose an 
annealing procedure, called nonconvexity annealing, to obtain the solution 
path efficiently. Numerical simulations are conducted on simulated datasets 
to examine these results to verify the consistency of the theoretical results 
and the efficiency of the approximate formula and nonconvexity annealing. 
The characteristic behaviour of the annealed solution in the multiple solution 
region is addressed. Another numerical experiment on a real-world dataset 
of Type Ia supernovae is conducted; its results are consistent with those of 
earlier studies using the �0 formulation. A MATLAB package of numerical 
codes implementing the estimation of the solution path using the annealing 
with respect to λ in conjunction with the approximate CV formula and the 
instability detection routine is distributed in Obuchi (2019 https://github.
com/T-Obuchi/SLRpackage_AcceleratedCV_matlab).

Keywords: sparse linear regression, compressed sensing, replica method, 
cross-validation, nonconvex penalty

(Some figures may appear in colour only in the online journal)

1. Introduction

Variable selection problems ubiquitously appear in statistics and machine learning tasks. 
Although traditional statistical approaches to variable selection work well in principle [2], 
difficulties in computational efficiency and stability emerge owing to the largeness and high 
dimensionality of the datasets. To overcome this, the possibility of sparse estimation has been 
pursued for decades. Naive methods for sparse estimation yet require solving discrete optim-
isation problems, involving a serious computational difficulty, even in the simplest case of 
linear models [3]. Hence, certain relaxations or approximations are required for handling such 
large high-dimensional datasets.

A breakthrough was made with the least absolute shrinkage and selection operator (LASSO) 
[4]. Its basic idea is to relax the sparsity constraint by using �1 regularisation. The success of 
LASSO motivated the usage of �1 regularisation in many different contexts and models [5–7], 
leading to an ongoing innovation in signal and information processing [8–10].

Although LASSO has many attractive properties, the shrinkage introduced by the �1 regu-
larisation results in a significant bias in regression coefficients. To solve this, some noncon-
vex penalties, such as the smoothly clipped absolute deviation (SCAD) penalty [11] and the 
minimax concave penalty (MCP) [12], have recently been proposed. Although the estimators 
under these regularisations have desirable properties such as unbiasedness and continuity [11], 
there exist some concerns about the stability and interpretability of the estimators because of 
the potential local minimums owing to the lack of convexity. Hence, investigations of typical 
performance of those estimators are desired.

Under this situation, one of the present authors recently analyzed the SCAD estimator 
performance in [13], using the replica method and the message passing technique [14–16]. It 
was shown that there exist two regions in the space of regularization parameters, and in one 
of them the estimator is uniquely and stably obtained. It was also shown that the estimator 
outperforms LASSO in the fit quality, and that the emergence of the two regions can be viewed 
as a phase transition involving replica symmetry breaking (RSB). The latter finding yields a 
nontrivial insight to the behaviour of local search algorithms, and it was demonstrated that 

T Obuchi and A Sakata J. Phys. A: Math. Theor. 52 (2019) 414003

https://github.com/T-Obuchi/SLRpackage_AcceleratedCV_matlab
https://github.com/T-Obuchi/SLRpackage_AcceleratedCV_matlab


3

the convergence limit of the coordinate descent (CD) algorithm is closely related to the RSB 
transition and that a sufficient condition of the convergence, derived in [17], is not tight.

The above-mentioned analysis was limited to the data compression context, in which only 
the fit quality to a given dataset was considered important. However, with regard to certain 
applications of sparse estimation, such as compressed sensing [18, 19], the reconstruction per-
formance of the true signal embedded in the data generation process is more important. The 
current study addresses this problem and conducts a quantitative analysis for the case where 
noise exists, while the noiseless limit is investigated in a separate study [20]. We provide 
phase diagrams with respect to regularization parameters derived using the replica method 
and discuss their implications to the reconstruction performance and the behaviour of local 
search algorithms. Moreover, we develop an approximate formula for efficiently computing 
the cross-validation (CV) error, which can be identified with the reconstruction error in our 
setting. The key results are summarised as follows:

 (i)  In the replica symmetric (RS) phase, a unique solution is stably obtained also in the signal 
reconstruction context.

 (ii)  The global minimum of the CV error is (presumably always) obtained in the RS phase.
 (iii)  Our approximate formula efficiently estimates the CV error, without actually conducting CV.

These imply that we need not to care about the RSB phase as long as our purpose is to obtain 
the model best reconstructing the true signal, and in the RS phase we can benefit from the 
proposed approximate CV formula enabling an efficient estimation of the reconstruction error. 
Below, we show the theoretical results supporting these messages.

The remaining of the paper is organised as follows: in the next section, our problem setting 
and an overview of the SCAD penalty are given; in section 3, the replica analysis result is 
shown without the derivation because the essential part is already given in [13, 20], and phase 
diagrams and plots of relevant quantities are shown; in section 4, the approximate formula of 
the CV error is derived; in section 5, numerical experiments are carried out on both simulated 
and real-world datasets to check the accuracy of the replica result and the approximate form-
ula. The last section concludes the paper.

2. Problem settings

Suppose a data vector y ∈ RM is generated by the following linear process with a design 
matrix A ∈ RM×N and a signal vector x0 ∈ RN :

y = Ax0 +∆, (1)

where ∆ is a noise vector, the component of which is assumed to be an independent and iden-
tically distributed (i.i.d.) variable from the normal distribution with zero mean and variance 
σ2
∆, N (0,σ2

∆). We denote our dataset as DM = {y, A}. In the context of compressed sensing, 
the design matrix A represents the measurement process, and we try to infer x0 given A and 
y. The inference is herein formulated as a regularised linear regression, and the concrete form 
of our estimator is given by:

x̂(η, DM) = arg min
x

{
1
2
||y − Ax||22 + J(x; η)

}
, (2)

where J(x; η) =
∑N

i=1 J(xi; η) is the regularisation inducing the estimator sparsity, and η is a 
set of regularisation parameters with a concrete form shown below. To quantify the fit quality 
of the estimator x̂ to the data y, we introduce:
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εy(x̂|DM) =
1

2M
||y − Ax̂||22, (3)

and call it the output mean squared error (MSE). We also introduce a MSE between the esti-
mator and the true signal as:

εx(x̂|x0) =
1

2N
||x̂ − x0||22, (4)

which is termed input MSE, and these characterise the goodness of fit of our estimator x̂.
The purpose of this study is to compute the typical behaviour of εx  and εy  to obtain insights 

into the estimator behaviour; meanwhile, some other relevant quantities are also evaluated. 
The analytical techniques for achieving this purpose are explained in section 3, with a more 
detailed description on x0 and A.

2.1. SCAD regularisation

As a representative piecewise continuous nonconvex penalty, we investigate SCAD regulari-
sation in this study. The parameter set consists of η = {λ, a} (a > 1), and the functional form 
is:

J(θ; η) =




λ|θ| (|θ| � λ)

− θ2−2aλ|θ|+λ2

2(a−1) (λ < |θ| � aλ)
(a+1)λ2

2 (|θ| > aλ)

. (5)

An illustration of this form is given as the left panel of figure 1. In the limit a → ∞, the 
SCAD regularisation tends to be the �1 regularisation J(θ; {λ, a → ∞}) → λ|θ|, and corre-
spondingly, the SCAD estimator converges to the LASSO one, allowing the comparison in 
a continuous manner. For later convenience, we term a the switching parameter, and λ the 
amplitude parameter.

To obtain an intuitive view for the SCAD estimator behaviour, we compute the one-dimen-
sional case:

θ̂(w;σ2
w, η) = arg min

θ

{
1

2σ2
w
(θ − w)2 + J(θ; η)

}
. (6)

The solution is given by:

θ̂(w;σ2
w, η) = VSCAD(w/σ2

w;σ2
w, η)SSCAD(w/σ2

w;σ2
w, η), (7)

where

SSCAD(x;σ2, η) =





x − sgn(x)λ for λ(1 + σ−2) � |x| > λ

x − sgn(x) aλ
a−1 for aλσ−2 � |x| > λ(1 + σ−2)

x for |x| > aλσ−2

0 otherwise

, (8)

VSCAD(x;σ2, η) =




σ2 for λ(1 + σ−2) � |x| > λ(
σ−2 − 1

a−1

)−1
for aλσ−2 � |x| > λ(1 + σ−2)

σ2 for |x| > aλσ−2

0 otherwise

.

 (9)

T Obuchi and A Sakata J. Phys. A: Math. Theor. 52 (2019) 414003
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The middle panel of figure 1 presents an illustration of the estimator at a = 3,λ = 1,σ2
w = 1, 

which behaves as the LASSO estimator when λ(1 + σ−2
w ) � |w| > λ, and as the ordinary 

least square (OLS) estimator when |w| > aλσ−2
w . In the region aλσ−2

w � |w| > λ(1 + σ−2
w ), 

the estimator linearly transits between LASSO and OLS estimators.
The one-dimensional case estimator plays a key role in our analysis, because our origi-

nal problem with high dimensionality is, eventually, reduced to an effective one-dimensional 
problem in the limit N → ∞, termed decoupling principle in [21].

3. Macroscopic analysis

In this section, we provide order parameters and their determining equations of state (EOS). 
Associated phase diagrams are shown, and their implications on the performance and the 
computational stability of the SCAD estimator are also discussed.

For proceeding with the analysis, the ensemble of A and x0 is required to be fixed. We 
assume that A is a random matrix whose component is i.i.d. from N (0, M−1). The true signal 
x0 is also assumed to be a random number drawn from the independent Bernoulli–Gaussian 
distribution:

P(x0) =
N∏

i=1

{
(1 − ρ0)δ(x0

i ) +
ρ0√
2πσ2

x

exp

(
− (x0

i )
2

2σ2
x

)}
. (10)

We note that the i.i.d. assumption on A is crucial for completing the computation, while the 
choice of the distribution of x0 does not matter for the analytical tractability. We admit that 
this i.i.d. assumption on A is not necessarily realistic, but it provides a sufficiently nontrivial 
setup for our purpose. Although it is possible to extend the present analysis to certain other 
ensembles [22–29], we leave this as a future study.

In the following discussion, we consider the so-called thermodynamic limit N → ∞, while 
keeping α ≡ M/N = O(1).

3.1. Outline of analysis

In order to avoid duplication with [13, 20], an outline of the analysis is presented here, instead 
of the EOS derivation.

Figure 1. (Left) Shapes of the SCAD regularisations for some parameters. (Middle) 
Behaviour of the SCAD estimator (7) at a = 3,λ = 1,σ2

w = 1; the diagonal dashed line 
represents the OLS estimator. (Right) Behaviour of the LASSO estimator at λ = 1 for 
comparison with the SCAD; a shrinkage bias is clearly seen for a large w.
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Our analysis starts from defining Hamiltonian H, partition function Z, and free energy 
density f  as follows:

H (x|DM) ≡
1
2
||y − Ax||22 + J(x; η), (11)

Z(β|DM) ≡
∫

dx e−βH(x|DM), (12)

f (β|DM) ≡ − 1
Nβ

ln Z(β|DM). (13)

As seen from (2), the minimiser or the ground state of H corresponds to our estimator and, 
hence, we are interested in the β → ∞ limit of the free energy density. The input and out-
put MSEs can be computed from the free energy in this limit, by following a standard pre-
scription. The free energy density becomes the primary object to be computed, and enjoys 
the self-averaging property, and the typical value thus converges to the averaged one 
f (β|DM) → Ey,A [f (β|DM)] ≡ f (β), where Ey,A [· · ·] denotes the average over y and A.

Unfortunately, the average density Ey,A [f (β|DM)] is not analytically tractable. To over-
come this, we employ the following identity:

Ey,A[ln Z(β|DM)] = lim
n→0

Ey,A[Zn(β|DM)]− 1
n

. (14)

However, the computation for general n ∈ R is still intractable; thus, we additionally assume 
that n is a positive integer, because Ey,A[Zn(β|DM)] is analytically computable for n ∈ N. 
Then, using an analytically continuable expression of Ey,A[Zn(β|DM)] from N to R , we evalu-
ate limn→0 Ey,A[Zn(β|DM)] at the final step. These procedures are termed replica method.

The final expression of f (β) is given as an extremisation problem with respect to a number 
of parameters, called order parameters. The extremisation condition appears because of the 
limit N → ∞, and yields EOS determining the values of the order parameters. The explicit 
formulas are given below. It should be noted that the following analysis is conducted only 
under the RS assumption, although RSB occurs in some parameter regions. This is because 
the RS analysis is sufficient for the present purpose of obtaining insights on the stability of 
the SCAD estimator. Beyond this purpose, the RSB analysis will provide further quantitative 
information about the estimator when many local minimums exist, which will be an interest-
ing future direction.

3.2. Order parameters, equations of state, and stability condition

Here, we summarise the order parameters and EOS. In the RS level, our system is character-
ised by the following three-order parameters:

m =
1
N

∑
i

Ey,A
[〈

x0
i xi

〉]
, (15)

Q =
1
N

∑
i

Ey,A
[〈

x2
i

〉]
, (16)

q =
1
N

∑
i

Ey,A

[
〈xi〉2

]
, (17)

T Obuchi and A Sakata J. Phys. A: Math. Theor. 52 (2019) 414003
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where the angular brackets, 〈· · ·〉, denote the average over the Boltzmann distribution 
P(x|β, DM) = e−βH(x|DM)/Z(β|DM). m is the overlap with the true signal x0 and is relevant to 
the reconstruction performance. Q and q both describe the powers (per element) of the estima-
tor, but the latter takes into account the ‘thermal’ fluctuation that results from the introduction 
of β. These two quantities fall within the limit β → ∞, but their infinitesimal difference yields 
an important contribution:

χ = β(Q − q). (18)

This is O(1), even in the limit β → ∞. Besides, we introduce the conjugate parameters of 
Q,χ, m as Q̃, χ̃, m̃, respectively, and denote their sets as Ω = {Q,χ, m} and Ω̃ = {Q̃, χ̃, m̃}. 
The RS free-energy density in the limit β → ∞ takes the following extremisation problem, 
with respect to Ω and Ω̃:

f (β → ∞) = Extr
Ω,Ω̃

{
Q − 2m + ρ0σ

2
x + ασ2

∆

2(1 + χ/α)
+ mm̃ − Q̃Q − χ̃χ

2
+

ξ(σ; Q̃)

2

}
,

 (19)
where:

L(h; Q̃) ≡ min
x

{
Q̃
2

x2 − hx + J(x; η)

}
. (20)

∫
Dz(· · · ) ≡

∫ ∞

−∞

dz√
2π

exp

(
−1

2
z2
)
(· · · ), (21)

ξ(σ; Q̃) ≡ 2
∫

Dz L(σz; Q̃), (22)

and · · · represents the average over σ, whose distribution is:

Pσ(σ) = (1 − ρ)δ(σ − σ−) + ρδ(σ − σ+), (23)

σ− =
√

χ̃, (24)

σ+ =
√

χ̃+ m̃2σ2
x . (25)

The minimiser of (20) is the solution of the one-dimensional problem (7), with σ2
w → Q̃−1 and 

w → h/Q̃, thus we can denote it as:

x∗(h; Q̃−1) = VSCAD(h; Q̃−1, η)SSCAD(h; Q̃−1, η). (26)

The extremisation condition in (19) yields EOS as:

χ =

∫
Dz

∂x∗(h; Q̃−1)

∂h

∣∣∣∣∣
h=σz

=
1
Q̃

{
ρ̂+

1
a−1

Q̃ − 1
a−1

ξ4(σ)

}
, (27a)

Q =

∫
Dz(x∗(σz; Q̃−1))2 =

{
ξ1(σ)

Q̃
+

ξ2(σ)

Q̃ − 1
a−1

+
ξ3(σ)

Q̃

}
, (27b)

T Obuchi and A Sakata J. Phys. A: Math. Theor. 52 (2019) 414003
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m = ρm̃σ2
x

∫
Dz

∂x∗(h; Q̃−1)

∂h

∣∣∣∣∣
h=σ+z

= ρ0σ
2
x

{
erfc(θ1(σ+)) +

1
a−1ξ4(σ+)

Q̃ − 1
a−1

}
,

 (27c)

χ̃ =
1
α

Q − 2m + ρ0σ
2
x + ασ2

∆

(1 + χ/α)2 , (27d)

Q̃ =
1

1 + χ/α
, (27e)

m̃ =
1

1 + χ/α
, (27f )

where

θ1(σ) = λ/(
√

2σ), (28a)

θ2(σ) = λ(1 + Q̃)/(
√

2σ), (28b)

θ3(σ) = aλQ̃/(
√

2σ), (28c)

ρ̂ = erfc(θ1(σ)), (28d)

ξ1(σ) =
σ2

Q̃

[
− 2θ1(σ)√

π

(
e−θ2

1(σ) + (Q̃ − 1)e−θ2
2(σ)

)

+ (1 + 2θ2
1(σ)){erfc(θ1(σ))− erfc(θ2(σ))}

]
,

 

(28e)

ξ2(σ) =
σ2

Q̃ − 1
a−1

[ 2√
π

{
θ2(σ)e−θ2

2(σ) − θ3(σ)e−θ2
3(σ)

− 2θ3(σ)

Q̃(a − 1)

(
e−θ2

2(σ) − e−θ2
3(σ)

)}
+
{

1 + 2
( θ3(σ)

Q̃(a − 1)

)2}
ξ4(σ)

]
,

 

(28f )

ξ3(σ) =
σ2

Q̃

[2θ3(σ)√
π

e−θ2
3(σ) + erfc(θ3(σ))

]
, (28g)

ξ4(σ) = erfc(θ2(σ))− erfc(θ3(σ)). (28h)

The SCAD regularisation divides the domain of definition into some analytic components, 
and {θi}3

i=1 are the corresponding boundary values for z for the integration 
∫

Dz(· · · ). The 
parameter ρ̂  is the density of non-zero components in the estimate.

Using the solution of EOS, the input and output MSEs can be expressed as:

εx =
1
2
(
ρ0σ

2
x − 2m + Q

)
, (29)

εy =
1
2
χ̃. (30)

T Obuchi and A Sakata J. Phys. A: Math. Theor. 52 (2019) 414003
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Furthermore, we additionally quantify the reconstruction performance of the support of the 
true signal. Denoting the support or active set of x as SA(x) = {i|xi �= 0}, we introduce the 

true positive rate TP(x|x0) =
|SA(x)∩SA(x0)|

|SA(x0)|  and the false positive rate FP(x|x0) =
|SA(x)∩Sc

A(x0)|
|Sc

A(x0)| , 

where Sc denotes the complement set of S. These are expressed by using the solution of EOS 
as:

TP =

∫
Dz

∣∣x∗(σ+z; Q̃−1)
∣∣
0 = erfc(θ1(σ+)), (31)

FP =

∫
Dz

∣∣x∗(σ−z; Q̃−1)
∣∣
0 = erfc(θ1(σ−)), (32)

where |x|0 expresses �0 operator giving 0 if x  =  0 and 1 otherwise. Following the standard 
analysis [13], we can derive the stability condition of the RS solution, called de Almeida–
Thouless (AT) condition [30]. The derivation of our specific case is already given in [13] and 
we just quote the resultant expression:

1

α (1 + χ/α)
2

∫
Dz

(
∂x∗(h; Q̃−1)

∂h

∣∣∣∣∣
h=σz

)2

=
1

α (1 + χ/α)
2


 ρ̂

Q̃2
+




(
1

Q̃− 1
a−1

)2

− 1
Q̃2



 ξ4(σ)


 < 1.

 

(33)

Apart from the AT condition, we also notice that the RS solution does not exist when the 
switching nonconvexity parameter a is small. This is because (20) tends to have no solution in 
the small a limit, leading to the following existence condition:

Q̃ − 1
a − 1

� 0. (34)

These provide sufficient information for the following analyses.

3.3. Phase diagram

In this subsection, we show the phase diagrams in the λ–a plane for a wide range of param-
eters. We introduce three boundaries: the first one, derived from (33), is the AT line aAT(λ) 
below which the RS solution is unstable; the second, derived from (34), is the existence limit 
of the RS solution aRS(λ), below which the RS solution does not exist; and the third, aIMSE(λ) 
represents the minimum point of the input MSE εx , when sweeping λ given a. For clarity, the 
variance of the non-zero components of x0 is fixed as σ2

x = 1/ρ0, setting the signal power per 

component unity, in average, 
∑N

i=1

(
x0

i

)2
/N ≈ 1.

First, we compare the phase diagrams for different noise strengths σ2
∆ at α = 0.5 and 

ρ0 = 0.2 in figure 2. We plot aAT, aRS, and aIMSE by blue, red, and green lines, respectively. 
The green diamond represents the location of the global minimum of εx  under the RS assump-
tion. A useful finding concerning this is that the location is above the AT line, which is always 
the case as far as we have examined, and some additional evidences are later given in figures 3 
and 4. In the right panel of figure 2, the green diamond is not shown, because the input MSE 
continuously decreases as a grows, implying that the global minimum of εx  is obtained at the 
LASSO limit a → ∞. These imply that the best reconstruction performance of the true signal 
is always obtained in the RS phase, which is one of main claims of this study. Admittedly, 
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there is a possibility that the true global minimum exists in the RSB phase, and the green dia-
mond just represents a local minimum. Our present analysis does not exclude this possibility. 
To clarify this point, further quantitative analysis in the RSB framework is required, but this 
is beyond the scope of this study.

Another interesting observation in figure 2 is the re-entrant phase transition concerning λ 
in relatively small a regions for the weak noise cases (left and middle panels). For example 
at a  =  2.8 in the left panel, when decreasing λ from a large enough value, we first go across 
the rightmost branch of aAT around λ ≈ 1 and enter into the RSB phase from the RS phase; 
further decreasing λ we meet the middle branch of aAT around λ ≈ 0.1 and thus re-enter into 
the RS phase; still decreasing λ we hit the leftmost branch of aAT around λ ≈ 0.01 and we are 
eventually in the RSB phase. Although the physical reason of the emergence of the re-entrance 
is not clear, it seems to only exist in the weak noise region. We also note that the AT line, aAT, 
is always located above aRS. The solution vanishment in the low λ region is thus an artefact 
of the RS assumption, and the corresponding parameter regions should be described by the 
RSB solution.

Next, we check the ρ0 dependence of the phase structures. Phase diagrams at α = 0.5 and 
a moderate noise level σ2

∆ = 0.1 are shown in figure 3. Although the basic structure does 
not change from figure 2, the re-entrant transitions in the weak noise cases disappear. As ρ0 
increases, the minimum location of εx  increases along the a-axis, and for the large ρ0 (right 

Figure 2. Phase diagrams in the λ–a plane for different noise strengths (σ2
∆ = 10−4 

(left), 10−2 (middle), 1 (right)) at α = 0.5 and ρ0 = 0.2. The blue, green, and red lines 
denote aAT, aIMSE, and aRS, respectively. The green diamond represents the location of 
the global minimum of the input MSE εx . For the right panel of the largest noise case 
σ2
∆ = 1, there seems to be no global minimum of εx  for finite a (located in the LASSO 

limit a → ∞).

Figure 3. λ–a phase diagrams for different densities of non-zero components (ρ0 = 0.1 
(left), 0.2 (middle), 0.4 (right)) at α = 0.5 and σ2

∆ = 0.1. The lines and markers have 
the same meaning as figure 2. As ρ0 increases, the location of the minimum of εx  tends 
to be at larger values of a.
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panel) the green diamond tends to disappear at finite values of a, implying the LASSO limit 
yields the minimum of εx  as the strong noise case.

The last phase diagrams are given for checking the α dependence. Phase diagrams for 
α = 0.3, 0.8, 1.5 at ρ0 = 0.2 and σ2

∆ = 0.1 are shown in figure 4. As seen in the left panel, if 
the value of α is close to that of ρ0, the larger a tends to give smaller values of the input MSE, 
as in the right panel of figure 3. In contrast to the other diagrams of the underdetermined case 
(α < 1), the right panel of the α = 1.5 case shows a particular behaviour, as both the AT line 
and the RS existence limit tend to converge to certain finite values of a in the λ → 0 limit. 
Hence, the whole λ region becomes RS at sufficiently large but finite a values.

In all the phase diagrams shown above, the minimum value of a is fixed to be 2. This is 
because the RS solution cannot describe the region a  <  2. There is a simple reason for this. 
According to the argument of the approximate message passing technique [13, 20], the effec-
tive one-dimensional problem (20) corresponds to the following marginal distribution:

Pi(xi) ∝ lim
β→∞

e
−β

{
1
2

(∑M
µ=1

A2
µi

1+χµ

)
x2

i −hixi+J(xi;η)
}

, (35)

where the minimiser of (20) corresponds to the location of xi, at which the measure concen-

trates in the limit β → ∞. The factor 

(∑M
µ=1

A2
µi

1+χµ

)
 corresponds to Q̃, while χµ is a non-

negative quantity related to χ in the RS solution. This means that, under the assumption of 
Aµi ∼ N (0, 1/M), Q̃ is bounded as:

Q̃ =




M∑
µ=1

A2
µi

1 + χµ


 �

M∑
µ=1

A2
µi ≈ 1. (36)

Combining this with (34), we find that the condition a � 2 is necessary for the existence of 
the RS solution. The merging behaviour of the three lines to the a  =  2 line, as λ grows in 
the phase diagrams, well matches to this condition. Although a  =  2 is a known critical value  
[11, 31], the above argument provides another perspective from a different viewpoint. We also 
note that this non-existence of the RS solution does not mean the non-existence of the SCAD 
estimators. Actually, numerical experiments easily show that the estimators take non-trivial 
values in the region a  <  2, and they tend to show strong multiplicity and dependency on the 
initial condition. To analyse the behaviour of those estimators, we need to consider the RSB 
solution, but it is beyond the present purpose as already declared.

Figure 4. Phase diagrams for different ratios of the dataset size to the model 
dimensionality (α = 0.3 (left), 0.8 (middle), 1.5 (right)) at ρ0 = 0.2 and σ2

∆ = 0.1. The 
lines and markers have the same meaning as figure 2.
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3.4. Receiver operating characteristic curve

To characterise the reconstruction performance of the true signal’s support, we employ the 
so-called receiver operating characteristic (ROC) curve. The ROC curve is a plot of TP (31) 
against FP (32). The best ROC curve goes through the point (TP, FP) = (1, 0). Accordingly, 
to quantify ‘optimality’ of the points on a ROC curve, we use the following quantity:

R = (TP − 1)2 + (FP − 0)2. (37)

Thus, the smallest value of R defines the ‘optimal’ point of the ROC curve. This easy-to-use 
quantity is commonly applied as a criterion, followed here.

First, ROC curves when sweeping λ at given values of a are plotted in the left panel of 
figure 5. The other parameters are (α, ρ0,σ2

∆) = (0.5, 0.2, 0.1). The curves are not monotonic 
and tend to change in the small λ region sharply, but the locations of the minimums of R, 
depicted by filled magenta circles, tend to be in the monotonic region. To compare the values 
of the R minimums, we plot them against a in the right panel. The global minimum is located 
at a ≈ 10, which matches to the minimum location of εx , depicted by the green diamond in 
the middle panel of figure 3. This suggests a possibility that minimising εx  also approximately 
minimises the error in the variable selection.

To scrutinise the possibility, we show ROC curves when adaptively changing the non-
convexity parameters along the aIMSE(λ) line in the λ–a phase diagrams: the upper panels of 
figure 6 are the ROC curves for (α,σ2

∆) = (0.5, 0.0001), (0.5, 0.1), and (1.5, 0.1) at ρ0 = 0.2. 
The corresponding plots of R and εx  against a are also shown in the lower panels. These fig-
ures show that the minimums of εx  are actually close to that of R. As far as we have searched, 
similar tendency holds in other parameters. These fully support the above-mentioned possibil-
ity. Such a nice property is absent in LASSO [32], and the minimum point of εx  in LASSO 
tends to give a solution with rather large FP4. Hence in the reconstruction performance of the 
true model, the SCAD estimator is superior to the LASSO one.

Readers may doubt the effectiveness of this statement, because the input MSE εx  cannot be 
computed for realistic settings with unknown true signals. As explained later, the input MSE 
has a simple linear relation to the generalisation error estimated by CV, when rows of the 
design matrix are uncorrelated with each other. Hence, we may minimise the CV error instead 
of the input MSE.

Figures 2–4 show that in some parameter regions there seems to be no global minimum of 
the input MSE at finite a, as for the strong noise case of (α, ρ0,σ2

∆) = (0.5, 0.2, 1) in figure 2 
and the dense signal case (α, ρ0,σ2

∆) = (0.5, 0.4, 0.1) in figure 3. To examine those cases, 
we plot relevant quantities when changing a and λ again along the aIMSE(λ) line in figure 7. 
The left panels show the plots of TP and FP against a, the middle panels display the plots of 
R and εx  against a, and the right panels give the associated ROC curves. All the quantities of 
TP, FP, R, and εx  show monotonic behaviours with respect to a, and seem to converge to finite 
values in the LASSO limit a → ∞. The minimums of R and εx  would be thus obtained by 
LASSO, with the optimised λ. These observations imply that LASSO is sufficient for difficult 
cases with strong noises or dense signals. This also implies that it is difficult to determine a 
good value of a to find the least εx  solution given a dataset prior to actual analyses, because it 
strongly depends on the noise strength or the signal density.

4 In [32], essentially the same analysis is done for LASSO, but a wrong terminology is used. The quantity R is 
termed Youden’s index in that study, but it is contradictory to the conventional terminology. Youden’s index is 
another similar but different criterion for choosing an ‘optimal’ point on ROC curve.
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Figure 5. (Left) ROC curves when sweeping λ at different values of a for 
(α, ρ0,σ2

∆) = (0.5, 0.2, 0.1). The minimums of R on the curves, for given values of a 
are plotted by filled magenta circles. (Right) The minimum value of R, when sweeping 
λ given a, is plotted against a. The global minimum tends to be located around a ≈ 10, 
which matches to the minimum location of εx  depicted by the green diamond in the 
middle panel of figure 3.

Figure 6. (Upper) ROC curves when changing the nonconvexity parameters along 
the aIMSE(λ) line in the λ–a phase diagrams for (α,σ2

∆) = (0.5, 0.0001) (left), 
(0.5, 0.1) (middle), and (1.5, 0.1) (right) at ρ0 = 0.2. The other parameters are 
(ρ0,σ2

∆) = (0.2, 0.1). The minimum values of R and εx  are depicted by filled magenta 
circle and green diamond, respectively. (Lower) Plots of R and εx  against a along the 
aIMSE line. The parameters are identical to the corresponding upper panels.
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4. Approximate formula for cross-validation

In this section, we derive an approximate formula for the leave-one-out (LOO) CV error. If the 
dataset size M is large enough, the difference between the estimators of the full and LOO data-
sets is considered to be small, and it is expected that those two estimators can be connected in 
a perturbative manner. We concretise this idea below.

The estimator without the µth data in (2) is, hereafter, termed µth LOO estimator, and the 
explicit formula is given by:

x̂\µ(η, DM) = arg min
x




1
2

∑
ν( �=µ)

(
yν −

∑
i

Aνixi

)2

+ J(x; η)


 . (38)

The LOO CV error (LOOE) is accordingly defined as:

εLOO(η, DM) =
1

2M

M∑
µ=1

(yµ − a�
µ x̂\µ(η, DM))

2, (39)

where a�
µ = (Aµ1, · · · , AµN) is the µth row vector of A. The LOOE is an estimator for the 

generalisation error or extra-sample error, defined as:

εg(η, DM) ≡
∫

dynewdanewP(ynew, anew)
1
2
(ynew − a�newx̂(η, DM))

2, (40)

Figure 7. (Left) Plots of TP and FP against a along the aIMSE(λ) line. (Middle) Plots 
of R and εx  against a along the aIMSE(λ) line. (Right) The associated ROC curves. 
The upper row is for the strong noise case of (α, ρ0,σ2

∆) = (0.5, 0.2, 1) corresponding 
to the right panel of figure  2, while the lower row is for the dense signal case 
(α, ρ0,σ2

∆) = (0.5, 0.4, 0.1) corresponding to the right panel of figure 3. In both the 
cases, all the quantities of TP, FP, R, and εx  behave monotonically with respect to a, and 
seem to converge to finite values in the LASSO limit a → ∞.
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where {ynew, anew} represents a new data sample, and P(ynew, anew) denotes its distribution. 
In our setting, the distribution corresponds to the i.i.d. process described around (1), and it is 
analytically shown that εg has a direct connection to εx  as:

εg(η, DM) =
1
α
εx
(
x̂ (η, DM) |x0)+ 1

2
σ2
∆. (41)

Hence, we can estimate the input MSE from the LOOE. Note that the sufficient condition for 
(41) is that both the noise components and the rows of the design matrix are zero-mean and 
uncorrelated; correlations in the signal vector x0 may exist because they do not affect (41).

Owing to sparse priors, the variables in the estimator are separated in two types. Some 
variables are set to zero and the others take non-zero values. We call the former inactive vari-
ables and the latter active variables. The index set of the inactive variables, or inactive set, is 
denoted by SI = {i|x̂i = 0}, while one of the active variables, or active set, is SA = {i|x̂i �= 0}. 
The active (inactive) components of a vector x are formally expressed as xSA(xSI ). For any 
matrix X, we use double subscripts in the same manner and introduce the symbol ∗ meaning 
all the components in the respective dimension. For example, for an N × N  matrix X, XSASI 
and X∗SI denote X’s sub-matrices having row components of SA and all, respectively, while 
their column components are commonly of SI.

4.1. Derivation

The basic assumption to derive the approximate formula is that the active set is ‘common’ 
between the full and LOO estimators. Although this assumption is literally not true, we numer-
ically confirmed that this approximately holds in the RS region. In other words, the change of 
the active set is small enough compared to the size of the active set itself, when considering the 
LOO operation under the situation with large N and M. Moreover, in the LASSO case, it has 
been shown that the contribution of the active set change vanishes in a limit N, M → ∞, keep-
ing α = M/N = O(1) [32]. It is expected that the same holds in the present problem. Hence, 
we adopt this assumption in the following derivation. We also note that this assumption is not 
applicable to the RSB region.

Once assuming the active set is known and common between the full and LOO systems, we 
can easily get the determining equations for the coefficients in the active set, by differentiating 
the cost function with respect to xSA, yielding:

(
(A∗SA)

�
A∗SA

)
x̂SA − (A∗SA)

T y +∇J(x̂SA ; η) = 0, (42)

for the full system and:
((

A\µ
∗SA

)�
A\µ
∗SA

)
x̂\µSA

−
(

A\µ
∗SA

)T
y\µ +∇J(x̂\µ

SA
; η) = 0, (43)

for the LOO system.
Let us denote d = x̂ − x̂\µ and expand (43) with respect to d  up to the first order. Erasing 

some terms using (42), and solving the remaining expression with respect to d , we obtain an 
equation of dSA as:

dSA ≈ (yµ − a�
µ x̂)

((
A\µ
∗SA

)�
A\µ
∗SA

+
(
∂2J(x̂SA ; η)

)
SASA

)−1

aµ. (44)

T Obuchi and A Sakata J. Phys. A: Math. Theor. 52 (2019) 414003



16

Using (44), we can connect the residuals of the LOO and full systems as:

yµ − a�
µ x̂\µ = yµ − a�

µ (x̂ − d)

≈

(
1 + (aµ)

�
SA

((
A\µ
∗SA

)�
A\µ
∗SA

+
(
∂2J(x̂SA ; η)

)
SASA

)−1

(aµ)SA

)
(yµ − a�µ x̂).

 (45)

Using the relation 
((

A\µ)� A\µ
)
=

(
A�A − aµa�

µ

)
 and the Woodbury matrix inversion 

form ula, we finally get

εLOO ≈ 1
2M

M∑
µ=1

Θµ

(
yµ − a�

µ x̂
)2

, (46)

where

Θµ =

(
1 − (aµ)

�
SA

(
(A∗SA)

� A∗SA +
(
∂2J(x̂SA ; η)

)
SASA

)−1
(aµ)SA

)−2

. (47)

The righthand side of (46) can be computed only from the full solution, enabling an approxi-
mate evaluation of the LOOE, without literally conducting CV. The error bar can be put as the 
standard deviation among all the terms in (46) divided by 

√
M 5. This is convincing because 

each term of (46) gives an independent estimator to the generalisation error (40) and hence 
its error bar can be given as the standard error. Numerical experiments below show that this 
definition gives a reasonable error bar.

In the case of LASSO, the Hessian of the penalty term is identically zero, ∂2JLASSO = 0, 
meaning that (46) comes back to the ‘approximation 1’ in [32]. For SCAD, the Hessian takes 
the following form:

(
∂2JSCAD(x̂; η = {λ, a})

)
ij =

1
1 − a

δijI(λ < |x̂i| � aλ), (48)

where I(statement) denotes the indicator function, giving 1 if the statement is true and 0 
otherwise.

5. Numerical experiments and numerical codes

Here we present numerical experiments. To obtain the SCAD estimator, we use the CD 
algorithm because it is common and stable. We implement this using C language, while the 
approximate CV formula is implemented as a raw code in MATLAB®. Hence, it is not neces-
sarily fair to compare the computational time in the literal and approximate CVs, which are 
computed by (39) and (46) respectively, conducted below as a part of experiments. However, 
even in this comparison there is a meaningful difference in the computational time. When 
showing the computational time, we fix our experimental environment which uses a single 
CPU of 3.3 GHz Intel Core i7.

In a single step of the CD algorithm, we update all the components of x in a random 
order. To judge the convergence of the CD algorithm, we monitor the difference between the 
estimate x̂(t) at the step t and the previous one x̂(t−1). If all the component-wise differences 

5 Note that the main text description about the error bar of the approximate CV error in [32] is inconsistent with 
this, but this one is the correct one. Although the text description is incorrect, the experimentally reported error bars 
in [32] are correct and consistent with this.
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{di = |x̂(t)
i − x̂(t−1)

i |}i are smaller than a threshold value δ, then the algorithm stops; otherwise 
it continues. We set the threshold value as δ = 10−10 in all the experiments below.

5.1. Simulated dataset

In this subsection, we conduct experiments using simulated datasets. The main purpose is to 
confirm analytical predictions and to examine the accuracy of the approximate formula. Our 
simulated datasets are generated by the process described around (1) and (10). The signal 
power is set to be σ2

x = 1/ρ0, matching with section 3.3.

5.1.1. Consistency check of the replica solution. To check the accuracy of the replica result 
and to examine the finite-size effect, we first plot the input and output MSEs against λ, given 
a for different sizes. The plots for (α, ρ0,σ2

∆, a) = (0.5, 0.2, 0.1, 3) and (1.5, 0.2, 0.1, 4) are 
given in figure 8 as example cases. The black thick curves and the colour markers denote 
the analytical and numerical results, respectively. For the numerical data, the average over 
different samples of the set {A, x0,∆} is taken; the sample numbers are 200, 100, 100, 50 
for N = 50, 100, 200, 400, respectively; the error bars are given as the standard error among 
the samples. The vertical dashed line represents the AT instability point below which the RS 
solution is unstable. Focusing only on the RS region, we can find that the finite-size effect is 
quite weak, and the numerical results show an excellent agreement with the analytical ones, 
justifying our analytical solutions. In this experiment, even below the AT point, the numer-
ical results show a strong regularity. This is because the solutions are obtained by gradually 
changing λ from large to small values, and hence these solutions below the AT point are, in 
some sense, continuously connected to the ones above the AT point. We term this scheme λ 
annealing, which can be considered as a part of the nonconvexity control proposed in [20]. We 
warn that the solution path obtained by the λ annealing is very atypical below the AT point, 
as implied in section 5.1.2.

As another check of the RS solution’s consistency, we also draw ROC curves by 
numerical experiments. In figure  9, we give the ROC curves along the aIMSE line for 
(α, ρ0,σ2

∆) = (0.5, 0.2, 0.1) and (α, ρ0,σ2
∆) = (0.5, 0.4, 0.1), which correspond to the upper 

middle panel of figure 6 and the lower middle panel of figure 7, respectively. The numerical 
result is displayed as the scatter plots (orange cross points) of TP and FP, for the experiments 
of 10 different samples at N  =  1000. The numerical plots show a fairly good agreement with 
the analytical curve, which again justifies our analytical solutions.

5.1.2. Accuracy of the approximate CV formula. To check the accuracy of the approximate 
CV formula, in figure 10 we compare the CV errors between the literal (by (39)) and approxi-
mate (by (46)) CVs for two specific samples of the system size N  =  100. The other parameters 
are (α, ρ0,σ2

∆, a) = (0.5, 0.2, 0.1, 3) and (α, ρ0,σ2
∆, a) = (1.5, 0.2, 0.1, 4), which correspond 

to figure 8. Here, all the results are obtained using the λ annealing and they show regular 
behaviours, even below the AT point. In all the cases, the approximate result reproduces well 
the literal one up to the AT point, even for the error bars given by the way explained at sec-
tion 4.1. The uncontrolled behaviour of the approximate formula below the AT point is owing 

to the singular behaviour in the factor 

((
A\µ
∗SA

)�
A\µ
∗SA

+
(
∂2J(x̂SA ; η)

)
SASA

)−1

 in (44). This is 

natural because this factor is nothing but the susceptibility, which is known to involve diverg-
ing modes when the AT instability occurs [14]. These considerations mean that our approxi-
mate formula is only applicable above the AT point or in the RS phase.
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Can we detect the instability point only from the approximate CV result without referring 
to the replica computation? Figure 10 speaks for this, because the approximate CV error tends 
to show uncontrolled behaviours at and below the AT point. As a trial, assuming a combina-
tion use with the λ annealing, we examine the following procedures to detect the uncontrolled 
behaviours:

 (i)  Detect ‘irregular’ datapoints by locally comparing each datapoint with neighbouring 
points along the λ path (here datapoints mean the approximate CV result, red circles in 
figure 10).

 (ii)  Find the maximum value of λ whose corresponding datapoint is irregular. Regard all the 
λ region below it as ‘instability region’.

To obtain a concrete result, we need to implement the first step (i) as an algorithm. The actual 
implementation is:

Figure 8. Plots of the input MSE (left) and the output MSE (right) against λ for 
(α, ρ0,σ2

∆, a) = (0.5, 0.2, 0.1, 3) (upper) and (α, ρ0,σ2
∆, a) = (1.5, 0.2, 0.1, 4) (lower). 

The black thick curves and the colour markers denote the analytical and numerical 
results, respectively. The left end point of the analytical curve corresponds to the 
existence limit of the RS solution. The vertical blue dashed line represents the AT 
instability point below which the RS solution is unstable. The agreement between the 
analytical and numerical results is excellent in the RS region. The numerical results are 
obtained by the annealing with respect to the amplitude parameter λ, explaining the 
regularity of the numerical results even below the AT instability point.
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Figure 9. ROC curves evaluated by the analytical (blue thick curve) and numerical 
(orange cross point) for (α, ρ0,σ2

∆) = (0.5, 0.2, 0.1) (left) and (α, ρ0,σ2
∆) = (0.5, 0.4, 0.1) 

(right). The numerical data is obtained by the experiments of 10 different samples at 
N  =  1000. The agreement between the two are fairly good.

Figure 10. Plots of the literal (by (39)) and approximate (by (46)) CV errors 
against λ at N  =  100 for given (α, ρ0,σ2

∆, a) = (0.5, 0.2, 0.1, 3) (upper) and 
(α, ρ0,σ2

∆, a) = (1.5, 0.2, 0.1, 4) (lower). The results of two specific different samples 
(left and right) are shown. The black thick curve and the vertical blue dashed line 
represent the RS solution and the AT point, respectively. The approximate results are 
well matching to the literal ones up to the AT point.
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 (i)-1  If the CV error difference between the irregular point candidate and the compared 
datapoint is larger enough in reference to the error bar of the compared point, then the 
candidate is regarded as ‘irregular’.

By these procedures, we can separate all the parameter regions into two parts: Stable and 
unstable regions corresponding to the RS and RSB phases, respectively. By employing this, 
in figure 11 we draw ‘phase diagrams’ of two specific samples, used also in figure 10. This 
figure shows that the boundary between the white and black regions behaves similarly to the 
AT line aAT(λ), although there is a gap supposedly owing to the sample fluctuation and the 
finite-size effect. As a reference, we also compute the minimum location of the approximate 
CV error with respect to λ given a, defining aCVE(λ), which is denoted by the green curve 
in figure 11. According to (41), this corresponds to aIMSE appearing in the phase diagrams in 
section 3.3. Note that these procedures are somewhat overcautious, and can miss some stable 
regions possibly existing in the small λ region. As typically seen in the left panel of figure 2, 
the re-entrant transition can emerge in the weak noise case but the present procedures cannot 
detect this re-entrancy, because these procedures detect the first RS-RSB transition corre-
sponding to the rightmost branch of aAT and all the region below this first transition point is 
regarded as ‘instability region’. However, for practical use, it is more important to avoid giv-
ing wrong estimates by our approximate formula. Hence, we do not aim to improve the above 
instability detection procedures in this study.

Apart from the re-entrancy, it is worthwhile to investigate the cause of the gap between 
the AT line and the instability points detected by our procedures. To this end, we compute 
the boundary value between the black and white regions in figure 11 given a, λc(a), for many 
samples and different system sizes. The results at a  =  5 and a  =  10 are shown in figure 12. 
The left panels provide the histograms of λc from Nsamp = 100 samples for different sizes 
N = 100, 200, 400, 800, 1600 discriminated by different colors. As the system size grows, the 
width of the histogram shrinks and the mode value tends to approach the λ value at the AT 
point. Here the number of bins Nbin for the histogram is determined by the so-called Sturges 
rule [33] as Nbin = �1 + log2 Nsamp�, enabling us to define the mode value without ambiguity. 
To quantify the convergence behavior of the mode value, we plot the mode against the inverse 
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Figure 11. ‘Phase diagrams’ drawn for two specific samples used in figure 10 using the 
instability detection procedures described in the main text. The white and black regions 
represent the stable and unstable regions which correspond to the RS and RSB phases. 
The blue thick curve denotes the AT line aAT computed by the replica method, while the 
green curve aCVE shows the λ location of the approximate CV error minimum given a 
in the stable region which is supposedly related to aIMSE.
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system size 1/N in the right panels. Here the mode value shows a clear tendency of approach-
ing to the AT value as N grows. This indicates that the gap is actually due to the sample fluc-
tuation and the finite-size effect, and also implies that our instability detection procedures are 
reasonably connected to the AT instability.

The AT instability is known to be connected to the emergence of many local minimums 
[14]. To directly check this, we conduct the literal CV without the λ annealing. For each point 
of λ, the estimator is computed from ten different randomly initialized x, each component of 
which is i.i.d. from N (0, 1), by the CD algorithm. In figure 13, the resultant CV errors are 
given as scatter plots in combination with the CV error using the annealing. The experimental 
setup of each panel is again identical to the corresponding one in figure 10. This figure gives 
a clear evidence of the multiple solutions below the AT point. Figure 13 also implies that the 
solution obtained by the λ annealing is rather atypical: solutions obtained from random initial 
conditions tend to give rather different values of CV error from the annealed solution. To 
give a better theoretical background to this statement, we have to construct the full-step RSB 
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Figure 12. Histograms of λc (left) and plots of the mode values against the inverse 
system size (right) at a  =  5 (upper) and a  =  10 (lower) computed from Nsamp = 400 
samples. The blue straight line represents the λ value at the AT point commonly in 
all the panels. The error bar of the mode is put as the 0.86 and 0.14 quantiles of the 
histogram. The examined sizes are N = 100, 200, 400, 800, 1600 and the different 
colors of the histograms correspond to different sizes as shown in the legend. The other 
parameters are set to (α, ρ0,σ2

∆) = (0.5, 0.2, 0.1). To unambiguously define the mode 
value, we set the number of bins Nbin by Sturges rule as Nbin = �1 + log2 Nsamp�. As the 
system size grows, the width of the histogram shrinks and the mode value approaches 
the AT point.
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solution and to figure out the characterisation of the annealed solution in the ensemble of all 
the local minimums. This is beyond the present purpose but will be an interesting future work.

Our present attitude to the multiplicity of the solutions is to avoid it. This is reasonable 
because the global minimum of the generalisation error is in the RS region without the multi-
plicity, as clarified by our analytical computation. Once accepting this attitude, we can use the 
proposed approximate formula efficiently estimating the generalisation error and, fortunately, 
the formula also enables us to avoid the multiple solution region by using the above instability 
detection procedures. This is the main outcome and contribution of this study.

Before closing this subsection, we check the computational time and the approximate 
accuracy of the proposed formula more quantitatively. Here we quantify the error difference 
between the literal and approximate CVs by a normalised MSE defined as:

normalised MSE =

(
εCV,approx. − εCV,literal

εCV,literal

)2

, (49)

where εCV,approx. and εCV,literal are the CV errors evaluated by the approximate and literal CV 
procedures, respectively. According to the derivation of the formula in section 4, the accuracy 
is considered to be better as N and M increase. Thus, we plot the normalised MSE against N 

Figure 13. Comparison of the literal CV errors with and without the λ annealing in the 
same experimental condition as the corresponding panel of figure 10. The result without 
the annealing is shown as scatter plots (magenta circles) for ten different random initial 
conditions and it exhibits visible differences from the annealing result (blue asterisks, 
identical result to figure 10) below the AT point, while no difference exists sufficiently 
above the AT point. For the lower panels, the region around the AT point is magnified 
because the difference is small, although it exists.
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as the left panel of figure 14. The parameters are set to (α, ρ0,σ2
∆, a,λ) = (0.5, 0.2, 0.1, 4, 1) 

as an example. For each N, we compute the normalised MSE for several different samples 
of {A, x0,∆}, and the marker (blue asterisk) denotes the median among the samples, and 
the upper and lower error bars correspond to the 0.86 and 0.14 quantiles, respectively. 
The number of samples is {1000, 1000, 200, 200, 100, 50, 10, 10, 10, 2} for the system size 
{50, 100, 200, 400, 800, 1600, 3200, 6400, 10 000, 20 000}, respectively. As expected, the nor-
malised MSE is quite small for large sizes of N � 200, although at the smallest size N  =  50 
there is a non-negligible difference. This difference is dominated by a few percent of sam-
ples giving accidentally large values of εCV,approx.. The probability of the accidents seems to 
become smaller rapidly as the system size grows. In the middle panel, the same plot in the 
double log scale for small sizes N � 1600 is given, showing a clear decay of the normalized 
MSE in the scale N−2 as the system size grows. This is naturally understood from the scaling 
argument presented in section 5.1.1 in [32]. The corresponding computational time of the CD 
algorithm convergence and the approximate formula are given in the right panel. The approxi-
mate formula requires to take the inverse of the Hessian, leading to the computational cost of 
O(|SA|3), which is scaled as the third order polynomial of N if |SA|  =  O(N). This computational 
cost can be more expensive than the optimisation cost by the CD algorithm in the large N limit, 
because the total computational time of the CD algorithm is considered to be scaled as O(N2), 
under the assumption such that the convergence of the CD algorithm takes place in constant 
computational steps independent of the system size N, although the O(N2) behaviour is hard 
to see in figure 14. Despite this inconvenience in the limiting case, figure 14 shows that the 
computational time of the approximate formula is much smaller than the CD algorithm conv-
ergence, in all the investigated range of the system size. We note that the computational time 
of the CD algorithm shown in figure 14 is just for one-time optimisation, and hence, for con-
ducting the literal k-fold CV, the required computational time becomes approximately k times 

Figure 14. (Left) The normalised MSE of the CV error difference is plotted 
against the system size N in the log-linear scale. The number of samples is  
{1000, 1000, 200, 200, 100, 50, 10, 10, 10, 2} for the system size  {50, 100, 200, 400, 800,  
1600, 3200, 6400, 10 000, 20 000}, respectively. The marker denotes the median and 
the error bars consist of the 0.86 and 0.14 quantiles among the samples. The dashed 
horizontal line denotes unity, given as a reference. For N � 3200, the literal CV is 
conducted by the ten-fold CV instead of the LOO CV, to save the computational cost. 
(Middle) The same plot as the left panel in the double log scale for small sizes N � 1600. 
The normalised MSE decreases in the scale N−2 as the system size grows, which is 
clearly indicated by the dotted line representing slope  −2. (Right) The computational 
time for the CD algorithm convergence (blue asterisk) and for the approximate CV 
formula (red circle), in the same experiment as the left panel. The error bars are smaller 
than the marker sizes and hard to see. The dashed line denotes the slope 2 while the 
dotted one represents the slope 3, both of which are the expected size scaling of the 
computational time of the CD algorithm and the approximate CV formula, respectively.
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larger than that. Overall, although there is no superiority in the large N limit, our approximate 
formula practically works very efficiently in a wide range of system sizes.

5.2. A real-world dataset: Type Ia supernovae

Here we apply the proposed approximate method to a dataset of Type Ia supernovae. Our data-
set is a part of the data from [34, 35], which is screened by a certain criterion [36]. This data-
set was treated by a number of sparse estimation techniques recently, and a set of important 
variables, which is known to be empirically significant, has been reproduced [32, 36–38]. In 
those studies, the LASSO and �0 cases are treated, and the CV is employed for hyperparameter 
estimation. We reanalyse this dataset by using the SCAD penalty and compute the CV error by 
using the approximate formula. The parameters of the screened data are M  =  78 and N  =  276, 
and an appropriate standardisation is employed as pre-processing.

Again, we use the λ annealing to obtain the SCAD estimators for this dataset, and the 
CV error is computed by our approximate formula. The instability region is detected by the 
procedures explained in section 5.1.2. As figure 11, the instability detection gives a phase 
diagram which is in figure 15. The overall shape of this phase diagram is similar to the ones 
in section 3.3 or figure 11, supporting the practical relevance of our results so far. To directly 
check the approximation accuracy, we also conducted the literal CV at a number of values of 
a. The results for a  =  4 and 50 are given in figure 16. The approximate error well matches 
to the literal one up to the instability point, determined by the procedures explained in sec-
tion 5.1.2, which justifies our instability detection procedures. For the left panel of a  =  4, 
however, even below the instability point, there exists a region in which two CV errors agree 
well. This implies the presence of re-entrant transition, and it is probably related to a protrud-
ing black region around a ∈ (3, 5) in the right panel of figure 15. As declared in section 5.1.2, 
we do not try to detect the re-entrancy in the present study, but there must be some ways. 
For example, the annealing with respect to a instead of λ would be able to identify the re-
entrancy with respect to λ. We found that this strategy can actually detect the re-entrancy, but 
the strategy itself is far from perfect. There are some reasons for this. One reason is that the 
switching parameter a has no upper bound in contrast to λ (λ has an effective upper bound 

10-1 100

20

40

60

80

100
a

Phase diagram of TIa dataset

a
 CVE

10-1 100
2.1

4

6

8

10

a

Phase diagram of TIa dataset

Figure 15. λ–a phase diagram of the Type Ia supernovae dataset from [36]. The right 
panel is the magnified view of the left one in the small a region. The black region 
represents the instability region for which the approximate formula cannot be applied, 
while the white one is the stable region in which the approximate formula gives a 
reliable estimate. The minimum point of the CV error in the stable region is given by 
aCVE(λ), depicted by the green line.
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as explained in section 5.3) and hence the initialization becomes nontrivial. Another reason 
is that some instability ‘islands’ seem to exist at unexpected regions on the parameter space 
for this specific dataset: some compact parameter regions exhibiting the instability seem to be 
able to exist, in contrast to the theoretically derived phase diagrams in section 3.3, and hence 
isolating the instability regions becomes nontrivial even if the annealing with respect to a is 
correctly performed. Due to these difficulties, we leave further exploration of better ways of 
nonconvexity control as a future work.

To extract relevant values of the parameters, we plot the approximate CV error and the 
number of non-zero components K = ||x̂||0 along the aCVE line in figure 17. Here, some out-
liers exhibiting extraordinary small CV errors are omitted. At the CV error minimum, the 
solution with K  =  10 is obtained, which is comparable with K  =  9 of the LASSO solution at 
the minimum CV error [32, 36]. In the case of LASSO, it is common to select a sparser solu-
tion than the one at the CV error minimum according to the one-standard error rule [10, 39]. 
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Figure 16. Plot of the CV errors by the approximate (red circle) and the literal (blue 
asterisk) CV for a  =  4 (left) and a  =  50 (right) against λ for the Type Ia supernovae 
dataset. The blue dashed vertical line indicates the instability point obtained by the 
procedures described in the main text and well matches to the point at which the literal 
and approximate CV errors deviate from each other.
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Figure 17. Plots of the approximate CV error (left) and the number of non-zero 
components (right) along the aCVE line for the Type Ia supernovae dataset. The black 
vertical dashed line represents the minimum location of the CV error. Almost all 
datapoints are within the error bar of the minimum error point, and the sparsest solution 
within the one-standard error is obtained at a  =  2.2 and 2.3 with K  =  3.
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Although it is unclear if the application of this rule to the SCAD estimators is appropriate or 
not, we here try to apply to our case. As a result, we have the solution with K  =  3 obtained at 
a  =  2.2 or 2.3 as seen in figure 17. We globally examined all the datapoints within the one-
standard error in the stable phase, and confirmed that the K  =  3 solution is the sparsest. This 
sparsest solution consists of variables whose IDs are 1, 2 and 233. This is accurately matching 
to the result of [37, 38, 40], in which the �0 formalism is treated, while the LASSO estimator 
tends to give a denser solution with K  =  6 even under the one-standard error rule [32, 36]. 
These demonstrate the effectiveness of the SCAD estimator, and the presented analysis and 
approximate formula resolve its disadvantages of the multiplicity of solutions and the com-
putational cost in hyperparameter estimation. The effect of the one-standard error rule on the 
SCAD estimator seems to be also good, though further exemplifications would be needed.

5.3. Numerical codes

In [1], a MATLAB package of numerical codes implementing the estimation of the solution 
path using the λ annealing in conjunction with the approximate CV formula is distributed; 
the optimization is performed by the CD algorithm as the experiments so far. In the pack-
age three regularizations, LASSO, SCAD, and MCP, are treated in a unified manner. All the 

Figure 18. The result for the MCP case. (Upper) Phase diagrams for σ2
∆ = 0.01 (left) 

σ2
∆ = 1 (right) at (α, ρ0) = (0.5, 0.2), corresponding to the middle and right panels 

of figure  2. (Lower) Plots of the input MSE (left) and of the literal CV errors with 
and without the λ annealing (right) against λ at (α, ρ0,σ2

∆, a) = (0.5, 0.2, 0.1, 3), 
corresponding to the left upper panel of figure 8 and that of figure 13, respectively. 
Qualitatively similar results to the SCAD case are obtained.
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parameters are tunable in the codes, but the minimally required quantities to run the codes are 
the data vector y, the design matrix A6, and the switching parameter a. In the default setting, 
the L  =  100 values of λ are chosen as to be a descending order λ1 > λ2 > · · · > λL, and the 
largest is set to be λ1 = �max1�j�N

(
|a�

j y|
)
� where aj is the j th column vector of A, because 

only the trivial solution x̂ = 0 exists for λ > max1�j�N
(
|a�

j y|
)
; the smallest is set to be 

λL = ελ1 with ε = 0.01 and the intermediate values are given to interpolate these two values 
by the geometric progression with a constant rate. This way follows that of a commonly-used 
package glmnet [10, 41]. The λ annealing is basically the same as warm starts explained in 
[10], but it has a stronger meaning in the nonconvex penalties because it inevitably picks out 
a certain solution path as exemplified in the numerical experiments so far. On each point of 
λk , the CD algorithm finds the solution x̂(λk) from the initial condition x̂(λk−1) (for k  =  1 
the initial condition is the zero vector), and hence x̂(λk) and x̂(λk−1) are expected to be close 
each other. In the default setting, after obtaining the whole solution path over {λk}L

k=1, the 
approximate CV formula is subsequently applied and it is followed by the instability detection 
routine, yielding the approximate values of CV error and its reliable region. In the package, 
demonstration codes are also included and some experiments in section 5.1 can be easily re-
obtained; readers who are interested in the experiments are thus encouraged to try to use them. 
The details of usage are more explained in [1].

6. Conclusion

In this study, using the replica method, we analysed the macroscopic properties of the SCAD 
estimator in the context of the signal reconstruction in the presence of noise, under the assump-
tion that the design matrix is the i.i.d. random matrix. We derived the phase diagrams involv-
ing the RSB phase, and showed the superiority of the SCAD estimator to the LASSO one 
based on ROC curves. We also provided an analytical evidence that the global minimum of 
the input MSE or the generalisation error is located in the RS phase. Furthermore, we derived 
an approximate formula for the CV error, although it is applicable only for the RS phase. We 
implemented procedures detecting the AT instability or the approximation instability, enabling 
to clarify the applicable limit of the approximate formula and making the formula stand-alone.

To examine the analytical results, numerical experiments on simulated datasets and a real-
world dataset of Type Ia supernovae were conducted. On the simulated datasets, the replica 
prediction was well reproduced. The accuracy and the computational time of the approximate 
CV formula were examined, and its effectiveness was demonstrated in a wide range of the 
system size. For the real-world dataset, the application of the SCAD penalty reproduced the 
variables known to be empirically important. By using the approximate formula, we could 
globally search the parameters efficiently, and find that the SCAD estimator can provide a 
very sparse solution giving a reasonable value of the CV error. This solution is matching to 
the one of the earlier studies using the �0 formulation [37, 38, 40], and cannot be found by 
LASSO. These experiments demonstrate the effectiveness of the SCAD estimator, and the 
presented analysis and approximate formula resolve its disadvantages of the multiplicity of 
solutions and the computational cost in hyperparameter estimation.

As an efficient strategy to obtain a solution path, we proposed nonconvexity annealing as 
a part of nonconvexity control proposed in [20], and especially focused on the usage of the 
annealing with respect to λ, termed λ annealing in this paper. It was shown that this strategy 
works well also in combination with our approximate CV formula, but it further raised up 

6 In the package, the design matrix is denoted as X and the regression coefficients are given as β, following the 
statistics convention.
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a question related to RSB. In the RSB phase exhibiting the multiplicity of solutions, what 
solution is obtained by the annealing? Our numerical experiments showed that the annealed 
solution tends to give a smaller CV error compared to the solutions computed from random 
initial conditions, and in this sense the annealing is a nice strategy even in the multiple solu-
tion region. A similar observation was obtained in an inference in Gaussian mixture model 
[42, 43]. To make a more accurate and quantitative analysis about these findings, it is needed 
to construct the full-step RSB solution and to figure out the characterisation of the annealed 
solution in the ensemble of all the solutions. This will be an interesting future work.

The present instability detection procedures for the approximate CV formula are rather ad 
hoc and have some ambiguity, especially in specifying irregular datapoints along the solution 
path with respect to λ. This ambiguity is related to which points of λ should be sampled when 
computing the solution path. In the case of LASSO, the change points of active set, usually 
called knots, can be efficiently computed [44], which provides a clear criterion to the above 
ambiguity problem. It is expected that a similar technique computing knots for SCAD will be 
useful for improving the instability detection procedures.

As a final remark, we mention about the MCP penalty defined by:

JMCP(θ; η) =

{
λ|θ| − θ2

2a (|θ| � aλ)
aλ2

2 (|θ| > aλ)
, (50)

where η = {λ, a}. If we use this instead of the SCAD penalty, the effective one-dimensional 
estimator, (26) in the SCAD case, is replaced as:

x∗(h; Q̃−1) = VMCP(h; Q̃−1, η)SMCP(h; Q̃−1, η), (51)

where

SMCP(x;σ2, η) =




x − sgn(x)λ for aλσ−2 � |x| > λ

x for |x| > aλσ−2

0 otherwise
, (52)

VMCP(x;σ2, η) =



(σ−2 − a−1)−1 for aλσ−2 � |x| > λ

σ−2 for |x| > aλσ−2

0 otherwise
. (53)

Replacing x* in equations (27a)–(27c) by (51), we can get EOS for the MCP penalty, and the 
AT condition (33) can be replaced by the same way. Corresponding to (34), the RS existence 
limit of the MCP case is also given as

Q̃ − 1
a
� 0. (54)

Using these replacements, it is easy to obtain the result for the MCP case. As far as we 
searched, the MCP result is qualitatively similar to the SCAD one. For illustration of this, we 
give some phase diagrams, εx  plots, and plots of literal CV errors with and without λ anneal-
ing in figure 18. We see qualitatively similar results to the SCAD case: the re-entrancy for the 
weak noise region; the no global minimum of the input MSE in the RS phase at finite a for 
the strong noise or dense signal cases; the accurate accordance between the RS and numerical 
results above the AT point; the solution multiplicity below the AT point. Although there can be 
a difference between the SCAD and MCP penalties in a quantitative level as reported in [17], 
such a comparative study requires more detailed quantitative analyses and we also leave it as 
a future work. Note that the lower existence limit of the RS phase of the MCP case is given as 
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a  =  1, which is derived from (36) and (54), and hence the RS stable region tends to be wider 
than the SCAD case. However, the direct comparison of two parameter spaces is not necessar-
ily meaningful, and another systematic way of comparison is desired.
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